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1. Lecture 1

1.1. Notations and algebraic set up.
N = {1, 2, 3, ...} is the set of natural numbers. There is little algebraic
structure on N : we can add but not subtract, we can multiply but not
divide.
Z = {0,±1,±2,±3, ...} is the set of integers. We can now add and
substract, hence Z is a group with respect to the sum; we can multiply
but, still, we cannot divide two integers. So Z is a ring (but not a
field).
Q, R e C are the set of, respectivey, rational, real and complex numers.
Within each of these sets we can add, substract and multiply any two
numbers; moreover we can divide any number by any number other
than zero. So these three sets are fields. We have, of course

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

We now consider polynomials with coefficients in some of the above
sets. Let us start with polynomials in the biggest one, C. Pick n ∈ N;
we denote by

C[x1, . . . , xn]

the set of polynomials in n variables, x1, . . . , xn. When n = 1 we
simplify the notation and write just C[x]; also, if n = 2 we write
C[x, y].

Now, the sum of two polynomials is again a polynomial, and the
product of two polynomials is again a polynomial. These two opera-
tions have exactly the same properties of addition and multiplications
of elements in Z. So, C[x1, . . . , xn] is also a ring, and its ring struc-
ture induces the ring structure, mentioned above, on any of its subsets
Z ⊂ Q ⊂ R ⊂ C ⊂ C[x1, . . . , xn]. On the other hand it is clear that
when we divide two polynomials we may fail to get another polynomial.
So C[x1, . . . , xn] is not a field.

The ring C[x1, . . . , xn] is the source of all technical tools we have to
work as geometers.

We now have the tools; what objects can we fabricate with them?
1



2 LUCIA CAPORASO

1.2. The geometric objects of algebraic geometry.
What are the geometric objects that algebraic geometry studies?
We begin with the ambient space, which will be Cn, the set of n-t-

uples of complex numbers. We have chosen C among all sets of numbers
introduced before for reasons that we shall explain in a moment.

For a point p ∈ Cn we write p = (a1, . . . , an) with ai ∈ C to indicate
its coordinates.

Let now f = f(x1, . . . , xn) ∈ C[x1, . . . , xn] be a polynomial, and let
p ∈ Cn. The value of f at p is a well defined complex number

f(p) = f(a1, . . . , an) ∈ C.

Special case 1.1. Suppose the polynomial f is an element in C, i.e. f
is a constant polynomial; to fix ideas, suppose f = 1. Then the value
of f at p does not depend on p, as we have f(p) = 1 for every p ∈ Cn.

Conversely, if f ∈ C[x1, . . . , xn] is such that f(p) = f(p′) for every
p, p′ ∈ Cn, then f ∈ C. (Exercise).

Given a polynomial f we can associate to it the locus of p ∈ Cn such
that f(p) = 0. This is the simplest example of our geometric objects.

Definition 1.2. Let f ∈ C[x1, . . . , xn]; we denote

Z(f) := {p ∈ Cn : f(p) = 0}.
More generally, for any subset T ⊂ C[x1, . . . , xn] we denote

Z(T ) := {p ∈ Cn : f(p) = 0 ∀f ∈ T}.
Sets of the form Z(T ) are called affine subsets of Cn.

Remark 1.3. If f is not a constant polynomial, then Z(f) is non empty.
This is a consequence of the fact that C is an algebraically closed field,
i.e. every non constant polynomial f ∈ C[x] admits a zero in C.

Examples 1.4. (a) Cn = Z(0). Hence Cn is itself an affine subset. Cn

is called the affine n-space.
(b) If f ∈ C with f 6= 0, then Z(f) = ∅.
(c) Let n = 1 and let f ∈ C[x] be a non constant polynomial. Then
Z(f) is a finite set of points whose cardinality is at most equal to
the degree of f .

Conversely, let X = {b1, . . . , br} ⊂ C. Then

X = Z((x− b1) · (x− br)).
Therefore every finite subset of C is an affine subset, and con-
versely, every affine subset of C is finite.

(d) Let now f = c0 + c1x1 + . . . cnxn be a polynomial of degree 1. Then
Z(f) is a particular type of affine subset. Indeed, if n = 1 then
Z(f) is a point, if n = 2 then Z(f) is a line, if n = 3 then Z(f) is
a plane. For general n the set Z(f) is called a hyperplane. Observe
that for any linear f the set Z is non empty.
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Now let us ask ourselves whether what we said so far works if we
replace C by R, Q, or even by Z. The example (d) is clearly false if
we replace C by Z. For example, the linear polynomial in one variable
f = 2x admits no zeroes in Z.

On the other hand, by basic algebra we have that everything works
equally well if we replace C by Q or R (or by any field), with the
exception of remark 1.3. For example, let f = x2 + 1. Then f has no
zeroes in Q or in R.

Indeed, as we shall see again several times, in classical algebraic
geometry one needs to work with C, or with an algebraically closed
field, as base field.

Exercise 1.5. Let T ⊂ C[x1, . . . , xn] and let I := (T ) ⊂ C[x1, . . . , xn]
be the ideal generated by T . Prove that Z(T ) = Z(I)

1.3. The Zariski topology. Let us now fix the affine n-space Cn and
consider the class of all of its affine subsets

C := {Z(T ) : ∀T ⊂ C[x1, . . . , xn]}.

What properties does it have?

Proposition 1.6. C has the following properties.

(a) C = {Z(T ) : T ⊂ C[x1, . . . , xn] such that T is finite};
(b) C is closed with respect to finite union, that is Z(T1) ∪ Z(T2) ∈ C

for every T1, T2 ⊂ C[x1, . . . , xn];
(c) C is closed with respect to arbitrary intersection, that is, for any

(possibly infinite) index set J , we have ∩j∈JZ(Tj) ∈ C for every
Tj ⊂ C[x1, . . . , xn].

Proof. We begin by proving that for any set T ⊂ C[x1, . . . , xn] there
exists a finite set T ′ ⊂ C[x1, . . . , xn] such that Z(T ) = Z(T ′).

Let I := (T ) ⊂ C[x1, . . . , xn] be the ideal generated by T . Then, by
Exercise 1.5 we have Z(T ) = Z(I). Now, C[x1, . . . , xn] is a noetherian
ring (by Hilbert’s basis theorem), therefore I admits a finite set of
generators. So, there exist f1, . . . , fm ∈ C[x1, . . . , xn] such that I =
(f1, . . . , fm). Set T ′ = {f1, . . . , fm}. Then, again by Exercise 1.5, we
have

Z(T ) = Z(I) = Z(T ′).

The first claim is proved.
To prove that C contains the union of any two of its subsets, set

T1 · T2 := {f1 · f2 : ∀f1 ∈ T1, f2 ∈ T2}.

Then, since T1 · T2 is also a subset of C[x1, . . . , xn] it suffices to prove
the following:

(1) Z(T1) ∪ Z(T2) = Z(T1 · T2).
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Indeed, the inclusion Z(T1) ∪ Z(T2) ⊂ Z(T1 · T2) is obvious. For the
other inclusion, let p ∈ Z(T1 · T2); if p 6∈ Z(T1) there is f ∈ T1 such
that f(p) 6= 0. Now, for every g ∈ T2 we have

(f · g)(p) = 0⇒ f(p) · g(p) = 0⇒ g(p) = 0

hence p ∈ Z(T2), and we are done.
Finally, to show that C contains the intersection of any set of its

elements it suffices to check the following trivial identity

(2)
⋂
j∈J

Z(Tj) = Z(
⋃
j∈J

Tj).

�

Remark 1.7. An infinite union of affine subsets may fail to be affine.
For example, we know that a point in C is affine, but an infinite union
of distinct poins is not affine; see Example 1.4 (c).

Now we recall an important general definition from topology.

Definition 1.8. Let X be a non empty set and let C be a set of subsets
of X satisfying the following properties.

(1) X, ∅ ∈ C;
(2) C is closed with respect to finite union, that is Z1 ∪ Z2 ∈ C for

every Z1, Z2 ∈ C ;
(3) C is closed with respect to arbitrary intersection, that is, for

any index set J , we have ∩j∈JZj ∈ C for every Zj ∈ C.
Then C defines on X a topology for which the elements of C are called
closed subsets, and the elements of

U := {X r Z, ∀Z ∈ C}

are called open subsets.

By the examples 1.4 and Proposition 1.6 we have that the affine
subsets of Cn define a topology, called the Zariski topology, for which
they are the closed subsets, and their complements the open subsets.
From now on we shall consider the set Cn endowed with the Zariski
topology, which will be denoted by An, the topological affine n-space.

Here are some basic facts about the Zariski topology.

Proposition 1.9. (a) The points of An are closed subsets (i.e. the
Zariski topolgy is T1).

(b) For every f ∈ C[x1, . . . , xn] the map φf

φf : An −→ A1; p 7→ f(p)

is continuous (i.e. the preimage of a closed subset is closed).
(c) The Zariski topology is the coarsest topology on Cn for which the

maps φf defined in (b) are all continuous.
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Proof. (a) Let p = (a1, . . . an), then p = Z(x1 − a1, . . . , xn − an).
(b) We first observe that for any a ∈ A1, the preimage of a via φf is

equal to Z(f − a) (which is well defined since a ∈ C and hence f − a ∈
C[x1, . . . , xn]). Let C ( A1 be a closed subset; by Example 1.4 (c) we
know that C is a finite subset of A1, so we can write C = {a1, . . . , am}
with ai ∈ C. Then, as we observed above

φ−1f (C) = Z(f − a1) ∪ . . . ∪ Z(f − am) = Z(
m∏
i=1

(f − ai)),

where the last equality follows from (2); since
∏m

i=1(f−ai) ∈ C[x1, . . . , xn]
we are done.

(c) Let Z = Z(f1, . . . , fm) and let us prove that Z must be closed in
any topology for which the maps φfi are continuous for i = 1, . . . ,m.
This will prove the claim.

Since φfi is continuous, the set Z(fi) = φ−1fi (0) is closed, because the

point 0 is closed in A1. On the other hand, we clearly have Z(f1) ∩
. . . ∩ Z(fm) = Z. Since the intersection of closed sets is a closed set,
we get that Z is closed, and we are done. �

Exercise 1.10. Let n ≥ 2. True or false.

(1) For every ideal I ( C[x1, . . . , xn] the set Z(I) is non-empty.
(2) For every f ∈ C[x1, . . . , xn] with f not constant, the set Z(f)

is infinite.

Exercise 1.11. Let T1 e T2 be subsets of C[x1, . . . , xn]. Prove that if
T1 ⊂ T2 then Z(T2) ⊂ Z(T1).

Show that the opposite implication fails.

Exercise 1.12. Let I ( C[x1, . . . , xn] be a proper ideal generated by
homogeneous polpolynomials (a so-called homogeneous ideal). Prove
that 0 = (0, . . . , 0) ∈ An.

Exercise 1.13. Identify A2 with A1 × A1 in the obvious way. Compare
the Zariski topology on A2 with the product topology (on A1 × A1).
Show that they are different and that the Zariski topology is finer than
the product topology.
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2. Lecture 2

2.1. Points in An and maximal ideals in C[x1, . . . , xn]. Recall that
a maximal ideal of a ring1 R is a proper ideal M ( R which is not
contained in another proper ideal of R. A fundamental characterization
of maximal ideals is given in the following.

Lemma 2.1. Let R be a ring with 1 ∈ R.

(a) R is a field if and only if its only ideals are (0) and (1).
(b) An ideal M of R is maximal if and only if R/M is a field.

Proof. It is clear that if R is a field then its only ideals are (0) and (1).
Conversely, suppose the only ideals of R are (0) and (1). Let x ∈ R be
a non-invertible element; then the ideal (x) is not equal to (1). Hence
(x) = (0), and therefore x = 0. So (a) is proved.

Now (b) is an immediate consequence of (a). �

We mention (for later purposes) a basic fact about maximal ideals.

Fact. Let R be a commutative ring. Every ideal of R is contained in
a maximal ideal.

Exercise 2.2. Prove Fact 2.1 assuming that R is a noetherian ring. (For
a general ring one needs to use Zorn’s Lemma).

In Proposition 1.9 we saw that a point p = (a1, . . . , an) of Cn is
expressed as an affine subset in a canonical way, namely p = Z(x1 −
a1, . . . , xn − an). This phenomenon is typical of points, i.e. it does not
extend to other affine sets, so for the moment we shall concentrate on
points and prove the following important result.

Theorem 2.3 (Weak Hilbert Nullstellensatz). There is a bijection be-
tween the points of Cn and the maximal ideals of C[x1, . . . , xn], given
by associating to the point (a1, . . . , an) the ideal (x1 − a1, . . . , xn − an).

Proof. Proof for n = 1. First we show that for every a ∈ C the ideal
(x− a) ⊂ C[x] is maximal (this part of the proof holds for every field).
Let us define a ring morphism as follows.

(3)
C[x]

va−→ C
f(x) 7→ f(a).

It is a surjective morphism, since its restriction to C is just the identity.
Hence, by the above Lemma, its kernel, ker va, is a maximal ideal of
C[x]. We claim that

ker va = (x− a).

Of course, x − a ∈ ker va hence ker va ⊃ (x − a). Recall that C[x]
is a principal ideal domain, hence there exists a polynomial f ∈ C[x]
such that (f) = ker va. We can choose f monic, and of minimal degree
among all generators. Now, we have (x− a) = f · q with q ∈ C[x]; by

1We always assume that our rings are commutative
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our choice of f we must have q = 1 e f = x− a. This finishes the first
part of the proof.

For the second part, we must prove that every maximal ideal M ⊂
C[x] is of type M = (x − a) for some a ∈ C (this part of the proof
extends to every algebraically closed field). Since every ideal of C[x] is
principal, we can write M = (g) for some g ∈ C[x].

Now, as C is algebraically closed, g admits a zero in C, that is there
exists a ∈ C such that g(a) = 0. Equivalently, there exists a ∈ C
such that g = (x − a)q with q ∈ C[x]. Therefore the ideal (g) = M is
contained in the ideal (x−a) . Since by assumption M is maximal, we
must have M = (x− a). �

Proof for every n. We first prove that the ideal (x1 − a1, . . . , xn − an)
is maximal in C[x1, . . . , xn] (as before, this is the easy part of the proof
and holds for any field). Given a := (a1, . . . , an) ∈ Cn we define the
morphism va as follows

(4) C[x1, . . . , xn]
va−→ C

f(x1, . . . , xn) 7→ f(a1, . . . , an)

Again, va is surjective, hence ker va is a maximal ideal of C[x1, . . . , xn].
For every i = 1, . . . , n the polynomial xi − ai lies in ker va, hence

(x1 − a1, . . . , xn − an) ⊂ ker va.

We claim that equality holds above.
Suppose first a = (0, . . . , 0). Let f ∈ ker va, so that f(0, . . . , 0) = 0;

hence f has no constant term and we can write

f =
n∑
i=1

cixi +
∑
i≤j

ci,jxixj + ... =
n∑
i=1

xigi

where c∗ ∈ C and gi ∈ C[x1, . . . , xn]. Therefore f ∈ (x1, . . . , xn) and
we are done. The case of a general a can be obtained from the one we
just treated by changing variables: x′i = xi − ai per i = 1, . . . , n.

Now we prove the opposite implication, i.e. the fact that any maxi-
mal ideal M ⊂ C[x1, . . . , xn] is generated by n linear polynomials; this
is the really interesting part. Consider the quotient morphism π

C[x1, . . . , xn]
π−→ C[x1, . . . , xn]

M
= K

where K is a field. Let us consider the restriction of π to the subring
C[x1] ⊂ C[x1, . . . , xn], written π1:

C[x1]
π1−→ K,

The key step of the proof is the following claim:
Claim: π1 is not injective, i.e. kerπ1 6= (0)).

We prove the claim by contradiction: suppose π1 injective. Hence
the field K contains a copy of the ring of complex polynomials in one
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variable; we denote by C[t] ⊂ K this copy, so that t = π(x1). As K is
a field, K contains the quotient field of C[t], denoted as usual by C(t).
So we have an inclusion

C(t) ⊂ K =
C[x1, . . . , xn]

M
which we shall now study as an inclusion of C vector spaces.

The vector space C[x1, . . . , xn] has a C-base given by the set of all
monomyals:

B = {xd11 · . . . · xdnn , ∀di ≥ 0}.
Now B is a countable set, i.e. B has the same cardinality of N; we shall
write #B = #N. Now the images in K of elements of B span K as a
C-vector space; hence the dimension of K as C-vector space is at most
equal to #N.

Let us now look at C(t); we claim that it contains a subset G of
C-linearly independent elements such that the cardinality of G is not
countable, i.e. #G > #N. Indeed, let

G := { 1

t− a
∀a ∈ C}.

It is clear that #G = #C and hence, as is well known that #C > #N,
we get #G > #N. Now suppose G has a subset of linearly dependent
elements; then we have an identity:

m∑
i=1

ci
t− ai

= 0

with ci ∈ Cr {0} and ai 6= aj.
Now focus on the rational function c1

t−a1 ; from the above identity,
considering the absolute values, we get∣∣∣ c1

t− a1

∣∣∣ =
∣∣∣ m∑
i=2

ci
t− ai

∣∣∣ ≤ m∑
i=2

∣∣∣ ci
t− ai

∣∣∣.
Of course, c1

t−a1 is not defined for t = a1, therefore | c1
t−a1 |, is not bounded

as t varies in a neighborhood of a1.
On the other hand the rational functions ci

t−ai for i ≥ 2 are all well
defined at t = a1, and hence their absolute values are bounded near
a1. Summarizing, in the last inequality near t = a1 the left hand
side is unbounded whereas the right hand side is bounded. This is a
contradiction.

We have thus proved that G is a linearly independent uncountable
subset in K. But this is impossible, as we observed already that the
dimension of K as C-vector space is at most countable. The claim is
proved.

Therefore kerπ1 is not zero, and hence, since C[x1] is a PID, there
exists a nonzero f ∈ C[x1] such that kerπ1 = (f); we choose f monic
of minimal degree.
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As C is algebraically closed, there exists a1 ∈ C such that f =
(x1 − a1)q with q ∈ C[x1] and deg q < deg f . We have

0 = π1(f) = π1(x1 − a1)π1(q).

As K is a field, at least one of the two factors on the right vanishes,
i.e. lies in the kernel of π1. By our choice of f the only possibility is
q = 1 and f = x1 − a1.

We thus proved that x1 − a1 ∈ kerπ1 ⊂ kerπ = M . Applying the
same argument to the other variables we get that there exist a1, . . . , an
in C such that the ideal (x1 − a1, . . . , xn − an) lies in M .

But we know that (x1 − a1, . . . , xn − an) is a maximal ideal, hence
(x1 − a1, . . . , xn − an) = M . The theorem is proved �

Remark 2.4. The previous proof shows that K = C and π = va.

3. Lecture 3

Let X ⊂ An be any subset. We can consider the set of polynomials
that vanish at every point of X:

(5) I(X) := {f ∈ C[x1, . . . , xn] : f(p) = 0 ∀p ∈ X}.

Remark 3.1. I(X) is an ideal of C[x1, . . . , xn] for any X.
If X = Z(T ) then T ⊂ I(X).

If X is a point, say X = {(a1, . . . , an)}, then we have

I(X) = (x1 − a1, . . . , xn − an)

and we already know that points are in bijective correspondence with
maximal ideals in C[x1, . . . , xn]. We now ask whether this is a special
case of a more general phenomenon.

As we said, to every affine subset Z of An we can associate an ideal,
I(Z). On the other hand an affine subset Z can be given by lots
of different ideals, indeed we have for every n ∈ N and every ideal
I ⊂ C[x1, . . . , xn]

Z(I) = Z(In).

We shall now show that I(Z) has an interesting poperty. namely it is
a radical ideal.

First, for any ideal I ⊂ C[x1, . . . , xn] we can define its radical as
follows

√
I := {f ∈ C[x1, . . . , xn] : fm ∈ I for some m ∈ N}.

It is easy to check that
√
I is an ideal and that I ⊂

√
I. We say that

I is a radical ideal if
√
I = I.

Lemma 3.2. I(Z) is a radical ideal for any Z ⊂ An.
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Proof. By what we said it is enough to show that
√
I(Z) ⊂ I(Z). Let

f ∈
√
I(Z); then for some m ∈ N we have fm(p) = 0 for every p ∈ Z.

Hence we have, for every p ∈ Z,

0 = fm(p) = f(p)m,

and hence f(p) = 0 for every p ∈ Z. Therefore f ∈ I(Z). This shows

that
√
I(Z) ⊂ I(Z). �

The following natural question comes up:

Question 1. Let I1 and I2 be radical ideals in C[x1, . . . , xn].
If Z(I1) = Z(I2) does it follow that I1 = I2?

So far we know that the answer is yes if I1 and I2 are maximal ideals.
We shall now see that this is true in general.

Theorem 3.3 (Hilbert Nullstellensatz). Let I ⊂ C[x1, . . . , xn] be an
ideal. If f ∈ C[x1, . . . , xn] is such that f(p) = 0 for every p ∈ Z(I),

then f ∈
√
I.

(In particular, the answer to Question 1 is yes.)

Proof. To prove the Theorem it suffices to prove the following

I(Z(I)) ⊂
√
I.

Choose a finite set of generators for I,

I = (f1 . . . , fr).

Now it suffices to show that if g ∈ C[x1, . . . , xn] vanishes at every point
p such that f1(p) = . . . fr(p) = 0, then there exists d ∈ N such that
gd ∈ I.

Consider the polynomial ring in r+1 variables, written C[x1, . . . , xn, y],
and the polynomial

`(x1, . . . , xn, y) := g(x1, . . . , xn, )y − 1 ∈ C[x1, . . . , xn, y].

The polynomial ` does not vanish whenever g vanishes, of course.
Therefore in Cn+1 the polynomials f1, . . . , fr, ` have no common zeroes.
By the following Lemma 3.4 this implies that there exist polynomials
h1, . . . , hr+1 in C[x1, . . . , xn, y] such that

1 =
r∑
i=1

h1f1 + hr+1`.

In the above identity the variable y appears in the polynomials ` and
in hi for i = 1 . . . , r + 1. Noticing that

`(x1, . . . , xn,
1

g(x1, . . . , xn)
) = 0
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by substituing y = 1
g(x1,...,xn)

we get

1 =
r∑
i=1

h1(x1, . . . , xn,
1

g(x1, . . . , xn)
)f(x1, . . . , xn).

This is an identy of rational functions in x1, . . . , xn, whose common
denominator has the form g(x1, . . . , xn)d for some non-negative integer
d. Multiplying both members by gd we get

gd =
r∑
1

kifi

with ki ∈ C[x1, . . . , xn]. Hence g ∈ (f1, . . . , fn); the theorem is proved.
�

For the proof we used the following Lemma, which is a simple con-
sequence of the Weak Nullstellensatz.

Lemma 3.4. Let f1, . . . , fs ∈ C[x1, . . . , xn].

Z(f1, . . . , fs) = ∅ ⇐⇒ ∃ h1, . . . , hs ∈ C[x1, . . . , xn] :
s∑
i=1

hifi = 1

Proof. By the various definitions we have, for any p ∈ Cn,

p ∈ Z(f1, . . . , fs) ⇐⇒ fi ∈ I(p), ∀i = 1, . . . , s.

Therefore Z(f1, . . . , fs) = ∅ if and only if the ideal (f1, . . . , fs) is not
contained in any ideal of type I(p). By Theorem 2.3 this is equivalent
to saying that (f1, . . . , fs) is not contained in any maximal ideal of
C[x1, . . . , xn]. By Fact 2.1 this is equivalent to (f1, . . . , fs) = (1). The
Lemma is proved. �

Corollary 3.5.
√
I = I(Z(I))

Proof. We must show that
√
I ⊂ I(Z(I)). Of course, I ⊂ I(Z(I)). As

I(Z(I)) is a radical ideal (Lemma 3.2) it contains the radical of I. �


