## Representations of Thompson groups and Cuntz algebras

#### Miguel Barata

2<sup>nd</sup> year (IST-UL)

28<sup>th</sup> July 2018

Miguel Barata (2<sup>nd</sup> year (IST-UL)) Thompson groups & Cuntz algebras

#### Representations of Cuntz algebra $\mathcal{O}_2$

# Ļ

#### Representations of Thompson groups

Image: A math a math

#### Representations of Cuntz algebra $\mathcal{O}_2$

#### Representations of Thompson groups

What we want to study:

- Unitary equivalence of representations
- Irreducible representations

...

## Definition (Group F)

Set of piecewise linear bijections of [0, 1] such that:

- are homeomorphisms of [0, 1];
- have a finite set of points of non-differentiability, which are dyadic numbers;
- derivate is always a power of 2 when it exists;
- maps the dyadics in [0, 1] bijectively onto themselves.

## Thompson group F





$$A(x) = \begin{cases} \frac{1}{2}x & \text{for } 0 \le x \le \frac{1}{2} \\ x - \frac{1}{4} & \text{for } \frac{1}{2} \le x \le \frac{3}{4} \\ 2x - 1 & \text{for } \frac{3}{4} \le x \le 1 \end{cases} \qquad B(x) = \begin{cases} \frac{x}{2}x + \frac{1}{4} & \text{for } \frac{1}{2} \le x \le \frac{3}{4} \\ x - \frac{1}{8} & \text{for } \frac{3}{4} \le x \le \frac{7}{4} \\ 2x - 1 & \text{for } \frac{3}{4} \le x \le 1 \end{cases}$$

Image: A math a math

# Thompson group F



F is generated by A, B and relations

where  $[g, h] = ghg^{-1}h^{-1}$ ,  $X_2 = A^{-1}BA$  and  $X_3 = A^{-2}BA^2$ .

## Definition (Group T)

Set of piecewise linear bijections of [0, 1] such that:

- are homeomorphisms of [0, 1[ with the circle topology;
- only have a finite set of points of non-differentiability, which are dyadic numbers;
- derivate is always a power of 2 when it exists;
- maps the dyadics in [0,1] bijectively onto themselves (except 1).

## Thompson group T

Miguel Barata (2<sup>nd</sup> year (IST-UL))



(日) (同) (三) (三)

# Thompson group T



T is generated by A, B and C and relations

- $C = BC_2$
- $C_2 X_2 = B C_3$
- **5**  $CA = C_2^2$
- **6**  $C^3 = 1$

where  $C_2 = A^{-1}CB$  and  $C_3 = A^{-2}CB^2$ .

### Definition (Group V)

Set of piecewise linear right-continuous bijections of [0, 1[ such that:

- only have a finite set of points of non-differentiability, which are dyadic numbers;
- derivate is always a power of 2 when it exists;
- maps the dyadics in [0,1] bijectively onto themselves (except 1).

# Thompson group V

Miguel Barata (2<sup>nd</sup> year (IST-UL))



$$\pi_0(x) = \begin{cases} \frac{1}{2}x + \frac{1}{2} & \text{for } 0 \le x < \frac{1}{2} \\ 2x - 1 & \text{for } \frac{1}{2} \le x < \frac{3}{4} \\ x & \text{for } \frac{3}{4} \le x < 1 \end{cases}$$

Image: A match a ma

1 .

 $\pi_0$ 

## Thompson group V



$$\pi_0(x) = \begin{cases} \frac{1}{2}x + \frac{1}{2} & \text{for} \quad 0 \le x < \frac{1}{2} \\ 2x - 1 & \text{for} \quad \frac{1}{2} \le x < \frac{3}{4} \\ x & \text{for} \quad \frac{3}{4} \le x < 1 \end{cases}$$

V is generated by A, B, C and  $\pi_0$  and relations

where  $\pi_1 = C_2^{-1} \pi_0 C_2$ ,  $\pi_2 = A^{-1} \pi_0 A$  and  $\pi_3 = A^{-2} \pi_0 B^2$ .

## C\*-algebra

### Definition (Banach algebra)

An algebra A over  $\mathbb{C}$  is a Banach algebra if it is endowed with a norm that makes it into a Banach space and

 $||ab|| \leq ||a|| \cdot ||b||$ 

for all  $a, b \in A$ .

Miguel Barata (2<sup>nd</sup> year (IST-UL))

# C\*-algebra

## Definition (Banach algebra)

An algebra A over  $\mathbb{C}$  is a Banach algebra if it is endowed with a norm that makes it into a Banach space and

 $||ab|| \leq ||a|| \cdot ||b||$ 

for all  $a, b \in A$ .

We say A is a involutive algebra if there is a map  $\cdot^* : A \to A$  such that

(a<sup>\*</sup>)<sup>\*</sup> = a
(ab)<sup>\*</sup> = b<sup>\*</sup>a<sup>\*</sup>
(λa + b)<sup>\*</sup> = λa<sup>\*</sup> + b<sup>\*</sup>

for all  $a, b \in A$  and  $\lambda \in \mathbb{C}$ .

## Definition (C\*-algebra)

An involutive Banach algebra A is a C\*-algebra if it satisfies the relation

$$||aa^*|| = ||a||^2$$

## Definition (C\*-algebra)

An involutive Banach algebra A is a C<sup>\*</sup>-algebra if it satisfies the relation

$$||aa^*|| = ||a||^2$$

Examples:

- C;
- $M_{n \times n}(\mathbb{C})$ , space of  $n \times n$  complex matrices;
- C(K), space of complex-valued functions on a compact K.

#### Theorem (Gelfand)

Let A be a commutative unital C\*-algebra. Then, there is an isometric \*-isomorphism  $\phi : A \to C_0(X)$ , where X is compact Hausdorff space. If A is only commutative, the A is isomorphic to C(X), for some X locally compact Hausdorff space.

#### Theorem (Gelfand)

Let A be a commutative unital C\*-algebra. Then, there is an isometric \*-isomorphism  $\phi : A \to C_0(X)$ , where X is compact Hausdorff space. If A is only commutative, the A is isomorphic to C(X), for some X locally compact Hausdorff space.

#### Theorem (Gelfand-Naimark)

Let A be a C\*-algebra. Then A is isometrically \*-isomorphic to some C\*-subalgebra of bounded operators on a Hilbert space.

Hilbert space: a complete complex linear space with an inner product.

#### Example

 $\ell^2(\mathbb{N}) = \{(a_n) \in \mathbb{C}^{\mathbb{N}} : \sum_{n=1}^{\infty} |a_n|^2 < +\infty\}$ , with inner product

$$\langle (a_n), (b_n) \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n}$$

It is true that all separable Hilbert spaces are isometric to  $\ell^2(\mathbb{N})$ .

 $B(H) = \{T : H \to H : T \text{ is a continuous linear operator } \}$ 

Miguel Barata (2<sup>nd</sup> year (IST-UL)) Thompson groups & Cuntz algebras

A ∰ ▶ A ∃

 $B(H) = \{T : H \rightarrow H : T \text{ is a continuous linear operator } \}$ 

The space of continuous linear operators on a Hilbert space, B(H), forms a Banach algebra with norm

$$||T|| = \sup_{||x||=1} \{||Tx|| : x \in H\}$$

that satisfies  $||T \circ T^*|| = ||T||^2$  (C\*-algebra).

 $B(H) = \{T : H \to H : T \text{ is a continuous linear operator } \}$ 

The space of continuous linear operators on a Hilbert space, B(H), forms a Banach algebra with norm

$$||T|| = \sup_{||x||=1} \{||Tx|| : x \in H\}$$

that satisfies  $||T \circ T^*|| = ||T||^2$  (C\*-algebra).

Given  $T: H \to H$  we define  $T^*: H \to H$  such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 (adjoint operator)

with  $x \in H$ ,  $y \in K$ .

# Cuntz algebras $\mathcal{O}_n$ (1977)

## Definition (Cuntz algebra $\mathcal{O}_n$ )

Universal C\*-algebra generated by *n* isometries,  $\{s_1, ..., s_n\}$  such that:

• 
$$\sum_{i=1}^n s_i s_i^* = I$$

• 
$$s_i^* s_j = \delta_{ij} I$$
 for  $i, j \in \{1, ..., n\}$ 

where I is the identity.

Miguel Barata (2<sup>nd</sup> year (IST-UL))

# Cuntz algebras $\mathcal{O}_n$ (1977)

## Definition (Cuntz algebra $\mathcal{O}_n$ )

Universal C\*-algebra generated by *n* isometries,  $\{s_1, ..., s_n\}$  such that:

• 
$$\sum_{i=1}^n s_i s_i^* = I$$

• 
$$s_i^*s_j = \delta_{ij}I$$
 for  $i, j \in \{1, ..., n\}$ 

where I is the identity.

#### Definition (Cuntz algebra $\mathcal{O}_2$ )

Universal C\*-algebra generated by two isometries,  $s_1$  and  $s_2$  such that:

• 
$$s_1s_1^* + s_2s_2^* = I$$

• 
$$s_i^* s_j = \delta_{ij} I$$
 for  $i, j \in \{1, 2\}$ 

where I is the identity.

(日) (周) (三) (三)

Let H be a Hilbert space.

A unitary group representation of a discrete group G is a group homomorphism  $\pi: G \to B(H)$  such that  $\pi(g^{-1}) = \pi(g)^*$  for all  $g \in G$ .

Let H be a Hilbert space.

A unitary group representation of a discrete group G is a group homomorphism  $\pi: G \to B(H)$  such that  $\pi(g^{-1}) = \pi(g)^*$  for all  $g \in G$ .

Given an involutive algebra A, a \*-representation of A is a homomorphism  $\pi : A \to B(H)$  such that  $\pi(a^*) = \pi(a)^*$  for all  $a \in A$ .

Let H be a Hilbert space.

A unitary group representation of a discrete group G is a group homomorphism  $\pi: G \to B(H)$  such that  $\pi(g^{-1}) = \pi(g)^*$  for all  $g \in G$ .

Given an involutive algebra A, a \*-representation of A is a homomorphism  $\pi : A \to B(H)$  such that  $\pi(a^*) = \pi(a)^*$  for all  $a \in A$ .

Given two representations of a discrete group G,  $\pi_1 : G \to B(H_1)$  e  $\pi_2 : G \to B(H_2)$ , we say that the representations are unitarily equivalent if there is  $U : H_2 \to H_1$  unitary such that

$$\pi_1(g)U = U\pi_2(g)$$

for all  $g \in G$ . We write  $\pi_1 \sim \pi_2$ .

# $f(x) = 2x \pmod{1}$



 $f(x) = 2x \pmod{1}$ 

3

# $f(x) = 2x \pmod{1}$



э

э.

A⊒ ▶ < ∃

# $f(x) = 2x \pmod{1}$



→

2

#### Lemma

Let p be a prime. Then

$$orb\left(rac{1}{p}
ight) = \left\{rac{m}{2^np}: m \in \mathbb{N}, \ n \in \mathbb{N}_0, \ p \nmid m, \ 1 \leq m < 2^np
ight\}.$$

э

Image: A math a math

 $H_x$  has an orthonormal basis  $\{\delta_y : y \in \operatorname{orb}(x)\}$  with inner product

$$\left< \delta_{\mathbf{y}}, \delta_{\mathbf{z}} \right> = \delta_{\mathbf{y}, \mathbf{z}}$$

A⊒ ▶ < ∃

 $H_x$  has an orthonormal basis  $\{\delta_y : y \in \operatorname{orb}(x)\}$  with inner product

$$\left< \delta_{\mathbf{y}}, \delta_{\mathbf{z}} \right> = \delta_{\mathbf{y}, \mathbf{z}}$$

We can define the following operators on  $H_x$ :

• 
$$S_1 \delta_y = \delta_{\frac{y}{2}}$$
  
•  $S_2 \delta_y = \delta_{\frac{y+1}{2}}$ 

Their adjoints are given by:

• 
$$S_1^* \delta_y = \delta_{2y}$$
 for  $y \in [0, \frac{1}{2}[$   
•  $S_2^* \delta_y = \delta_{2y-1}$  for  $y \in [\frac{1}{2}, 1[$ 

#### Lemma (2008, easy proof)

The operators  $S_1, S_2 \in B(H_x)$  satisfy the relations of the generators of  $\mathcal{O}_2$  and induce a \*-representation  $\pi_x : \mathcal{O}_2 \to B(H_x)$  such that  $\pi_x(s_i) = S_i, i = 1, 2$ .

#### Lemma (2008, easy proof)

The operators  $S_1, S_2 \in B(H_x)$  satisfy the relations of the generators of  $\mathcal{O}_2$  and induce a \*-representation  $\pi_x : \mathcal{O}_2 \to B(H_x)$  such that  $\pi_x(s_i) = S_i, i = 1, 2$ .

We now define the following operators on  $B(H_x)$ :

$$\begin{array}{rcl} A_x &:= & S_1 S_1 S_1^* + S_1 S_2 S_1^* S_2^* + S_2 S_2^* S_2^* \\ B_x &:= & S_1 S_1^* + S_2 S_1 S_1 S_1^* S_2^* + S_2 S_1 S_2 S_1^* S_2^* S_2^* + S_2 S_2 S_2^* S_2^* \\ C_x &:= & S_1 S_1^* S_2^* + S_2 S_1 S_2^* S_2^* + S_2 S_2 S_1^* \\ \pi_{0,x} &:= & S_1 S_1^* S_2^* + S_2 S_1 S_1^* + S_2 S_2 S_2^* S_2^* \end{array}$$

#### Theorem

The 4 operators defined are unitary and satisfy the 14 relations of V. Thus, we have a group unitary representation  $\rho_X : V \to B(H_X)$  of V such that

$$\rho_x(A) = A_x \ \rho_x(B) = B_x \ \rho_x(C) = C_x \ \rho_x(\pi_0) = \pi_{0,x}$$

for  $x \in [0, 1]$ . Moreover

$$\rho_{\mathsf{x}}(\mathsf{g})\delta_{\mathsf{y}} = \delta_{\mathsf{g}(\mathsf{y})}$$

for  $g \in F$  and  $y \in orb(x)$ 

Miguel Barata (2<sup>nd</sup> year (IST-UL))

#### Theorem

The 4 operators defined are unitary and satisfy the 14 relations of V. Thus, we have a group unitary representation  $\rho_X : V \to B(H_X)$  of V such that

$$\rho_x(A) = A_x \ \rho_x(B) = B_x \ \rho_x(C) = C_x \ \rho_x(\pi_0) = \pi_{0,x}$$

for  $x \in [0, 1]$ . Moreover

$$\rho_x(g)\delta_y = \delta_{g(y)}$$

for  $g \in F$  and  $y \in orb(x)$ 

The case  $x = \frac{1}{2}$  has already been studied by Kristian Olesen in 2006.

$$\rho_x = \pi_x|_V, \quad \sigma_x = \pi_x|_T, \quad \tau_x = \pi_x|_F$$

3 x 3

Image: A math a math

$$\rho_{\mathsf{X}} = \pi_{\mathsf{X}}|_{\mathsf{V}}, \quad \sigma_{\mathsf{X}} = \pi_{\mathsf{X}}|_{\mathsf{T}}, \quad \tau_{\mathsf{X}} = \pi_{\mathsf{X}}|_{\mathsf{F}}$$

Question: What can we say about  $\rho_x$  for  $x \neq \frac{1}{2}$ ? And what about  $\tau_x$  and  $\sigma_x$ ?

# What about $x \neq \frac{1}{2}$ ?

When can we say two representations  $\rho_x$  and  $\rho_y$  are unitarily equivalent?

$$\rho_x \sim \rho_y \iff ???$$

When can we say two representations  $\rho_x$  and  $\rho_y$  are unitarily equivalent?

$$\rho_x \sim \rho_y \iff ???$$

## Theorem (2007)

For the representations  $\pi_x$  of  $\mathcal{O}_2$ , we have

$$\pi_x \sim \pi_y \iff orb(x) = orb(y)$$

for  $x, y \in [0, 1]$ .

Miguel Barata (2<sup>nd</sup> year (IST-UL))

When can we say two representations  $\rho_x$  and  $\rho_y$  are unitarily equivalent?

$$\rho_x \sim \rho_y \iff ???$$

#### Lemma

Let  $x \in [0, 1]$ . Then  $C^*_{\rho_x}(V) = \pi_x(\mathcal{O}_2)$ , where  $C^*_{\rho_x}(V)$  denotes the C\*-algebra generated by  $\rho_x(V)$  inside  $\pi_x(\mathcal{O}_2)$ .

When can we say two representations  $\rho_x$  and  $\rho_y$  are unitarily equivalent?

$$\rho_x \sim \rho_y \iff ???$$

#### Lemma

Let  $x \in [0, 1]$ . Then  $C^*_{\rho_x}(V) = \pi_x(\mathcal{O}_2)$ , where  $C^*_{\rho_x}(V)$  denotes the C\*-algebra generated by  $\rho_x(V)$  inside  $\pi_x(\mathcal{O}_2)$ .

#### Theorem

Let  $x, y \in [0, 1]$ . Then

$$\rho_x \sim \rho_y \iff x \sim y$$

Miguel Barata (2<sup>nd</sup> year (IST-UL))

・ロト ・回ト ・ヨト ・

э

## $\tau_x \sim \tau_y$ and $\sigma_x \sim \sigma_y$

What about  $\tau_x$  and  $\sigma_x$ ? Since  $C^*_{\tau_x}(F) \subset C^*_{\sigma_x}(T) \subset C^*_{\rho_x}(V)$ , we can't use the same technique.



3

24 / 24

∰ ► < ≣ ►