Minimal Bimodules of Nest Algebras over Banach Spaces

Ana Alexandra Reis

7th September 2019

Instituto Superior Técnico

Definition

A complex vector space X is a **Banach Space** if:

- it has a norm;
- it is complete.

Let X be a Banach space.

Let ${\mathcal E}$ be a collection of closed subspaces.

Definition

 ${\boldsymbol{\mathcal{E}}}$ is a nest if:

- $\langle 0 \rangle, X \in \mathcal{E};$
- $\forall N, M \in \mathcal{E}$; $M \subset N$, $N \subset M$ ou M = N;
- it is closed under intersections and closed linear spans.

Definition

Let $T : X \longrightarrow X$ be a linear operator. *T* is a bounded operator if $\exists C \in \mathbb{K} : || Tv || \leq C || v ||$.

$\mathcal{B}(X)$ is the set of bounded linear operators.

Let X be a Banach space and \mathcal{E} a nest over X.

Definition

We say $\mathcal{T}(\mathcal{E}) = \{T \in \mathcal{B}(X) : T(N) \subset N; \forall N \in \mathcal{E}\}$ is the **Nest Algebra** of \mathcal{E} .

 $\mathcal{T}(\mathcal{E})$ is indeed an algebra.

$$\begin{split} X &= \mathbb{C}^4 \\ \mathcal{E} &= \{ \langle 0 \rangle, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \mathbb{C}^4 \} \\ T &\in \mathcal{T}(\mathcal{E}) \text{ must be such that } T(E) \subset E, \forall E \in \mathcal{E} \end{split}$$

 $X = \mathbb{C}^4$

$$\mathcal{E} = \{ \langle 0 \rangle, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \mathbb{C}^4 \}$$

If $T \in T(\mathcal{E})$ it can be represented by a matrix of the form:

$$\left[\begin{array}{cccc} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{array}\right]$$

$$X = \ell^p$$

$$\mathcal{E} = \{ \langle 0 \rangle, X \} \cup \{ N_n : N_n = \langle e_1, \dots e_n \rangle \}$$

If $T \in T(\mathcal{E})$ it can be represented by an infinite upper triangular matrix.

Let $\mathcal{J} \subset \mathcal{B}(X)$ be a subspace.

Definition

We say \mathcal{J} is a **bimodule** over $\mathcal{T}(\mathcal{E})$ if $\forall J \in \mathcal{J}, \forall T \in \mathcal{T}(\mathcal{E})$:

 $\boldsymbol{\cdot} \ TJ, JT \in \mathcal{J}$

We denote by \mathcal{J}_0 the set of **finite rank operators** in \mathcal{J} .

Definition

A **support function** is a function

- $\Phi: \mathcal{E} \longrightarrow \mathcal{E}$ such that:
 - $N, M \in \mathcal{E}$, if $M \subset N$, then $\Phi(M) \subset \Phi(N)$

Example

$$X = \mathbb{C}^4$$

$$\mathcal{E} = \{ \langle 0 \rangle, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle, \mathbb{C}^4 \}$$

Example

 $X = \mathbb{C}^4$

$$\mathcal{E} = \{ \langle 0 \rangle, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle, \mathbb{C}^4 \}$$

Let $\mathcal{J} = \{T \in \mathcal{B}(X) : T \text{ is a matrix of the form}\}$

$$\begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

Example

 $X = \mathbb{C}^4$

$$\mathcal{E} = \{ \langle 0 \rangle, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle, \mathbb{C}^4 \}$$

Let $\mathcal{J} = \{T \in \mathcal{B}(X) : T \text{ is a matrix of the form}\}$

$$\begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{bmatrix}$$

Let us build a function $\Phi : \mathcal{E} \longrightarrow \mathcal{E}$.

Let \mathcal{J} be a closed bimodule over $\mathcal{T}(\mathcal{E})$, define the associated support function by:

$$\Phi_{\mathcal{J}}: \mathcal{E} \longrightarrow \mathcal{E}$$
 such that $\Phi_{\mathcal{J}}(E) = \overline{\operatorname{Span}_{T \in \mathcal{J}} T(E)}$

Let Φ be a support function. We define the bimodule generated by Φ:

 $M(\Phi) = \{T \in \mathcal{B}(X) : T(E) \subset \Phi(E), \forall E \in \mathcal{E}\}$

Then we define:

 $M(\Phi)_0 = \{T \in M(\Phi) : T \text{ has finite rank}\}.$

My work!

$$\mathcal{J} \longrightarrow \Phi_{\mathcal{J}} \longrightarrow M(\Phi_{\mathcal{J}})$$

 $\mathcal{J} \longrightarrow \Phi_{\mathcal{J}} \longrightarrow M(\Phi_{\mathcal{J}}) \neq \mathcal{J}.$

$$\mathcal{J} \longrightarrow \Phi_{\mathcal{J}} \longrightarrow M(\Phi_{\mathcal{J}}) \neq \mathcal{J}.$$

We wish to find the minimal bimodule.

Note that $\mathcal{J} \subset M(\Phi_{\mathcal{J}})$.

$$\mathcal{J} \longrightarrow \Phi_{\mathcal{J}} \longrightarrow M(\Phi_{\mathcal{J}}) \neq \mathcal{J}.$$

We wish to find the minimal bimodule.

Note that $\mathcal{J} \subset M(\Phi_{\mathcal{J}})$.

Theorem

Let \mathcal{J} be a norm closed bimodule, then $M(\Phi_{\mathcal{J}})_0 \subset \mathcal{J}$.

Lemma [L. Duarte, 2018]

Let $T \in M(\Phi_{\mathcal{J}})_0$. Then, T can be written as a sum of finitely many operators of rank 1.

If X is a reflexive Banach space or \mathcal{E} is atomic, we can prove:

Lemma

Let $R \in M(\Phi_{\mathcal{J}})$ have rank 1. Then, $R \in \mathcal{J}$.

If X is a reflexive Banach space or \mathcal{E} is atomic, we can prove:

Lemma

Let $R \in M(\Phi_{\mathcal{J}})$ have rank 1. Then, $R \in \mathcal{J}$.

Theorem

 $M(\Phi_{\mathcal{J}})_0 \subset \mathcal{J}.$

Theorem

Let ${\mathcal J}$ be a norm closed bimodule with support function pair $(\Phi,\Psi).$ Then,

$$M(\Phi_{\mathcal{J}},\Psi_{\mathcal{J}})=M^0(\Psi)+M(\Phi)_0\subset\mathcal{J}$$

- K. R. Davidson, A. P. Donsig and T. D. Hudson, Norm-closed bimodules of nest algebras, J. Oper. Theory 39 (1998), 59–87.
- L. Duarte, Bimodules of Nest Algebras on Banach Spaces, 2018.