One ideia to understand \mathfrak{g} (with complicated brackets) is to try to "restrict" to a subspace $\mathfrak{G} \subseteq \mathfrak{g}$ such that $\forall x, y \in \mathfrak{G}, [x, y] = 0$.

Notice: A subspace satisfying the above condition is a subalgebra and is called abelian.

Notation: Given $X \in \mathfrak{G}$ define

$$ad(X) \in End_{\mathbb{C}}(\mathfrak{g}) = \mathfrak{M}(n, \mathbb{C})$$

(where $n = dim(\mathfrak{g})$) via ad(X)Y = [X, Y].

We can check (it need Jacobi identity) that for all $X,Y\in\mathfrak{g}$

$$ad \underbrace{[X,Y]}_{brakets in \mathfrak{g}} = \underbrace{[ad(X), ad(Y)]}_{brakets in \mathfrak{M}(\mathfrak{n}, \mathbb{C})}$$

Might hope that for $X \in \mathfrak{G}$, ad(X) is a diagonalizable endomorphism of \mathfrak{g} .

Example 1 Consider $\mathfrak{g} := \mathfrak{M}(2, \mathbb{C})$. Is it simple? Consider the multiples of Id,

$$\{Z_t := \begin{bmatrix} t & 0\\ 0 & t \end{bmatrix} | t \in \mathbb{C}\}$$

Since $[Z_t, X] = 0, \forall X$, then, it's a non trivial ideal. Then \mathfrak{g} is not simple.

Example 2 Take

$$\mathfrak{g} := \left\{ \begin{bmatrix} h & x \\ y & -h \end{bmatrix} | h, x, y \in \mathbb{C} \right\}$$

Take
$$\mathfrak{G} = \mathbb{C}H$$
 where $H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Set $X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, and $Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$
So, $\mathfrak{g} := \mathfrak{G} \oplus \mathbb{C}X \oplus \mathbb{C}Y$.

Look at $ad(H) : \mathfrak{g} \to \mathfrak{g}$, and compute

$$ad(H)X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = 2X$$

Same calculation shows that ad(H)Y = -2Y.

Define $\alpha \in \mathfrak{G}^* = Hom_{\mathbb{C}}(\mathfrak{G}, \mathbb{C})$, by $\alpha(H) = 2$. Define,

$$\mathfrak{g}^{\alpha} = \{A \in \mathfrak{g} | ad(Z)A = \alpha(Z)A, \forall Z \in \mathfrak{G}\} = \mathbb{C}X$$

$$\mathfrak{g}^{\alpha} = \{A \in \mathfrak{g} | ad(Z)A = -\alpha(Z)A\} = \mathbb{C}Y$$

Set $R := \{+\alpha, -\alpha\} \subseteq \mathfrak{G}^*$.

$$R: -\alpha \leftarrow A \longrightarrow \alpha$$

Then

$$\mathfrak{g}=\mathfrak{G}\oplus(\bigoplus_{\beta\in R}\mathfrak{g}^\beta)$$

Small technical wrinkle If \mathfrak{G} is a maximal abelian subalgebra of \mathfrak{g} and $X \in \mathfrak{G}$, then $ad(X) : \mathfrak{g} \to \mathfrak{g}$ need not to be diagonalizable.

Bad Example Take $\mathfrak{G} = \mathbb{C} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in \mathfrak{sl}(2, \mathbb{C})$. We have $ad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^3 = 0$

Definition A Cartan subalgebra \mathfrak{G} of \mathfrak{g} is a subalgebra such that

- 1. $\forall x, y \in \mathfrak{G}, \exists N \text{ such that } ad(X)^n Y = 0 \text{ (nilpotent)}$
- 2. If $Z \in \mathfrak{g}$ such that $ad(Z)\mathfrak{G} \subseteq \mathfrak{G}$ then $Z \in \mathfrak{G}$ (self-normalizing)

Example Consider $\mathfrak{G} = \mathbb{C} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in \mathfrak{sl}(2, \mathbb{C})$, violates condition 2, because $\begin{pmatrix} ad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in \mathfrak{G}$

Theorem (*Cartan*) A Cartan subalgebra \mathfrak{G} is maximally abelian and for all $H \in \mathfrak{G}$, ad(H) is a diagonalizable endomorphism of \mathfrak{g} .

Let $R \subseteq \mathfrak{G}^*$ consists of those $\alpha : \mathfrak{G} \to \mathbb{C}$ non-zero, such that $\mathfrak{g}^{\alpha} := \{x \in \mathfrak{g} | ad(H)X = \alpha(H)X\}$ (joint eigenspace of $\{ad(H) : H \in \mathfrak{G}\}$ with joint eigenvalue α). Since all of ad(H) are diagonalizable s commute

$$\mathfrak{g} = \mathfrak{g}^0 \oplus (\bigoplus_{\alpha inR} \mathfrak{g}^\alpha)$$

Since \mathfrak{G} is maximally abelian,

$$\mathfrak{g} = \mathfrak{G} \oplus (\bigoplus_{lpha inR} \mathfrak{g}^{lpha})$$

Example Consider

$$\mathfrak{G} = \left\{ \begin{bmatrix} h_1 & 0 & 0\\ 0 & h_2 & 0\\ 0 & 0 & h_3 \end{bmatrix} : h_1 + h_2 + h_3 = 0 \right\}$$

One calculation

$$ad\begin{pmatrix} h_1 & 0 & 0\\ 0 & h_2 & 0\\ 0 & 0 & h_3 \end{pmatrix} E_{12} = (h_1 - h_2)E_{12}$$

In other words, define

 $\alpha_{12}:\mathfrak{G}\to\mathbb{C}$

defined by $\alpha_{12} \begin{bmatrix} h_1 & 0 & 0 \\ 0 & h_2 & 0 \\ 0 & 0 & h_3 \end{bmatrix} = h_1 - h_2$. Then, $E_{12} \in \mathfrak{g}^{\alpha_{12}}$. Set $R = \{\alpha_{ij} | 1 \le i \ne j \le 3\}$, then $\mathfrak{g}_{\alpha_{ij}} = \mathbb{C}E_{ij}$. The decomposition

$$\mathfrak{g} = \mathfrak{G} \oplus (\bigoplus_{\alpha \in R} \mathfrak{g}^{\alpha})$$

is simply

$$\mathfrak{g} = \begin{bmatrix} \ast & 0 & 0 \\ 0 & \ast & 0 \\ 0 & 0 & \ast \end{bmatrix} \oplus \left(\bigoplus_{i,j} \mathbb{C}E_{ij} \right)$$

Still missing Euclidean structure on R. We want to draw:

Killing form Given $X, Y \in \mathcal{G}$ define

$$(X|Y) = Trace(ad(X)ad(Y))$$

This defines a symmetric bilinear form on \mathfrak{G} . Set

$$\mathfrak{G}_0 = \{ X \in \mathfrak{G} : \alpha(X) \in \mathbb{R}, \forall \alpha \in R \}$$

Theorem (.,.) restricts to positive defined inner product on \mathfrak{G}_0 .

Exercice 9 Compute this explicitly for $\mathfrak{sl}(3,\mathbb{C})$ and $\mathfrak{sl}(n,\mathbb{C})$. Roughly described,

\mathfrak{g} - complex	\rightarrow	Root System
simple Lie Algebras		$R \subseteq V \subseteq \mathfrak{G}^*.$

Need to check

- 1. Differente choices of \mathfrak{G} lead to equivalent root systems.
- 2. If $\mathfrak{g}_1 \not\cong \mathfrak{g}_2 \Rightarrow R_1 \not\cong R_2$ (injective)
- 3. It's surjective.

Theorem (Serre Relations) Given a root system R, choose $R^* \subseteq R$ and writte $\pi = \{\alpha_1, ..., \alpha_n\}$ for the simple roots. There is (up to isomorphism) a unique complex simple Lie Algebra \mathfrak{g} with elements $h_i, e_i, f_i, i = 1, ..., n$, and relations

- $[h_i, h_j] = 0$
- $[h_i, e_j] = [\alpha_i, \alpha_j]e_j$
- $[h_i, f_j] = -[\alpha_i, \alpha_j]f_j$
- $[e_i, f_j] = \delta_{ij} h_i.$

 $ad(e_i)^{-(\alpha_i,\alpha_j)+1}e_j = 0, i \neq j$ $ad(f_i)^{-(\alpha_i,\alpha_j)+1}f_j = 0$, for $i \neq j$. This provides the inverse.

Root System \mathfrak{g}

A_n	$\mathfrak{sl}(n+1,\mathbb{C})$
D_n	$Sl_{2n}(\mathbb{C}) = 2n \times 2n$ skew symmetric matrices
E_6, E_7, E_8	no easy description
F_4	$\mathfrak{so}_{2n+1}(\mathbb{C})$
C_n	$S_p(2n,\mathbb{C})$