
One ideia to understand g (with complicated brackets ) is to try to ”restrict”
to a subspace G ⊆ g such that ∀x, y ∈ G, [x, y] = 0.
Notice: A subspace satisfying the above condition is a subalgebra and is called
abelian.

Notation: Given X ∈ G define

ad(X) ∈ EndC(g) = M(n,C)

(where n = dim(g)) via ad(X)Y = [X,Y ].

We can check (it need Jacobi identity) that forall X,Y ∈ g

ad [X,Y ]︸ ︷︷ ︸
brakets in g

= [ad(X), ad(Y )]︸ ︷︷ ︸
brakets inM(n,C)

Might hope that for X ∈ G, ad(X) is a diagonalizable endomorphism of g.

Example 1 Consider g := M(2,C). Is it simple? Consider the multiples of Id,

{Zt :=

[
t 0
0 t

]
|t ∈ C}

Since [Zt, X] = 0,∀X, then, it’s a non trivial ideal. Then g is not simple.

Example 2 Take

g :=

{[
h x
y −h

]
|h, x, y ∈ C}

Take G = CH where H =

[
1 0
0 −1

]
. Set X =

[
0 1
0 0

]
, and Y =

[
0 0
1 0

]
.

So, g := G⊕ CX ⊕ CY .
Look at ad(H) : g→ g, and compute

ad(H)X =

[
1 0
0 −1

] [
0 1
0 0

]
−
[
0 1
0 0

] [
1 0
0 −1

]
= 2X

Same calculation shows that ad(H)Y = −2Y .

Define α ∈ G∗ = HomC(G,C), by α(H) = 2.
Define,

gα = {A ∈ g| ad(Z)A = α(Z)A,∀Z ∈ G} = CX

gα = {A ∈ g|ad(Z)A = −α(Z)A} = CY

Set R := {+α,−α} ⊆ G∗.

R : −α A α

Then
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g = G⊕ (
⊕
β∈R

gβ)

Small technical wrinkle If G is a maximal abelian subalgebra of g and X ∈ G,
then ad(X) : g→ g need not to be diagonalizable.

Bad Example Take G = C
[
0 1
0 0

]
∈ sl(2,C). We have

ad

[
0 1
0 0

]3
= 0

Definition A Cartan subalgebra G of g is a subalgebra such that

1. ∀x, y ∈ G,∃N such that ad(X)nY = 0 (nilpotent)

2. If Z ∈ g such that ad(Z)G ⊆ G then Z ∈ G (self-normalizing)

Example Consider G = C
[
0 1
0 0

]
∈ sl(2,C), violates condition 2, because(

ad

[
1 0
0 −1

])[
0 1
0 0

]
= 2

[
0 1
0 0

]
∈ G

Theorem (Cartan) A Cartan subalgebra G is maximally abelian and for all
H ∈ G, ad(H) is a diagonalizable endomorphism of g.

Let R ⊆ G∗ consists of those α : G → C non-zero, such that gα := {x ∈
g|ad(H)X = α(H)X} (joint eigenspace of {ad(H) : H ∈ G} with joint eigen-

value α). Since all of ad(H) are diagonalizable s
|
| commute

g = g0 ⊕ (
⊕
αinR

gα)

Since G is maximally abelian,

g = G⊕ (
⊕
αinR

gα)

Example Consider

G = {

h1 0 0
0 h2 0
0 0 h3

 : h1 + h2 + h3 = 0}

One calculation

ad(

h1 0 0
0 h2 0
0 0 h3

)E12 = (h1 − h2)E12

In other words, define

α12 : G→ C
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defined by α12

h1 0 0
0 h2 0
0 0 h3

 = h1 − h2. Then, E12 ∈ gα12 .

Set R = {αij |1 ≤ i 6= j ≤ 3}, then gαij = CEij . The decomposition

g = G⊕ (
⊕
α∈R

gα)

is simply

g =

∗ 0 0
0 ∗ 0
0 0 ∗

⊕
⊕

i,j

CEij


Still missing Euclidean structure on R. We want to draw:

Killing form Given X,Y ∈ G define

(X|Y ) = Trace(ad(X)ad(Y ))

This defines a symmetric bilinear form on G. Set

G0 = {X ∈ G : α(X) ∈ R,∀α ∈ R}

Theorem (., .) restricts to positive defined inner product on G0.

Exercice 9 Compute this explicitly for sl(3,C) and sl(n,C). Roughly described,

g- complex → Root System
simple Lie Algebras R ⊆ V ⊆ G∗.

Need to check

1. Differente choices of G lead to equivalent root systems.

2. If g1 6 ∼=g2 ⇒ R1 6 ∼=R2 (injective)

3. It’s surjective.

Theorem (Serre Relations) Given a root system R, choose R∗ ⊆ R and writte
π = {α1, ..., αn} for the simple roots. There is (up to isomorphism) a unique
complex simple Lie Algebra g with elements hi, ei, fi, i = 1, ..., n, and relations
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• [hi, hj ] = 0

• [hi, ej ] = [αi, αj ]ej

• [hi, fj ] = −[αi, αj ]fj

• [ei, fj ] = δijhi.

ad(ei)
−(αi,αj)+1ej = 0, i 6= j

ad(fi)
−(αi,αj)+1fj = 0, for i 6= j. This provides the inverse.

Root System g
An sl(n+ 1,C)
Dn Sl2n(C) = 2n× 2n skew symmetric matrices
E6, E7, E8 no easy description
F4 so2n+1(C)
Cn Sp(2n,C)
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