Representations of Thompson groups and Cuntz algebras

Miguel Barata
$2^{\text {nd }}$ year (IST-UL)
$28^{\text {th }}$ July 2018

Motivation

Representations of Cuntz algebra \mathcal{O}_{2}

\downarrow

Representations of Thompson groups

Motivation

Representations of Cuntz algebra \mathcal{O}_{2}

Representations of Thompson groups

What we want to study:

- Unitary equivalence of representations
- Irreducible representations
- ...

Thompson groups $F \subset T \subset V$ (1965)

Definition (Group F)

Set of piecewise linear bijections of $[0,1]$ such that:

- are homeomorphisms of $[0,1]$;
- have a finite set of points of non-differentiability, which are dyadic numbers;
- derivate is always a power of 2 when it exists;
- maps the dyadics in $[0,1]$ bijectively onto themselves.

Thompson group F

A

B

$$
A(x)=\left\{\begin{array}{lll}
\frac{1}{2} x & \text { for } & 0 \leq x \leq \frac{1}{2} \\
x-\frac{1}{4} & \text { for } & \frac{1}{2} \leq x \leq \frac{3}{4} \\
2 x-1 & \text { for } & \frac{3}{4} \leq x \leq 1
\end{array} \quad B(x)=\left\{\begin{array}{lll}
x & \text { for } & 0 \leq x \leq \frac{1}{2} \\
\frac{1}{2} x+\frac{1}{4} & \text { for } & \frac{1}{2} \leq x \leq \frac{3}{4} \\
x-\frac{1}{8} & \text { for } & \frac{3}{4} \leq x \leq \frac{7}{8} \\
2 x-1 & \text { for } & \frac{7}{8} \leq x \leq 1
\end{array} .\right.\right.
$$

Thompson group F

A

B

$$
A(x)=\left\{\begin{array}{lll}
\frac{1}{2} x & \text { for } & 0 \leq x \leq \frac{1}{2} \\
x-\frac{1}{4} & \text { for } & \frac{1}{2} \leq x \leq \frac{3}{4} \\
2 x-1 & \text { for } & \frac{3}{4} \leq x \leq 1
\end{array} \quad B(x)=\left\{\begin{array}{lll}
x & \text { for } & 0 \leq x \leq \frac{1}{2} \\
\frac{1}{2} x+\frac{1}{4} & \text { for } & \frac{1}{2} \leq x \leq \frac{3}{4} \\
x-\frac{1}{8} & \text { for } & \frac{3}{4} \leq x \leq \frac{7}{8} \\
2 x-1 & \text { for } & \frac{7}{8} \leq x \leq 1
\end{array}\right.\right.
$$

F is generated by A, B and relations
(1) $\left[A B^{-1}, X_{2}\right]=1$
(2) $\left[A B^{-1}, X_{3}\right]=1$
where $[g, h]=g h g^{-1} h^{-1}, X_{2}=A^{-1} B A$ and $X_{3}=A^{-2} B A^{2}$.

Thompson groups $F \subset T \subset V(1965)$

Definition (Group T)

Set of piecewise linear bijections of $[0,1[$ such that:

- are homeomorphisms of $[0,1[$ with the circle topology;
- only have a finite set of points of non-differentiability, which are dyadic numbers;
- derivate is always a power of 2 when it exists;
- maps the dyadics in $[0,1]$ bijectively onto themselves (except 1).

Thompson group T

C

D
$C(x)=\left\{\begin{array}{lll}\frac{1}{2} x+\frac{3}{4} & \text { for } & 0 \leq x \leq \frac{1}{2} \\ 2 x-1 & \text { for } & \frac{1}{2} \leq x \leq \frac{3}{4} \\ x-\frac{1}{4} & \text { for } & \frac{3}{4} \leq x<1\end{array}\right.$
$D(x)=\left\{\begin{array}{lll}x+\frac{3}{4} & \text { for } & 0 \leq x \leq \frac{1}{4} \\ x-\frac{1}{4} & \text { for } & \frac{1}{4} \leq x<1\end{array}\right.$

Thompson group T

C

D

$$
C(x)=\left\{\begin{array}{lll}
\frac{1}{2} x+\frac{3}{4} & \text { for } & 0 \leq x \leq \frac{1}{2} \\
2 x-1 & \text { for } & \frac{1}{2} \leq x \leq \frac{3}{4} \\
x-\frac{1}{4} & \text { for } & \frac{3}{4} \leq x<1
\end{array}\right.
$$

$$
D(x)=\left\{\begin{array}{lll}
x+\frac{3}{4} & \text { for } & 0 \leq x \leq \frac{1}{4} \\
x-\frac{1}{4} & \text { for } & \frac{1}{4} \leq x<1
\end{array}\right.
$$

T is generated by A, B and C and relations
(3) $C=B C_{2}$
(9) $C_{2} X_{2}=B C_{3}$
(0) $C A=C_{2}^{2}$
(6) $C^{3}=1$
where $C_{2}=A^{-1} C B$ and $C_{3}=A^{-2} C B^{2}$.

Thompson groups $F \subset T \subset V$ (1965)

Definition (Group V)

Set of piecewise linear right-continuous bijections of $[0,1[$ such that:

- only have a finite set of points of non-differentiability, which are dyadic numbers;
- derivate is always a power of 2 when it exists;
- maps the dyadics in $[0,1]$ bijectively onto themselves (except 1).

Thompson group V

$$
\pi_{0}(x)=\left\{\begin{array}{lll}
\frac{1}{2} x+\frac{1}{2} & \text { for } & 0 \leq x<\frac{1}{2} \\
2 x-1 & \text { for } & \frac{1}{2} \leq x<\frac{3}{4} \\
x & \text { for } & \frac{3}{4} \leq x<1
\end{array}\right.
$$

Thompson group V

$$
\pi_{0}(x)=\left\{\begin{array}{lll}
\frac{1}{2} x+\frac{1}{2} & \text { for } & 0 \leq x<\frac{1}{2} \\
2 x-1 & \text { for } & \frac{1}{2} \leq x<\frac{3}{4} \\
x & \text { for } & \frac{3}{4} \leq x<1
\end{array}\right.
$$

V is generated by A, B, C and π_{0} and relations
(1) $\pi_{1}^{2}=1$
(1) $\pi_{1} X_{2}=B \pi_{2} \pi_{1}$
(8) $\left[\pi_{1}, \pi_{3}\right]=1$
(12) $\pi_{2} B=B \pi_{3}$
(9) $\left(\pi_{2} \pi_{1}\right)^{3}=1$
(13) $\pi_{1} C_{3}=C_{3} \pi_{2}$
(10) $\left[X_{3}, \pi_{1}\right]=1$
(4) $\left(\pi_{1} C_{3}\right)^{3}=1$
where $\pi_{1}=C_{2}^{-1} \pi_{0} C_{2}, \pi_{2}=A^{-1} \pi_{0} A$ and $\pi_{3}=A^{-2} \pi_{0} B^{2}$.

C*-algebra

Definition (Banach algebra)

An algebra A over \mathbb{C} is a Banach algebra if it is endowed with a norm that makes it into a Banach space and

$$
\|a b\| \leq\|a\| \cdot\|b\|
$$

for all $a, b \in A$.

C*-algebra

Definition (Banach algebra)

An algebra A over \mathbb{C} is a Banach algebra if it is endowed with a norm that makes it into a Banach space and

$$
\|a b\| \leq\|a\| \cdot\|b\|
$$

for all $a, b \in A$.

We say A is a involutive algebra if there is a map ${ }^{*}: A \rightarrow A$ such that
(1) $\left(a^{*}\right)^{*}=a$
(2) $(a b)^{*}=b^{*} a^{*}$
(3) $(\lambda a+b)^{*}=\bar{\lambda} a^{*}+b^{*}$
for all $a, b \in A$ and $\lambda \in \mathbb{C}$.

C*-algebra

Definition (C*-algebra)

An involutive Banach algebra A is a C^{*}-algebra if it satisfies the relation

$$
\left\|a a^{*}\right\|=\|a\|^{2}
$$

C*-algebra

Definition (C*-algebra)

An involutive Banach algebra A is a C^{*}-algebra if it satisfies the relation

$$
\left\|a a^{*}\right\|=\|a\|^{2}
$$

Examples:

- \mathbb{C};
- $M_{n \times n}(\mathbb{C})$, space of $n \times n$ complex matrices;
- $C(K)$, space of complex-valued functions on a compact K.

C*-algebra

Theorem (Gelfand)

Let A be a commutative unital C^{*}-algebra. Then, there is an isometric ${ }^{*}$-isomorphism $\phi: A \rightarrow C_{0}(X)$, where X is compact Hausdorff space. If A is only commutative, the A is isomorphic to $C(X)$, for some X locally compact Hausdorff space.

C*-algebra

Theorem (Gelfand)

Let A be a commutative unital C^{*}-algebra. Then, there is an isometric *-isomorphism $\phi: A \rightarrow C_{0}(X)$, where X is compact Hausdorff space. If A is only commutative, the A is isomorphic to $C(X)$, for some X locally compact Hausdorff space.

Theorem (Gelfand-Naimark)

Let A be a C*-algebra. Then A is isometrically *-isomorphic to some C^{*}-subalgebra of bounded operators on a Hilbert space.

Hilbert spaces

Hilbert space: a complete complex linear space with an inner product.

Example

$\ell^{2}(\mathbb{N})=\left\{\left(a_{n}\right) \in \mathbb{C}^{\mathbb{N}}: \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<+\infty\right\}$, with inner product

$$
\left\langle\left(a_{n}\right),\left(b_{n}\right)\right\rangle=\sum_{n=1}^{\infty} a_{n} \overline{b_{n}}
$$

It is true that all separable Hilbert spaces are isometric to $\ell^{2}(\mathbb{N})$.

Hilbert spaces

$$
B(H)=\{T: H \rightarrow H: T \text { is a continuous linear operator }\}
$$

Hilbert spaces

$B(H)=\{T: H \rightarrow H: T$ is a continuous linear operator $\}$

The space of continuous linear operators on a Hilbert space, $B(H)$, forms a Banach algebra with norm

$$
\|T\|=\sup _{\|x\|=1}\{\|T x\|: x \in H\}
$$

that satisfies $\left\|T \circ T^{*}\right\|=\|T\|^{2}$ (C^{*}-algebra) .

Hilbert spaces

$B(H)=\{T: H \rightarrow H: T$ is a continuous linear operator $\}$

The space of continuous linear operators on a Hilbert space, $B(H)$, forms a Banach algebra with norm

$$
\|T\|=\sup _{\|x\|=1}\{\|T x\|: x \in H\}
$$

that satisfies $\left\|T \circ T^{*}\right\|=\|T\|^{2}$ (C^{*}-algebra).

Given $T: H \rightarrow H$ we define $T^{*}: H \rightarrow H$ such that

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \quad \text { (adjoint operator) }
$$

with $x \in H, y \in K$.

Cuntz algebras $\mathcal{O}_{n}(1977)$

Definition (Cuntz algebra \mathcal{O}_{n})

Universal C^{*}-algebra generated by n isometries, $\left\{s_{1}, \ldots, s_{n}\right\}$ such that:

- $\sum_{i=1}^{n} s_{i} s_{i}^{*}=1$
- $s_{i}^{*} s_{j}=\delta_{i j} l$ for $i, j \in\{1, \ldots, n\}$
where I is the identity.

Cuntz algebras $\mathcal{O}_{n}(1977)$

Definition (Cuntz algebra \mathcal{O}_{n})

Universal C^{*}-algebra generated by n isometries, $\left\{s_{1}, \ldots, s_{n}\right\}$ such that:

- $\sum_{i=1}^{n} s_{i} s_{i}^{*}=1$
- $s_{i}^{*} s_{j}=\delta_{i j} l$ for $i, j \in\{1, \ldots, n\}$
where I is the identity.

Definition (Cuntz algebra \mathcal{O}_{2})

Universal C^{*}-algebra generated by two isometries, s_{1} and s_{2} such that:

- $s_{1} s_{1}^{*}+s_{2} s_{2}^{*}=I$
- $s_{i}^{*} s_{j}=\delta_{i j} l$ for $i, j \in\{1,2\}$
where I is the identity.

Group representations \& *-representations

Let H be a Hilbert space.
A unitary group representation of a discrete group G is a group homomorphism $\pi: G \rightarrow B(H)$ such that $\pi\left(g^{-1}\right)=\pi(g)^{*}$ for all $g \in G$.

Group representations \& *-representations

Let H be a Hilbert space.
A unitary group representation of a discrete group G is a group homomorphism $\pi: G \rightarrow B(H)$ such that $\pi\left(g^{-1}\right)=\pi(g)^{*}$ for all $g \in G$.

Given an involutive algebra A, a ${ }^{*}$-representation of A is a homomorphism $\pi: A \rightarrow B(H)$ such that $\pi\left(a^{*}\right)=\pi(a)^{*}$ for all $a \in A$.

Group representations \& *-representations

Let H be a Hilbert space.
A unitary group representation of a discrete group G is a group homomorphism $\pi: G \rightarrow B(H)$ such that $\pi\left(g^{-1}\right)=\pi(g)^{*}$ for all $g \in G$.

Given an involutive algebra A, a *-representation of A is a homomorphism $\pi: A \rightarrow B(H)$ such that $\pi\left(a^{*}\right)=\pi(a)^{*}$ for all $a \in A$.

Given two representations of a discrete group $G, \pi_{1}: G \rightarrow B\left(H_{1}\right)$ e $\pi_{2}: G \rightarrow B\left(H_{2}\right)$, we say that the representations are unitarily equivalent if there is $U: H_{2} \rightarrow H_{1}$ unitary such that

$$
\pi_{1}(g) U=U \pi_{2}(g)
$$

for all $g \in G$. We write $\pi_{1} \sim \pi_{2}$.

$f(x)=2 x(\bmod 1)$

$f(x)=2 x(\bmod 1)$

$$
\begin{aligned}
& x(x)=2 x(\bmod 1) \\
& x \sim y \Longleftrightarrow \exists n, m \in \mathbb{N}: f^{n}(x)=f^{m}(y)
\end{aligned}
$$

$f(x)=2 x(\bmod 1)$

$$
f(x)=2 x(\bmod 1)
$$

$$
x \sim y \Longleftrightarrow \exists n, m \in \mathbb{N}: f^{n}(x)=f^{m}(y)
$$

$$
\operatorname{orb}(x)=\left\{f^{m}(x): m \in \mathbb{Z}\right\} \quad H_{x}=\ell^{2}(\operatorname{orb}(x))
$$

$f(x)=2 x(\bmod 1)$

Lemma

Let p be a prime. Then

$$
\operatorname{orb}\left(\frac{1}{p}\right)=\left\{\frac{m}{2^{n} p}: m \in \mathbb{N}, n \in \mathbb{N}_{0}, p \nmid m, 1 \leq m<2^{n} p\right\} .
$$

$f(x)=2 x(\bmod 1)$

H_{x} has an orthonormal basis $\left\{\delta_{y}: y \in \operatorname{orb}(x)\right\}$ with inner product

$$
\left\langle\delta_{y}, \delta_{z}\right\rangle=\delta_{y, z}
$$

$f(x)=2 x(\bmod 1)$

H_{x} has an orthonormal basis $\left\{\delta_{y}: y \in \operatorname{orb}(x)\right\}$ with inner product

$$
\left\langle\delta_{y}, \delta_{z}\right\rangle=\delta_{y, z}
$$

We can define the following operators on H_{x} :

- $S_{1} \delta_{y}=\delta_{\frac{y}{2}}$
- $S_{2} \delta_{y}=\delta_{\frac{y+1}{2}}$

Their adjoints are given by:

- $S_{1}^{*} \delta_{y}=\delta_{2 y}$ for $y \in\left[0, \frac{1}{2}[\right.$
- $S_{2}^{*} \delta_{y}=\delta_{2 y-1}$ for $y \in\left[\frac{1}{2}, 1[\right.$

Representations of Thompson groups on $B\left(H_{x}\right)$

Lemma (2008, easy proof)

The operators $S_{1}, S_{2} \in B\left(H_{x}\right)$ satisfy the relations of the generators of \mathcal{O}_{2} and induce a $*$-representation $\pi_{x}: \mathcal{O}_{2} \rightarrow B\left(H_{x}\right)$ such that $\pi_{x}\left(s_{i}\right)=S_{i}, i=1,2$.

Representations of Thompson groups on $B\left(H_{x}\right)$

Lemma (2008, easy proof)

The operators $S_{1}, S_{2} \in B\left(H_{x}\right)$ satisfy the relations of the generators of \mathcal{O}_{2} and induce a $*$-representation $\pi_{x}: \mathcal{O}_{2} \rightarrow B\left(H_{x}\right)$ such that $\pi_{x}\left(s_{i}\right)=S_{i}, i=1,2$.

We now define the following operators on $B\left(H_{x}\right)$:

$$
\begin{aligned}
A_{x} & :=S_{1} S_{1} S_{1}^{*}+S_{1} S_{2} S_{1}^{*} S_{2}^{*}+S_{2} S_{2}^{*} S_{2}^{*} \\
B_{x} & :=S_{1} S_{1}^{*}+S_{2} S_{1} S_{1} S_{1}^{*} S_{2}^{*}+S_{2} S_{1} S_{2} S_{1}^{*} S_{2}^{*} S_{2}^{*}+S_{2} S_{2} S_{2}^{*} S_{2}^{*} S_{2}^{*} \\
C_{x} & :=S_{1} S_{1}^{*} S_{2}^{*}+S_{2} S_{1} S_{2}^{*} S_{2}^{*}+S_{2} S_{2} S_{1}^{*} \\
\pi_{0, x} & :=S_{1} S_{1}^{*} S_{2}^{*}+S_{2} S_{1} S_{1}^{*}+S_{2} S_{2} S_{2}^{*} S_{2}^{*}
\end{aligned}
$$

Representations of V on $B\left(H_{x}\right)$

Theorem

The 4 operators defined are unitary and satisfy the 14 relations of V. Thus, we have a group unitary representation $\rho_{x}: V \rightarrow B\left(H_{x}\right)$ of V such that

$$
\rho_{x}(A)=A_{x} \quad \rho_{x}(B)=B_{x} \quad \rho_{x}(C)=C_{x} \quad \rho_{x}\left(\pi_{0}\right)=\pi_{0, x}
$$

for $x \in[0,1]$. Moreover

$$
\rho_{x}(g) \delta_{y}=\delta_{g(y)}
$$

for $g \in F$ and $y \in \operatorname{orb}(x)$

Representations of V on $B\left(H_{x}\right)$

Theorem

The 4 operators defined are unitary and satisfy the 14 relations of V. Thus, we have a group unitary representation $\rho_{x}: V \rightarrow B\left(H_{x}\right)$ of V such that

$$
\rho_{x}(A)=A_{x} \quad \rho_{x}(B)=B_{x} \quad \rho_{x}(C)=C_{x} \quad \rho_{x}\left(\pi_{0}\right)=\pi_{0, x}
$$

for $x \in[0,1]$. Moreover

$$
\rho_{x}(g) \delta_{y}=\delta_{g(y)}
$$

for $g \in F$ and $y \in \operatorname{orb}(x)$

The case $x=\frac{1}{2}$ has already been studied by Kristian Olesen in 2006.

Representations of V on $B\left(H_{x}\right)$

$$
\rho_{X}=\left.\pi_{x}\right|_{V}, \quad \sigma_{x}=\left.\pi_{x}\right|_{T}, \quad \tau_{X}=\left.\pi_{x}\right|_{F}
$$

Representations of V on $B\left(H_{x}\right)$

$$
\rho_{x}=\left.\pi_{x}\right|_{V}, \quad \sigma_{x}=\left.\pi_{x}\right|_{T}, \quad \tau_{x}=\left.\pi_{x}\right|_{F}
$$

Question: What can we say about ρ_{x} for $x \neq \frac{1}{2}$? And what about τ_{x} and σ_{x} ?

What about $x \neq \frac{1}{2}$?

When can we say two representations ρ_{x} and ρ_{y} are unitarily equivalent?

$$
\rho_{x} \sim \rho_{y} \Longleftrightarrow ? ? ?
$$

What about $x \neq \frac{1}{2}$?

When can we say two representations ρ_{x} and ρ_{y} are unitarily equivalent?

$$
\rho_{x} \sim \rho_{y} \Longleftrightarrow \text { ??? }
$$

Theorem (2007)

For the representations π_{x} of \mathcal{O}_{2}, we have

$$
\pi_{x} \sim \pi_{y} \Longleftrightarrow \operatorname{orb}(x)=\operatorname{orb}(y)
$$

for $x, y \in[0,1]$.

$\rho_{x} \sim \rho_{y}$

When can we say two representations ρ_{x} and ρ_{y} are unitarily equivalent?

$$
\rho_{x} \sim \rho_{y} \Longleftrightarrow \text { ??? }
$$

Lemma

Let $x \in[0,1]$. Then $C_{\rho_{x}}^{*}(V)=\pi_{x}\left(\mathcal{O}_{2}\right)$, where $C_{\rho_{x}}^{*}(V)$ denotes the C^{*}-algebra generated by $\rho_{x}(V)$ inside $\pi_{x}\left(\mathcal{O}_{2}\right)$.

$$
\rho_{x} \sim \rho_{y}
$$

When can we say two representations ρ_{x} and ρ_{y} are unitarily equivalent?

$$
\rho_{x} \sim \rho_{y} \Longleftrightarrow \text { ??? }
$$

Lemma

Let $x \in[0,1]$. Then $C_{\rho_{x}}^{*}(V)=\pi_{x}\left(\mathcal{O}_{2}\right)$, where $C_{\rho_{x}}^{*}(V)$ denotes the C*-algebra generated by $\rho_{x}(V)$ inside $\pi_{x}\left(\mathcal{O}_{2}\right)$.

Theorem

Let $x, y \in[0,1]$. Then

$$
\rho_{x} \sim \rho_{y} \Longleftrightarrow x \sim y
$$

$\tau_{x} \sim \tau_{y}$ and $\sigma_{x} \sim \sigma_{y}$

What about τ_{x} and σ_{x} ?
Since $C_{\tau_{x}}^{*}(F) \subset C_{\sigma_{x}}^{*}(T) \subset C_{\rho_{x}}^{*}(V)$, we can't use the same technique.

Theorem

Let $x \in[0,1]$. Then

$$
\tau_{x} \sim \tau_{\frac{1}{2}} \Longleftrightarrow x \sim \frac{1}{2}
$$

and

$$
\sigma_{x} \sim \sigma_{\frac{1}{2}} \Longleftrightarrow x \sim \frac{1}{2}
$$

