One ideia to understand \mathfrak{g} (with complicated brackets) is to try to "restrict" to a subspace $\mathfrak{G} \subseteq \mathfrak{g}$ such that $\forall x, y \in \mathfrak{G},[x, y]=0$.
Notice: A subspace satisfying the above condition is a subalgebra and is called abelian.

Notation: Given $X \in \mathfrak{G}$ define

$$
a d(X) \in E n d_{\mathbb{C}}(\mathfrak{g})=\mathfrak{M}(n, \mathbb{C})
$$

(where $n=\operatorname{dim}(\mathfrak{g}))$ via $\operatorname{ad}(X) Y=[X, Y]$.
We can check (it need Jacobi identity) that forall $X, Y \in \mathfrak{g}$

$$
\text { ad } \underbrace{[X, Y]}_{\text {brakets in } \mathfrak{g}}=\underbrace{[\operatorname{ad}(X), a d(Y)]}_{\text {brakets in } \mathfrak{M}(\mathfrak{n}, \mathbb{C})}
$$

Might hope that for $X \in \mathfrak{G}, \operatorname{ad}(X)$ is a diagonalizable endomorphism of \mathfrak{g}.

Example 1 Consider $\mathfrak{g}:=\mathfrak{M}(2, \mathbb{C})$. Is it simple? Consider the multiples of $I d$,

$$
\left\{Z_{t}: \left.=\left[\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right] \right\rvert\, t \in \mathbb{C}\right\}
$$

Since $\left[Z_{t}, X\right]=0, \forall X$, then, it's a non trivial ideal. Then \mathfrak{g} is not simple.

Example 2 Take

$$
\mathfrak{g}:=\left\{\left.\left[\begin{array}{cc}
h & x \\
y & -h
\end{array}\right] \right\rvert\, h, x, y \in \mathbb{C}\right\}
$$

Take $\mathfrak{G}=\mathbb{C} H$ where $H=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Set $X=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, and $Y=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
So, $\mathfrak{g}:=\mathfrak{G} \oplus \mathbb{C} X \oplus \mathbb{C} Y$.
Look at $a d(H): \mathfrak{g} \rightarrow \mathfrak{g}$, and compute

$$
a d(H) X=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=2 X
$$

Same calculation shows that $a d(H) Y=-2 Y$.
Define $\alpha \in \mathfrak{G}^{*}=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{G}, \mathbb{C})$, by $\alpha(H)=2$.
Define,

$$
\begin{gathered}
\mathfrak{g}^{\alpha}=\{A \in \mathfrak{g} \mid \operatorname{ad}(Z) A=\alpha(Z) A, \forall Z \in \mathfrak{G}\}=\mathbb{C} X \\
\mathfrak{g}^{\alpha}=\{A \in \mathfrak{g} \mid \operatorname{ad}(Z) A=-\alpha(Z) A\}=\mathbb{C} Y
\end{gathered}
$$

Set $R:=\{+\alpha,-\alpha\} \subseteq \mathfrak{G}^{*}$.

$$
R:-\alpha \longleftarrow \mathrm{A} \longrightarrow \alpha
$$

Then

$$
\mathfrak{g}=\mathfrak{G} \oplus\left(\bigoplus_{\beta \in R} \mathfrak{g}^{\beta}\right)
$$

Small technical wrinkle If \mathfrak{G} is a maximal abelian subalgebra of \mathfrak{g} and $X \in \mathfrak{G}$, then $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}$ need not to be diagonalizable.

Bad Example Take $\mathfrak{G}=\mathbb{C}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in \mathfrak{s l}(2, \mathbb{C})$. We have

$$
a d\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{3}=0
$$

Definition A Cartan subalgebra \mathfrak{G} of \mathfrak{g} is a subalgebra such that

1. $\forall x, y \in \mathfrak{G}, \exists N$ such that $a d(X)^{n} Y=0$ (nilpotent)
2. If $Z \in \mathfrak{g}$ such that $\operatorname{ad}(Z) \mathfrak{G} \subseteq \mathfrak{G}$ then $Z \in \mathfrak{G}$ (self-normalizing)

Example Consider $\mathfrak{G}=\mathbb{C}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in \mathfrak{s l}(2, \mathbb{C})$, violates condition 2, because

$$
\left(a d\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=2\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \mathfrak{G}
$$

Theorem (Cartan) A Cartan subalgebra \mathfrak{G} is maximally abelian and for all $H \in \mathfrak{G}, \operatorname{ad}(H)$ is a diagonalizable endomorphism of \mathfrak{g}.

Let $R \subseteq \mathfrak{G}^{*}$ consists of those $\alpha: \mathfrak{G} \rightarrow \mathbb{C}$ non-zero, such that $\mathfrak{g}^{\alpha}:=\{x \in$ $\mathfrak{g} \mid \operatorname{ad}(H) X=\alpha(H) X\}$ (joint eigenspace of $\{a d(H): H \in \mathfrak{G}\}$ with joint eigenvalue α). Since all of $a d(H)$ are diagonalizable s_{\mid}^{\mid}commute

$$
\mathfrak{g}=\mathfrak{g}^{0} \oplus\left(\bigoplus_{\alpha \text { in } R} \mathfrak{g}^{\alpha}\right)
$$

Since \mathfrak{G} is maximally abelian,

$$
\mathfrak{g}=\mathfrak{G} \oplus\left(\bigoplus_{\alpha i n R} \mathfrak{g}^{\alpha}\right)
$$

Example Consider

$$
\mathfrak{G}=\left\{\left[\begin{array}{ccc}
h_{1} & 0 & 0 \\
0 & h_{2} & 0 \\
0 & 0 & h_{3}
\end{array}\right]: h_{1}+h_{2}+h_{3}=0\right\}
$$

One calculation

$$
\operatorname{ad}\left(\left[\begin{array}{ccc}
h_{1} & 0 & 0 \\
0 & h_{2} & 0 \\
0 & 0 & h_{3}
\end{array}\right]\right) E_{12}=\left(h_{1}-h_{2}\right) E_{12}
$$

In other words, define

$$
\alpha_{12}: \mathfrak{G} \rightarrow \mathbb{C}
$$

defined by $\alpha_{12}\left[\begin{array}{ccc}h_{1} & 0 & 0 \\ 0 & h_{2} & 0 \\ 0 & 0 & h_{3}\end{array}\right]=h_{1}-h_{2}$. Then, $E_{12} \in \mathfrak{g}^{\alpha_{12}}$.
Set $R=\left\{\alpha_{i j} \mid 1 \leq i \neq j \leq 3\right\}$, then $\mathfrak{g}_{\alpha_{i j}}=\mathbb{C} E_{i j}$. The decomposition

$$
\mathfrak{g}=\mathfrak{G} \oplus\left(\bigoplus_{\alpha \in R} \mathfrak{g}^{\alpha}\right)
$$

is simply

$$
\mathfrak{g}=\left[\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right] \oplus\left(\bigoplus_{i, j} \mathbb{C} E_{i j}\right)
$$

Still missing Euclidean structure on R. We want to draw:

Killing form Given $X, Y \in \mathcal{G}$ define

$$
(X \mid Y)=\operatorname{Trace}(\operatorname{ad}(X) \operatorname{ad}(Y))
$$

This defines a symmetric bilinear form on \mathfrak{G}. Set

$$
\mathfrak{G}_{0}=\{X \in \mathfrak{G}: \alpha(X) \in \mathbb{R}, \forall \alpha \in R\}
$$

Theorem (.,.) restricts to positive defined inner product on \mathfrak{G}_{0}.

Exercice 9 Compute this explicitly for $\mathfrak{s l}(3, \mathbb{C})$ and $\mathfrak{s l}(n, \mathbb{C})$. Roughly described,

$$
\begin{array}{lll}
\mathfrak{g} \text { - complex } & \rightarrow & \text { Root System } \\
\text { simple Lie Algebras } & & R \subseteq V \subseteq \mathfrak{G}^{*} .
\end{array}
$$

Need to check

1. Differente choices of \mathfrak{G} lead to equivalent root systems.
2. If $\mathfrak{g}_{1} \xlongequal{\cong} \mathfrak{g}_{2} \Rightarrow R_{1} \xlongequal{\cong} R_{2}$ (injective)
3. It's surjective.

Theorem (Serre Relations) Given a root system R , choose $R^{*} \subseteq R$ and writte $\pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for the simple roots. There is (up to isomorphism) a unique complex simple Lie Algebra \mathfrak{g} with elements $h_{i}, e_{i}, f_{i}, i=1, \ldots, n$, and relations

- $\left[h_{i}, h_{j}\right]=0$
- $\left[h_{i}, e_{j}\right]=\left[\alpha_{i}, \alpha_{j}\right] e_{j}$
- $\left[h_{i}, f_{j}\right]=-\left[\alpha_{i}, \alpha_{j}\right] f_{j}$
- $\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i}$.
$a d\left(e_{i}\right)^{-\left(\alpha_{i}, \alpha_{j}\right)+1} e_{j}=0, i \neq j$
$a d\left(f_{i}\right)^{-\left(\alpha_{i}, \alpha_{j}\right)+1} f_{j}=0$, for $i \neq j$. This provides the inverse.

Root System \mathfrak{g}

A_{n}
$\mathfrak{s l}(n+1, \mathbb{C})$
D_{n}
$S l_{2 n}(\mathbb{C})=2 n \times 2 n$ skew symmetric matrices
E_{6}, E_{7}, E_{8} no easy description
F_{4}
$\mathfrak{s o}_{2 n+1}(\mathbb{C})$
C_{n}
$S_{p}(2 n, \mathbb{C})$

