Topologies with arithmetic properties

Novos Talentos em Matemática

Inês Guimarães
Tutor: António Machiavelo, FCUP

28th July 2018

Ingredients: set X, subset $\mathcal{T} \subseteq 2^{X}$
Requirements:

- $\emptyset, X \in \mathcal{T}$
- $\left\{A_{i}\right\}_{i \in I} \in \mathcal{T} \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}$
- $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{T} \Rightarrow \bigcap_{1 \leq i \leq n} A_{i} \in \mathcal{T}$

What is a topology?

Ingredients: set X, subset $\mathcal{T} \subseteq 2^{X}$
Requirements:

- $\emptyset, X \in \mathcal{T}$
- $\left\{A_{i}\right\}_{i \in I} \in \mathcal{T} \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}$
- $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{T} \Rightarrow \bigcap_{1 \leq i \leq n} A_{i} \in \mathcal{T}$
$\triangleright A \in \mathcal{T}$ is called an open set and $F=X \backslash A$ is a closed set

What is a topology?

Ingredients: set X, subset $\mathcal{T} \subseteq 2^{X}$
Requirements:

- $\emptyset, X \in \mathcal{T}$
- $\left\{A_{i}\right\}_{i \in I} \in \mathcal{T} \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}$
- $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{T} \Rightarrow \bigcap_{1 \leq i \leq n} A_{i} \in \mathcal{T}$
$\triangleright A \in \mathcal{T}$ is called an open set and $F=X \backslash A$ is a closed set
$\triangleright \bigcap_{i \in I} F_{i}$ and $\underset{1 \leq i \leq n}{\bigcup} F_{i}$ are closed

What is a topology?

Ingredients: set X, subset $\mathcal{T} \subseteq 2^{X}$
Requirements:

- $\emptyset, X \in \mathcal{T}$
- $\left\{A_{i}\right\}_{i \in I} \in \mathcal{T} \Rightarrow \bigcup_{i \in I} A_{i} \in \mathcal{T}$
- $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{T} \Rightarrow \bigcap_{1 \leq i \leq n} A_{i} \in \mathcal{T}$
$\triangleright A \in \mathcal{T}$ is called an open set and $F=X \backslash A$ is a closed set
$\triangleright \bigcap_{i \in I} F_{i}$ and $\bigcup_{1 \leq i \leq n} F_{i}$ are closed
\triangleright if $\emptyset, X \in \mathcal{B} \subseteq \mathcal{T}$ and $A=\bigcup_{i \in I} B_{i}$ for $B_{i} \in \mathcal{B}$ then \mathcal{B} is a basis.

X

τ

○ • ○○ ○○ ○○๑

Fürstenberg's Topology, \mathcal{T}_{F}

Topology on the integers \mathbb{Z}
\triangleright Basis for \mathcal{T}_{F}

$$
a \mathbb{Z}+b=\{a n+b, n \in \mathbb{Z}\}
$$

for $a \in \mathbb{Z} \backslash\{0\}, b \in \mathbb{Z}$.
E.g. $2 \mathbb{Z} \quad 3 \mathbb{Z}-1 \quad 42 \mathbb{Z}+6 \quad \ldots$

Fürstenberg's Topology, \mathcal{T}_{F}

Topology on the integers \mathbb{Z}
\triangleright Basis for \mathcal{T}_{F}

$$
a \mathbb{Z}+b=\{a n+b, n \in \mathbb{Z}\}
$$

for $a \in \mathbb{Z} \backslash\{0\}, b \in \mathbb{Z}$.
E.g. $2 \mathbb{Z} \quad 3 \mathbb{Z}-1 \quad 42 \mathbb{Z}+6 \quad \ldots$
\triangleright Simultaneously open and closed (clopen):

$$
a \mathbb{Z}+b=\mathbb{Z} \backslash \bigcup_{i=1}^{a-1}(a \mathbb{Z}+(b+i))
$$

There is an infinity of prime numbers!

$\triangleright \mathcal{P}=\{p \in \mathbb{N} \mid p$ is prime $\}$
$\triangleright p \mathbb{Z}$ closed set

There is an infinity of prime numbers!

$\triangleright \mathcal{P}=\{p \in \mathbb{N} \mid p$ is prime $\}$
$\triangleright p \mathbb{Z}$ closed set

$$
\mathbb{Z} \backslash\{-1,1\}=\bigcup_{p \in \mathcal{P}} p \mathbb{Z}
$$

There is an infinity of prime numbers!

$\triangleright \mathcal{P}=\{p \in \mathbb{N} \mid p$ is prime $\}$
$\triangleright p \mathbb{Z}$ closed set

$$
\begin{gathered}
\mathbb{Z} \backslash\{-1,1\}=\bigcup_{p \in \mathcal{P}} p \mathbb{Z} \\
\downarrow
\end{gathered}
$$

if this was a finite union, it would be closed, but...

There is an infinity of prime numbers!

$\triangleright \mathcal{P}=\{p \in \mathbb{N} \mid p$ is prime $\}$
$\triangleright p \mathbb{Z}$ closed set

$$
\begin{gathered}
\mathbb{Z} \backslash\{-1,1\}=\bigcup_{p \in \mathcal{P}} p \mathbb{Z} \\
\downarrow
\end{gathered}
$$

if this was a finite union, it would be closed, but...

$$
\{-1,1\} \text { is not open! }
$$

Some properties

- metrizable
- totally disconnected
- not compact
- ultraparacompact

Golomb's Topology, \mathcal{T}_{G}

Topology on the positive integers \mathbb{N}
\triangleright Basis for \mathcal{T}_{G}

$$
a \mathbb{N}_{0}+b=\left\{a n+b, n \in \mathbb{Z}_{\geq 0}\right\}
$$

for $a, b \in \mathbb{N}$ and $(a, b)=1$.
E.g: $2 \mathbb{N}_{0}+1 \quad 3 \mathbb{N}_{0}+7 \quad 42 \mathbb{N}_{0}+25$

Some properties

- Hausdorff
- connected
- not regular
- not compact

A reformulation

Dirichlet's Theorem

There is an infinity of primes of the form $a n+b$, with $(a, b)=1$.

A reformulation

Dirichlet's Theorem

There is an infinity of primes of the form $a n+b$, with $(a, b)=1$.

Topological translation:
The set of primes is dense in the set of the positive integers.

Elementary facts about integer polynomials

$f \in \mathbb{Z}[x]$ non-constant polynomial
$\mathcal{P}_{f}=\{p \in \mathcal{P}: p \mid f(n)$ for some $n \in \mathbb{Z}\}$

Properties:

\triangleright Takes on infinitely many composite values
\triangleright Is divisible by an infinite amount of primes (that is, \mathcal{P}_{f} is an infinite set)
\triangleright If it is separable, given $p \in \mathcal{P}_{f}$, there are arbitrarily big numbers $m \in \mathbb{Z}$ such that $p \| f(m)$

Not so elementary "facts" about integer polynomials

Bunyakovsky conjecture

$\triangleright f \in \mathbb{Z}[x]$

- positive leading coefficient
- irreducible over the integers
- there is no $p \in \mathcal{P}$ such that $p \mid f(n)$ for all $n \in \mathbb{N}$

Not so elementary "facts" about integer polynomials

Bunyakovsky conjecture
$\triangleright f \in \mathbb{Z}[x]$

- positive leading coefficient
- irreducible over the integers
- there is no $p \in \mathcal{P}$ such that $p \mid f(n)$ for all $n \in \mathbb{N}$
then $f(n)$ is prime for an infinite amount of positive integers $n \in \mathbb{N}$.

The polynomial $f(x)=x^{2}+1$

Are there infinite values $n \in \mathbb{N}$ such that $n^{2}+1$ is prime?

The polynomial $f(x)=x^{2}+1$

Are there infinite values $n \in \mathbb{N}$ such that $n^{2}+1$ is prime?
Gaussian integers: $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$

The polynomial $f(x)=x^{2}+1$

Are there infinite values $n \in \mathbb{N}$ such that $n^{2}+1$ is prime?
Gaussian integers: $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$
$\triangleright \pi=a+b i$ is prime iff:

- it's a rational prime $(b=0)$ and $\pi \equiv 3(\bmod 4)$ or
- $|\pi|^{2}=a^{2}+b^{2}$ is a rational prime.

The polynomial $f(x)=x^{2}+1$

Are there infinite values $n \in \mathbb{N}$ such that $n^{2}+1$ is prime?
Gaussian integers: $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$
$\triangleright \pi=a+b i$ is prime iff:

- it's a rational prime $(b=0)$ and $\pi \equiv 3(\bmod 4)$ or
- $|\pi|^{2}=a^{2}+b^{2}$ is a rational prime.

Are there infinitely many Gaussian primes in the set

$$
\mathbb{N}+i=\{n+i \mid n \in \mathbb{N}\} ?
$$

Extending the topology

Known generalization of Dirichlet's Theorem:

There is an infinity of primes in $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]\}$, with $(\alpha, \beta)=1$.

Extending the topology

Known generalization of Dirichlet's Theorem:

There is an infinity of primes in $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]\}$, with $(\alpha, \beta)=1$.

Golomb's idea:

- find a topological proof of Dirichlet's theorem
- pray that it works over $\mathbb{Z}[i]$ with a "useful" topology

Extending the topology

Known generalization of Dirichlet's Theorem:

There is an infinity of primes in $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]\}$, with $(\alpha, \beta)=1$.

Golomb's idea:

- find a topological proof of Dirichlet's theorem
- pray that it works over $\mathbb{Z}[i]$ with a "useful" topology

If the sets consisting of Gaussian primes but a finite amount were dense in some $(\mathbb{Z}[i], \mathcal{T})$ and $\mathbb{N}+i$ was open \ldots

Extending the topology

Known generalization of Dirichlet's Theorem:

There is an infinity of primes in $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]\}$, with $(\alpha, \beta)=1$.

Golomb's idea:

- find a topological proof of Dirichlet's theorem
- pray that it works over $\mathbb{Z}[i]$ with a "useful" topology

If the sets consisting of Gaussian primes but a finite amount were dense in some $(\mathbb{Z}[i], \mathcal{T})$ and $\mathbb{N}+i$ was open $\ldots \odot$

Some possibilities

\triangleright Extending Fürstenberg's:
basis $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]$ and $\alpha, \beta \in \mathbb{Z}[i]\}$
\triangleright Extending Golomb's:
basis $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]$ and $(\alpha, \beta)=1\}$
\triangleright Straight Line Closed Set Topology:
closed sets $\{\alpha+\beta n \mid n \in \mathbb{Z}$ and $(\alpha, \beta)=1\}$

Some possibilities

\triangleright Extending Fürstenberg's:
basis $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]$ and $\alpha, \beta \in \mathbb{Z}[i]\}$
\triangleright Extending Golomb's:
basis $\{\alpha+\beta \delta \mid \delta \in \mathbb{Z}[i]$ and $(\alpha, \beta)=1\}$
\triangleright Straight Line Closed Set Topology:
closed sets $\{\alpha+\beta n \mid n \in \mathbb{Z}$ and $(\alpha, \beta)=1\}$

None of these work $;$

More reformulations using Fürstenberg's

- $N \in \mathbb{N}$
- $\mathcal{P}_{f}=\{p \in \mathcal{P}: p=2$ or $p \equiv 1(\bmod 4)\}$
- $x^{2} \equiv-1(\bmod p) \rightarrow x \equiv \pm i_{p}(\bmod p)$

More reformulations using Fürstenberg's

- $N \in \mathbb{N}$
- $\mathcal{P}_{f}=\{p \in \mathcal{P}: p=2$ or $p \equiv 1(\bmod 4)\}$
- $x^{2} \equiv-1(\bmod p) \rightarrow x \equiv \pm i_{p}(\bmod p)$

$$
x \in\{1,2, \ldots, N-1\} \backslash \bigcup_{p \leq N}\left(\pm i_{p}+p \mathbb{Z}\right)
$$

More reformulations using Fürstenberg's

- $N \in \mathbb{N}$
- $\mathcal{P}_{f}=\{p \in \mathcal{P}: p=2$ or $p \equiv 1(\bmod 4)\}$
- $x^{2} \equiv-1(\bmod p) \rightarrow x \equiv \pm i_{p}(\bmod p)$

$$
\begin{gathered}
x \in\{1,2, \ldots, N-1\} \backslash \bigcup_{p \leq N}\left(\pm i_{p}+p \mathbb{Z}\right) \\
\downarrow \\
x^{2}+1 \text { is prime }
\end{gathered}
$$

Another approach

- $\mathcal{P}_{f}^{*}=\mathcal{P}_{f} \backslash\{2\}$
- $J_{p q}=\left\{j \in\{0,1, \ldots, p q-1\}: p q \nmid j^{2}+1\right\}$

Another approach

- $\mathcal{P}_{f}^{*}=\mathcal{P}_{f} \backslash\{2\}$
- $J_{p q}=\left\{j \in\{0,1, \ldots, p q-1\}: p q \nmid j^{2}+1\right\}$

$$
x \in \bigcap_{p, q \in \mathcal{P}_{f}^{*}}\left(\bigcup_{j \in J_{p q}} j+p q \mathbb{Z}\right) \cap 2 \mathbb{Z}
$$

Another approach

- $\mathcal{P}_{f}^{*}=\mathcal{P}_{f} \backslash\{2\}$
- $J_{p q}=\left\{j \in\{0,1, \ldots, p q-1\}: p q \nmid j^{2}+1\right\}$

$$
x \in \bigcap_{p, q \in \mathcal{P}_{f}^{*}}\left(\bigcup_{j \in J_{p q}} j+p q \mathbb{Z}\right) \cap 2 \mathbb{Z}
$$

$$
\downarrow
$$

$x^{2}+1$ is prime

Prime powers represented by polynomials

- $\mathcal{Z}_{p}(f)=\{a \in\{0,1, \ldots, p-1\} \mid f(a) \equiv 0(\bmod p)\}$
- $\mathcal{U}_{f}=\left\{a+p \mathbb{Z} \mid p \in \mathcal{P}_{f} \wedge a \in \mathcal{Z}_{p}(f)\right\}$

Prime powers represented by polynomials

- $\mathcal{Z}_{p}(f)=\{a \in\{0,1, \ldots, p-1\} \mid f(a) \equiv 0(\bmod p)\}$
- $\mathcal{U}_{f}=\left\{a+p \mathbb{Z} \mid p \in \mathcal{P}_{f} \wedge a \in \mathcal{Z}_{p}(f)\right\}$
\rightarrow open cover of $\mathbb{Z} \backslash f^{-1}(\{-1,1\})$

Prime powers represented by polynomials

- $\mathcal{Z}_{p}(f)=\{a \in\{0,1, \ldots, p-1\} \mid f(a) \equiv 0(\bmod p)\}$
- $\mathcal{U}_{f}=\left\{a+p \mathbb{Z} \mid p \in \mathcal{P}_{f} \wedge a \in \mathcal{Z}_{p}(f)\right\}$

$$
\rightarrow \text { open cover of } \mathbb{Z} \backslash f^{-1}(\{-1,1\})
$$

If we have

$$
a+p \mathbb{Z} \nsubseteq \bigcup_{\substack{q \neq p \\ b \in \mathcal{Z}_{q}(f)}} b+q \mathbb{Z}
$$

then $f(a+p x)=p^{k}$ for some $x \in \mathbb{Z}$ and $k \in \mathbb{N}$.

Prime powers represented by polynomials

Otherwise, for almost all p,

$$
\bigcup_{\substack{q \neq p \\ b \in \mathcal{Z}_{q}(f)}} b+q \mathbb{Z}=\mathbb{Z} \backslash f^{-1}(\{-1,1\})
$$

Prime powers represented by polynomials

Otherwise, for almost all p,

$$
\bigcup_{\substack{q \neq p \\ b \in \mathcal{Z}_{q}(f)}} b+q \mathbb{Z}=\mathbb{Z} \backslash f^{-1}(\{-1,1\})
$$

$$
\Downarrow
$$

f is reducible
or
$\exists p \in \mathcal{P}_{f}$ such that $p \mid f(x), \forall x \in \mathbb{Z}$?

Thank you! :)

References

1. H. Fürstenberg, On the Infinitude of Primes, Amer. Math. Monthly, 62 (1955), 353.
2. S. W. Golomb, A Connected Topology for the Integers, Amer.

Math. Monthly, 66, No. 8, October (1959), 663-666.
3. S. Waldmann, Topology, An Introduction, 1st ed. Springer, New York (2014).
4. N. B. Bussey, Topological Methods in Number Theory: A Discussion of Gaussian Integers and Primes (Master's Thesis), Memorial University of Newfoundland St. John's, 1974.

