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1 Lecture 1

GOAL: How to understand random behavior in deterministic dynamics

Example 1: Coin toss
Example 2: A box filled with 1 liter of gas
Any measured quantity appears to have some random behavior, sort of fluctuations, yet the evolution of
the system is completely deterministic by Hamilton’s equations.

1.1 Deterministic Setup:

A continuous dynamical system (“semiflow”) is a 1-parameter family of maps Tt : X → X, (t ≥ 0) st
Tt ◦ Ts = Tt+s.

Interpretation

• X (“space” or “phase space” for physicists) = { all possible states of the system } where a state is
a complete description of the system (enough information to deterministically evolve it in time).

• Tt (“law of motion”): Tt

[
state at
time 0

]
=

[
state at
time t

]
Determinism gives us that Tt is a function, while Tt ◦Ts = Tt+s expresses consistency, evolving a time

t then a time s is the same to evolving a time t+ s.
An orbit corresponds to the set of points taken by a particle as it is evolved in time, {Tt(x)}∞t=0, where

x is the initial state.

1.2 Measurement

A measurement, f : X → R corresponds to the mapping of the state of our system to a number (or
other mathematical object like matrix, etc), which is the outcome of our measurement.

Example: f(~q1, ..., ~qN , ~p1, ..., ~pN ) =
∑

particle i
1

2mi
|~pi|2, measures the kinetic energy of the system.

Although we can’t tract the orbit of a system, we can characterize the measurements, by having the
time series of measurements f(Tt(x)), parametrized by a parameter t.

This time series will be the one with properties of a random process.
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1.3 Discrete time dynamical system

Instead of a family of maps, there exists only one map T : X → X, st:

T

[
state at
time 0

]
→
[
state at
time 1

]
which gives that:

Tn
[

state at
time 0

]
→
[
state at
time n

]
Dynamical systems is a theory of iterative functions.

1.4 Modeling Randomness

What is the mathematical setup for studying randomness?

Example: I choose x ∈ [0, 1] randomly and keep it secret. I will answer a countable collection of
“reasonable” questions of the form yes or no, about x.

Def: A probability space is (Ω,F , µ).

• Ω is a set corresponding to the “sample space”, the possible values of the system.

• F , a σ-algebra, is a collection of subsets of Ω, called measurable sets, such that:

– F contains ∅.

– F is closed under forming complements: If E ∈ F then Ec = Ω \ E ∈ F .

– If Ei ∈ F for all i ∈ N (in short a countable number of sets), then
⋃∞
i=1Ei and

⋂∞
i=1Ei both

belong to F

(Note: A reasonable question then becomes a question of the form, “does x belong to E for some
E in F ?”)

• µ, the probability measure, is a function, µ : F → [0, 1], st:

– µ(∅) = 0, µ(Ω) = 1.

– if Ei are countable pairwise disjoint sets in F , then: µ (
⋃n
i=1Ei) =

∑n
i=1 µ(Ei).

1.5 Important theorems in Measure Theory

Theorem (Lebesgue)
There exists a probability space ([0, 1],B, µ), where:

• B is a σ-algebra which contains all subintervals (and many, many more)

• µ([a, b]) = b− a

• µ(a+ E) = µ(E),∀E ∈ F st E + a ∈ F where x ∈ a+ Eifx− a ∈ E
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Theorem (Vitaly) Lebesgue theorem is false for F = { all subsets of [0, 1]}.

Def: A measurable function is a function f : Ω → R st ∀t∈R[f > t] ∈ F where [f > t] := {ω ∈
Ω|f(ω) > t}.

Exercise : f is measurable iff there is a countable list of reasonable questions whose answer determines
the value of f .

Def: A stochastic process is a sequence of measurable functions fn : Ω→ R, on the same probability
space.

Exercise: Show that P(ak < fik < bk, k = {1, 2, ...}) := µ(ωinΩ : fik > ak ∧ fik < bk) is a stochastic
process.

Def: A probability preserving transformation is (Ω,F , T, µ) where:

• (Ω,F , µ) is a probability space.

• T : Ω→ Ω is a measurable map, a map such that ∀E∈F , T−1(E) = {ω ∈ Ω|T (ω) ∈ E} ∈ F

• µ(T−1E) = µ(E),∀E∈F .

Every measurement gives rise to a stochastic process:

f , f ◦ T , f ◦ T 2, ...

Iif we show that a stochastic process has the characteristic of a random process, we can make the rela-
tionship between a random process and a dynamical system precise.

2 Lecture 2

Probability-preserving ⇒ µ(T−1E) = µ(E), in (Ω,F , µ, T ) with (Ω,F , µ) a probability space and
T : X → X.

Remember a measurement is a function that associates to each state a certain value, f : Ω→ R
Our goal is to show that these functions show stochastic behavior.

2.1 Strong Law of Large Numbers

Let xi independent, identically distributed random variables.

Then we have:

∑N
i xi
N

N→+∞−−−−−→ E(x0)

Similarly we will arrive at:

1

N

N∑
i=0

f(T ix)
N→∞−−−−→

∫
Ω
fdµ, almost everywhere
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2.2 Measure Theory - Integrable Functions and their Integrals

Recall: f : Ω→ R is measurable (with respect to a σ-algebra) if:

∀a∈R, [f > a] := {ω ∈ R : f(ω) > a} is in F

Example 1: Indicators of measurable sets:

1E(ω) =

{
1 ω ∈ E
0 ω /∈ E for E ∈ F

Since:

[1E > a] =


Ω a < 0
E 0 ≤ a < 1
∅ a ≥ 1

Example 2: Simple functions / discrete random variable

f =
∑N

i=1 αi1Ei (E1, ..., EN ∈ F)

Example 3: Pointwise limits of simple functions.

This folow from Lemma:

If fn : Ω→ R are measurable and |fn| ≤M , then lim sup
n→∞

fn(ω) and lim inf
n→∞

fn(ω) are measurable.

Proof:
If (an)n≥0, is bounded then

lim sup
n→∞

an = max{L|∃ subsequence ank
→ L}

lim inf
n→∞

an = min{L|∃ subsequence ank
→ L}

Then:

lim sup
n→∞

fn(ω) > a⇔ ∃n
(

lim sup
n→∞

fn(ω) ≥ a+
1

n

)
⇔ ∃n [∀m∀N∃k>N (fk(ω) < a+ 1/n− 1/m)]

Transforming from ∃ and ∀ into unions and intersections:

{ω ∈ Ω| lim sup
n→∞

fn(ω) > a} =
∞⋃
n=1

∞⋂
m=1

∞⋂
N=1

∞⋃
k=N

[
fk > a+

1

n
− 1

m

]
Since it is a countable union and intersection of sets in F , then it also belongs to F , hence it is a

measurable function.
Proposition: Every bounded measurable function is the uniform limit of simple functions.

Proof: Suppose |f | ≤M , f is measurable, let:
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fn =

Ma∑
k=−Ma

k

n
1[k/n≤f≤(k+1)/n]

For every ω ∈ Ω, there’s a unique k, st k/n ≤ fn(ω) ≤ (k + 1)/n. For this k:
f(ω) ∈ (k/n, (k + 1)/n], fn(ω) = k/n
So |fn(ω)− f(ω)| < 1

n ⇒ sup |fn − f | ≤ 1
n

n→∞−−−→ 0.
As we wanted.

2.3 Definition of the integral

Case 1: Indicators of measurable sets, f = 1E , E ∈ Ω.
The integral should be equal to the measure of the interval,

∫
Ω 1Edµ = µ(E).

Case 2: Simple functions f =
∑N

i=1 αi1Ei :

We expect the integral to be linear,
∫
fdµ =

∑N
i=1 αiµ(Ei).

Suppose that E1, ..., EN are disjoint sets, then P(f = αi) = µ(Ei). So
∫
fdµ =

∑N
i=1 αiP(f = αi) =

E(f), the expectation of the function.

Case 3: General bounded measurable functions
Every function f like this is the uniform limit of simple functions.
f = limn→∞ fn , fn simples.
So we define:∫

Ω fdµ = limn→∞
∫

Ω fndµ.

Proposition: The limit exists, is independent of the choice of fn, and has the properties:

• Linearity:
∫

Ω(αf + βg)dµ = α
∫

Ω fdµ+ β
∫

Ω gdµ

• Positivity: f ≥ 0⇒
∫

Ω fdµ ≥ 0

• Monotocity: f ≥ g ⇒
∫

Ω fdµ ≥
∫

Ω gdµ

• ∆-ineq: |
∫

Ω fdµ| ≤
∫

Ω |f |dµ

Proof: It is true for simple functions (exercise). Suppose f is bounded and measurable, and let fn,
be simple functions st sup |f − fn| → 0.

Claim: lim
∫
fndµ exists.

Proof: We check the Cauchy criteria. Fix ε ≥ 0. Choose N such that, n > M ⇒ |fn(ω)− f(ω)| < ε
for all ω. Then, for all m,n > M, |fn(ω)− fm(ω)| ≤ |fn(ω)− f(ω) + f(ω)− fm(ω)| < 2ε.

By the ∆-ineq and linearity:∣∣∣∣∫ fndµ−
∫
fmdµ

∣∣∣∣ =

∣∣∣∣∫ (fn − fm)dµ

∣∣∣∣ ≤ ∫ |fn − fm|dµ ≤ ∫ 2εdµ = 2ε

So, an =
∫
fndµ is a Cauchy sequence.
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Claim: If {fn}, {gn} are two sequences of simple functions which converge uniformly to f , then:
limn→∞

∫
fndµ = limm→∞

∫
gmdµ

Proof: Fix ε > 0. Choose N st if n > N , then |fn(ω)− f(ω)| < ε for all ω as well for gn.
Then, necessarilty, n > N ⇒ |fn(ω) − gn(ω)| < 2ε, hence |

∫
Ω fndµ −

∫
Ω gndµ| = |

∫
Ω(fn − gn)dµ| ≤∫

|fn − gn|dµ ≤
∫

2εdµ = 2ε.

Therefore lim
n→∞

∫
Ω
fndµ = lim

m→∞

∫
Ω
gndµ .

Example

D(x) =

{
1 x ∈ Q
0 x /∈ Q ⇒

∫
[0,1]

D(x)dµ = 1µ(Q) + 0µ(Qc) = 0

2.4 Bounded Convergence Theorem

Suppose fn are measurable functions on a probability space st:
f(ω) = limn→∞ fn(ω) exists for all ω.
If ∃M>0 st |fn| ≤M for all n, then:∫

Ω
lim
n→∞

fndµ = lim
n→∞

∫
fndµ

3 Lecture 3

3.1 Ergodic Theorem / Strong Law of Large Number

Our goal is to get a Law of Large number for an ergodic process.

1

N

N−1∑
i=0

f(T kω)
N→∞−−−−→

∫
Ω
fdµ ae

Definition: If property P occurs almost everywhere (ae) then:

µ(ω|Property P does not happen in ω) = 0

Obstruction: Conserved quantities do not change over time.

Def: A measurable function f : Ω→ R is T-invariant if f ◦ T = f . ae.

Def: A probability preserving system (Ω,F , µ, T ) is called ergodic if every T-invariant function f is
equal to a constant function ae.

In order words: ∃c st µ[f 6= c] = 0

Birkhoff’s Pointwise Ergodic Theorem
Suppose (Ω,F , µ, T ) is a probability preserving system, and let f be a bounded measurable function.
Then f̄(ω) = limN→∞

1
N

∑N−1
i=0 f(T kω) exists ae.

If the system is ergodic, then f̄(ω) =
∫

Ω fdµ ae.
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Proof
Some reductions, first:

• |f | ≤ 1 by rescaling

• 0 ≤ f ≤ 1 otherwise f = f1[f≥0]−|f |1[f<0]. Prove for each term and then the limit of the difference
is the difference of the limit.

Idea: Show that lim sup = lim inf.

Let:

Ā = lim
N→∞

sup
1

N

N−1∑
k=0

f(T kω)

¯
A = lim

N→∞
inf

1

N

N−1∑
k=0

f(T kω)

If Ā =
¯
A⇒ limit exists.

Notice that Ā ≥
¯
A, then if the limit exists Ā =

¯
A ae ⇒ µ(Ā >

¯
A) = 0

Exercise: Show that µ(Ā >
¯
A) = 0⇔ ∀µ(Ā−

¯
A > 1/n).

We’ll use show
∫

(Ā−
¯
A)dµ = 0⇒ µ(Ā−

¯
A > 1/n) =

∫
1Ā−

¯
A)>1/ndµ ≤ n

∫
(Ā−

¯
A)dµ = 0

Therefore Ā =
¯
A ae.

Note that:
∫

1[Ā−
¯
A>1/n]dµ ≤ Ā− ¯

A

Exercise: Check first equality in previous expression.

Start by proving
∫

(Ā−
¯
A)dµ = 0.

Fiz C > 0 very big and, ε > 0 very small and define:

τ(ω) = min

{
n > 0| 1

n

n−1∑
k=0

f(T kω) > Ā(ω)− ε

}

Well defined value because of the lim sup.
We now color the interval 0,1,..., N as follows.

• k=0: If τ(ω) > C, color k “red”. If τ(ω) ≤ C, color 0, 1, ..., τ(ω)−1 “blue”. Move to next colorless
k

• If τ(T kω) > C, color k “red”, otherwise color the next τ(T kω) k’s “blue”. Move to next colorless k.

• Stop when all k’s are colored or you want to color a segment blue but there are not enough k’s left.

We estimate, from below:

N−1∑
k=0

(f(T k(ω)) + 1[τ≥C](T
kω))
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Contribution of red k’s, if k is red, the T kω ∈ [τ > C] so:∑
k red

f(T kω)︸ ︷︷ ︸
≥0

+ 1[τ≥C](T
kω)︸ ︷︷ ︸

≥1

≥ # reds ≥ (# reds)(Ā(ω)− ε)

Contribution of blue k’s

∑
blue segments

 ∑
k∈segment

(f(T kω) + 1[τ≥C])

 ≥
≥

∑
blue segments

 ∑
k∈segment

f(T kω)

 ≥ ∑
blue segments

(length)(Ā(T start of segmentω)− ε)

But Ā is T-invariant so we have:

=
∑

blue segments

(length)(Ā(ω)− ε) = (# blues)(ω̄ − ε)

Then, from below, the sum is bounded by:

(# red + # blue)(Ā(ω)− ε) ≥ (N − C)(Ā− ε)

Then we have:

1

N

N−1∑
k=0

(f(T kω) + 1[τ>C](T
kω)) ≥ (1− C/N)(Ā(ω)− ε)

By monoticity and linearity:

1

N

N−1∑
k=0

(∫
Ω
f ◦ T kdµ+

∫
Ω

1[τ>C] ◦ T kdµ
)
≥ (1− C/N)

(∫
Ω

(Ā− ε)dµ
)

Exercise: Show that
∫

Ω f ◦T
kdµ =

∫
Ω fdµ, ∀f bounded measurable and assuming that µ is T-invariant.

Then we get: ∫
Ω
fdµ+ µ(τ > C) ≥ (1− C/N)

(∫
Ω
Ādµ− ε

)
Taking the limit as N →∞ and then as C →∞ (note that µ(τ > C)→ 0), gives us:

∫
Ω
fdµ ≥

(∫
Ω
Ādµ− ε

)
The limit ε→ 0 gives us the upper bound we wanted.
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Exercise: Redefine τ to obtain the argument for lim inf, that
∫

Ω fdµ ≤
∫

Ω ¯
Adµ

In summary,
∫

(Ā−
¯
A)dµ ≤

∫
Ω fdµ−

∫
Ω fdµ = 0.

However Ā−
¯
A ≥ 0, meaning that

∫
(Ā−

¯
A)dµ = 0 , hence the limit exists.

We showed for almost every point, that f̄ = lim 1
N

∑N−1
k=0 f(T kω) exists.

It is easy to see that f̄ is T-invariant, f̄ ◦ T = f̄ .
So in the ergodic case, every invariant function is constant ae.
Let’s calculate C.

C = lim
N→∞

1

N

N−1∑
k=0

f(T kω)

C =

∫
Ω
cdµ =

∫
Ω

lim
N→∞

1

N

N−1∑
k=0

f(T kω)dµ

By the bounded convergence theorem (from end of last lecture), we can switch the limit and the
integration.

C = lim
N→∞

1

N

N−1∑
k=0

∫
Ω
f(T kω)dµ

C = lim
N→∞

∫
Ω
f(ω)dµ =

∫
Ω
f(ω)dµ

As we wanted to show, if we have an ergodic dynamical system.

lim
N→∞

1

N

N−1∑
k=0

f(T kω) =

∫
Ω
f(ω)dµ

As we wanted to show.

4 Lecture 4

4.1 Independence and Mixing

Probability Theory: Suppose (Ω,F , µ) is a probability space.
Two events E,F ∈ F are independent if:

µ(E ∩ F ) = µ(E)µ(F )

In this case, the conditional probability reduces to: P(E|F ) = µ(E∩F )
µ(F ) = µ(E)

The occurance of F yields no further information on the event E.
Approximate Independence When µ(E ∩ F ) ≈ µ(E)µ(F ).
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Example: Coin-tossing

For a coin, the face coming out depends on the time the coin is in the air t = v0/g, and the angular
frequency ω (in rad/s).

The number of half turns is then bωv0gπ c. The product of ωv0 is then the determining factor and in the
space (ω-v0), the different outcomes are seperated by hyperboles.

Imagining that there is a spread of the initial velocities and angular momentum, the intersection of
the uncertainty ellipse with the hyperbolas gives us the probability of each outcome.

If the ellipse is large or the hyperbole very thin, the result is that the ellipse intersects about the same
area of head and tails phase space.

4.2 Dynamical System

Def: A probability preserving system (Ω,F , µ, T ) is called mixing if for all E,F ∈ F
(E ∩ T−nF )

n→∞−−−→ µ(E)µ(F )

Idea: P(Tn(ω) ∈ F |ω ∈ E)→ P(ω ∈ F )→ P(Tnω ∈ F )

Proposition: A probability preserving system (Ω,F , µ, T ) is ergodic iff ∀E,F∈F

1

N

N−1∑
k=0

µ(E ∩ T−kF )
N→∞−−−−→ µ(E)µ(F )

Proof (⇒):
Suppose T is ergodic, and E,F ∈ F .
By the ergodic theorem:

1

N

N−1∑
k=0

f ◦ T−kω N→∞−−−−→
∫

Ω
fdµ

Choosing f = 1F we have:

1

N

N−1∑
k=0

1F ◦ T−kω
N→∞−−−−→ µ(F )

Multiplying by 1E(ω) and integrating over all phase space we have:∫
Ω

[
lim
N→∞

1

N

N−1∑
k=0

(1E(ω))(1F ◦ T−k)ω

]
dµ =

∫
Ω

1Eµ(F )dµ

By the bounded convergence theorem, linearity of integral:

lim
N→∞

1

N

N−1∑
k=0

∫
Ω

(1E(ω))(1F ◦ T−k)ωdµ = µ(E)µ(F )
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Note: 1E1F ◦ T−k is one if the state is in the intersection of E and T−kF and zero otherwise, so the
integral over all space yields only the measure of E ∩ T−kF .

lim
N→∞

1

N

N−1∑
k=0

µ(E ∩ T−kF ) = µ(E)µ(F )

As we wanted to show.

Proof (⇐)
To prove the inverse implication, consider E = F = [f > c], for some T-invariant function. If this

T-invariant function is constant in all Ω, then T is ergodic. Since f is T-invariant, then T−kF = F

lim
N→∞

1

N

N−1∑
k=0

µ(F ∩ F ) = µ(F )µ(F )

µ(F ) = (µ(F ))2

This means that µ(F ) is either 0 or 1.

Exercise: Use this to show µ(f < c) = 0 and µ(f > c) = 0 for some c.

This means that there is at most a set of measure 0, where the function is not a constant, which is
the definition of ergodicity.

4.3 Angle Doubling Map

Given the probability preserving system(Ω,F , µ, T )
Ω = [0, 1]

F := Smallest σ-algebra containing the intervals.
⋂
{G ⊂ 2Ω|G is a σ-algebra and G ⊃ {intervals}}

µ = Lebesgue’s measure µ([a, b]) = b− a.

T (x) = 2x mod 1

Exercise: Show that the system is probability-preserving.

In binary representation T k(0.x1x2....) = 0.xkxk+1.....
Dyadic intervals:

[a0, ..., an−1] = [0, a1, ..., an−1, ∗, ∗, ...] =
[∑n−1

k=0
ak

2k+1 ,
∑n−1

k=0
ak

2k+1 + 1
2n

[
For any two dyadic intervals [a0, ..., aα−1], [b0, ..., bβ−1], if n > α,
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#[
¯
a] ∩ T−n[

¯
b] = #[a0, ..., aα−1, ∗, ..., ∗, b0, ..., bβ−1]

= #
⊎

¯
ξ=(ξ1,...,ξn)

[
¯
a,

¯
ξ,

¯
b] = 2n−α

We have 2n−α intervals with length 2−n−β each, which yields a total size 2−α2−β which is the product
of the size of each of the two sets. Mixing occurs .

To show micing for general Borel sets, use:
Approximation Lemma: For every Borel set B, and ε > 0 there are dyadic intervals I1, ..., In st:

µ(E∆
⊎n
i=1 Ii) < ε

Where A∆B := (A \B) ∪ (B \A), the non-interesecting part of both sets.

5 Lecture 5

Let (Ω,B, µ, T ) a probability preserving system and f : Ω→ R a measurement.
Then {f ◦ T k}∞k=0 defines a stochastic process.
If we can show that the series has properties of a random process then we can make a precise comparison

between the two.
In particular it is interesting to ask “how random” can the system look.

5.1 Entropy

Def: A Bernoulli Process is a stochastic process ({Xn}∞n=−∞) for which ∃ finite set {a1, ..., aN} and

a vector ~p = (p1, ..., pN ), 0 ≤ pi ≤ 1,
∑N

i=0 pi = 1,such that:

• P(Xi = ak) = pk for all i

• Xi are independent ⇔ ∀ai−m
, ..., aimP(X−m = ai−m , ..., Xm = aim) =

∏m
k=−m pik

In short, P(
⋂m
k=1[Xk = aik ]) =

∏m
k=1 P(Xk = aik)

Most random stochastic process!
Def: A probability preserving system (Ω,F , µ, T ) simulates a Bernouli process if ∃ measurable func-

tion f : Ω → {a1, ..., aN} st the time series is a Bernoulli process, i.e., there exists a probability vector
(p1, ..., pN ) st:

µ{ω ∈ Ω|f(T kω) = aik(k = 0, ...,m− 1} =
∏N−1
k=0 pik

for all m ∈ N and ai1 , ..., aim ∈ {a1, ..., an}

Quasi-example (one sided definition of stochastic process):
Tx = 2x mod 1.
And f(x) = 1[1/2,1)

Suppose x = 0.x1x2.... in binary expansion. Then T ix = 0.xi+1xi+2... (in binary), hence f(T ix) =
xi+1.
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µ{x ∈ [0, 1]|f(x) = a1, ..., f(Tn−1x) = an} =

µ{0.a1a2...an ∗ ∗∗} = µ

([
n∑
k=1

ak
2k
,

n∑
k=1

ak
2k

+
1

2n

[)

=
1

2n

Def: The entropy of a Bernoulli process with prob. vector (p1, ..., pN ) is the non-negative number.

−
N∑
i=1

pi log(pi)

Theorem (Sinai): If a probability preserving system simulates a Bernoulli process (B-process) with
entropy H, then it simulates any B-process with entropy < H.

Def: The metric entropy of a probability preserving system is

sup{H| the system simulates a B-process with entropy H}

Examples
1: Geodesic flow on compact surfaces with negative curvature. Given a point and a direction it slides

the point across the geodesic gt(ω)
If sphere there is zero entropy.

2: Playing billiard, the ball reflects, irrotational motion → zero entropy. Same in a rectangle. Yet on
rectangle with two side substituded by semi circles there is positive entropy.

3: (Arnold’s Cat Map)

T : T 2 → T2 st T (x, y) =

[
2 1
1 1

] [
x
y

]
mod Z2.

Two directions, a stable and an unstable. Positive entropy.

5.2 What are the mechanisms that produce positive entropy?

Setup: Ω is a compact smooth manifold and T : Ω→ Ω is a twice differentially invertible map.

Def: T has exponential sensitivity to initial conditions at x ∈ Ω if ∃λ>0,∃ε0>0 st that ∀n>0, ∃y∈Ω st:

• dist(x, y) < e−λn

• dist(Tn(y), Tn(x)) > ε0

In linear time we have an exponential growth in error.

Example: Tx = 2x mod 1
To know Tnx well we need to know x up to 1

2n+1 . The larger the n, the error in our initial knowledge
of x becomes exponentially smaller.

Theorem (Ruelle, Margulis,...)
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Under the previous assumptions, if T preserves an ergodic probability measure µ with positive entropy,
then:

x ∈ Ω ae has exponential sensitivity to initial conditions
Undelying idea: you need exponential sensistity to have positive entropy.

5.3 Katok Horseshoe

From now on assume T a twice continuously differential map on a compact surface of dim 2.

Theorem (Katok, ’80): If T has an ergodic inv. prob. measure with positive entropy then the
following picture must appear somewhere in the manifold.

There is a point A with a stable direction and an unstable direction. These directions form lines such
that points in each line are sent to the same line, WS and W u respectively.

In more precise notation T (W s) ⊂W s and contracts uniformly and T (W u) ⊂W u expand uniformly.

There will also be a point B, where the lines meet again perpendicularly.

Considering B and a neighbourhood in W u, the point will evolve in W s while the neighbourhood
expands from the point, as it approaches A.

However all these points also belong to W u, meaning that it forms a very twisted curve.

The same procedure can be formed by considering A and a neighbourhood in W s and applying T−1,
forming an intricate path for W s.

Note though, that now, we have a countable number of intersections, between the two lines, where
the same process occurs.

We then have an uncountable number of intersections, a fractal structure!
This is known as the Katok Horseshoe.
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Figure 1: Figure with schematic the sort of curves arising in the Katov Horseshoe. Taken from Interna-
tional Journal of Bifurcation and Chaos, Vol. 9, No. 10 (1999)
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