Hydrodynamic limit for
weakly asymmetric systems

Pedro Capitdo

Instituto Superior Técnico
Universidade de Lisboa

7 September 2019



Interacting particle systems

e Interacting particle systems are generally continuous time
Markov processes with a state space of configurations, such
as {0,1}" or {0,1}*" (where n € N).

e The process of configurations is Markovian, but the
movement of each particle is not.

e These systems can model the time evolution of:

> a gas or fluid in a volume,

> the genetic types of a biological population,
> the spreading of an infection,

> the spin of atoms in a magnetic material.



Example: symmetric exclusion process

e Exclusion rule: at most one particle can occupy each site.

e Markov property: the times between jumps are
independent exponentially distributed random variables.
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A configuration is a function n: {0,1,...,6} — {0,1}, where

1, if site x is occupied
n(x) = x=0,1,...,6.

0, if site x is empty



The model

Discretize the interval [0,1] into N € N identical subintervals:
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e Asite x €{0,1,...,N} in the microscopic scale corresponds
to the point 5 €[0,1] in the macroscopic scale.

e We consider, for each N €N, a process {nlt\’ : t >0}, with



The dynamics
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The generator

The infinitesimal generator of the Markov process {n : t > 0},

acts on functions f : Qy — R as
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where, for 1 < x <N -2,

Cenn(n) = (14 )10 =+ D] + mCx+ D=1,

on () = (w5 + =5 ) all=n(V]+ 201 —a],

1) = (55 + ]%)n(N— D[1—B] + 25B1—n(N—1)].



Hydrodynamic limit

e We want to derive the partial differential equations which
describe the space-time evolution of the density of particles
in the system.

e In order to observe a non trivial hydrodynamics evolution,
we must rescale time by N2 at the microscopic level: instead
of {nY : t > 0}, we consider the process {fn]:’]\]2 : t > 0}, which
has generator N2.%),.

For any configuration n € Qy, define the empirical measure

=
Ny
s (n)—m;n(ﬂ%.

and, for any trajectory n. € 2([0, T1,Qy), let 7¥(n.) = 7" (ny2).



Hydrodynamic limit
. N 1 N 1 N—1 x
Notation: (m(n),G) = [, G(Q)7"(n,dq) = 55 212 n(x)G(F).
e Hypothesis: Let p,:[0,1] —[0,1] be a measurable
function and let {uy}yen be a sequence of probability
measures on y such that, for any continuous function
G:[0,1]> R and any ¢ >0

1

Jim_u(n €0y s (= (), 6) —J G(@po(@)da| > &) =0.

0

e Goal: Show that, for any t € [0, T], any continuous
function G:[0,1] > R and any ¢ >0

1
NILH;OP;»N(” : ‘(nlf(n.),G)—fo G(q)p(t,q)dq‘ >¢e)=0,

where p(t,q) is the unique weak solution of some PDE with
initial condition p, (hydrodynamic equation).



Notion of weak solution

We say that p : [0, T] % [0,1] —[0,1] is a weak solution of the
viscous Burgers equation with Dirichlet boundary conditions

dp=0.p—E(p),
p(t>0)=a5 p(t’]-):b; te[O)T])
P(O,‘I):PO(‘]), qE[Oal]’

where o(p) = p(1—p), if p € L%([0,T], #") and p satisfies the
weak formulation
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0 0 0 Jo
t 1 t
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0 0 0

for all t €[0,T] and any function G € Cé’z([O, T]1x[0,1]).



Dynkin's Martingale

Fix any function G :[0,T]x [0,1] = R. By Dynkin's formula,

t
M (G) = (ny, G,) — (7, Go) —f N2y (n],Gy) ds
0
is a martingale (with respect to the filtration {Z,},>¢ induced by
the process: &, =o({n, :s < t})).
Since the expectation of a martingale is constant and
MY(G)=0, we have, for any t €[0,T],

t
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0

This equation allows us to find out what PDE's we will obtain.



Limit PDE's

If ¥ =1, the density p(t,q) is a weak solution of the viscous
Burgers equation:

oo =3}p—Eq0(p),

where o(p) = p(1—p), with the following boundary conditions:

54 (1){”“’0):“ (z){aqp(fyo)=K(pr(0)—a)—Ea(pt(on

p(t,1)=p " |8p(t,1) =x(B —p,(1))—Ec(p,(1))
(4) ) {p(r, 0)=a+Bo@ {aqp(t,m =—E0(p,(0))
(6) p(t,1)=B+Ec(B)  |8,p(t,1)=—Ec(p,(1))
{aqp(t,O)=(K+Ea)pt(0)—(r<+E)a—Eo(pt(0))
8, (t,1) =—(k + E(1—B))p.(1) + kp —Ec(p(1))

(3) R {aqp(r,O) = —Ea(1—p,(0)) ~ Eo(p:(0)
’ 8,p(1,1) = —E(1 = B)p.(1) ~ Eo(p,(1))

)

(=)



Limit PDE's

If v > 1, the density p(t,q) is a weak solution of the heat
equation:
oo =032p

with the following boundary conditions:
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Hydrodynamic limit

To prove the results, we need to:
e Show that the sequence {Qu}yey is tight, where Qy is the
probability measure on 2([0,T], . #*) induced by the
Markov process {n)¥ : t >0} and by Py, -

> Tightness implies that every subsequence of {Qy}yen has a
further subsequence which is weakly convergent.

e Show that every weak limit point Q of a subsequence of
{Qn}nen is concentrated on trajectories of measures which
are absolutely continuous and whose density is the unique
weak solution of the corresponding PDE:

Q(n. :m.(dq) = p(t,q)dq and p is solution of the PDE) =1.
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