Hydrodynamic limit for weakly asymmetric systems

Pedro Capitão

Instituto Superior Técnico Universidade de Lisboa

7 September 2019

Interacting particle systems

 Interacting particle systems are generally continuous time Markov processes with a state space of configurations, such as {0,1}ⁿ or {0,1}^{Zⁿ} (where n ∈ N).

うして ふゆう ふほう ふほう ふしつ

- The process of configurations is Markovian, but the movement of each particle is not.
- These systems can model the time evolution of:
 - a gas or fluid in a volume,
 - ▶ the genetic types of a biological population,
 - ▶ the spreading of an infection,
 - ▶ the spin of atoms in a magnetic material.

Example: symmetric exclusion process

- Exclusion rule: at most one particle can occupy each site.
- Markov property: the times between jumps are independent exponentially distributed random variables.

A configuration is a function $\eta : \{0, 1, \dots, 6\} \rightarrow \{0, 1\}$, where

$$\eta(x) = \begin{cases} 1, \text{ if site } x \text{ is occupied} \\ 0, \text{ if site } x \text{ is empty} \end{cases} \quad x = 0, 1, \dots, 6.$$

うして ふゆう ふほう ふほう ふしつ

The model

Discretize the interval [0,1] into $N \in \mathbb{N}$ identical subintervals:

- A site x ∈ {0,1,...,N} in the microscopic scale corresponds to the point ^x/_N ∈ [0,1] in the macroscopic scale.
- We consider, for each $N \in \mathbb{N}$, a process $\{\eta_t^N : t \ge 0\}$, with state space $\Omega_N = \{0, 1\}^{\{1, \dots, N-1\}}$.

The dynamics

Model parameters:

- $\alpha, \beta \in (0, 1)$,
- *E*, *κ* > 0,
- $\theta, \gamma, \delta \geq 0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The generator

The infinitesimal generator of the Markov process $\{\eta_t^N : t \ge 0\}$, with state space $\Omega_N = \{0, 1\}^{\{1, \dots, N-1\}}$, is the operator \mathscr{L}_N , which acts on functions $f : \Omega_N \to \mathbb{R}$ as

$$(\mathscr{L}_N f)(\eta) = \sum_{x=0}^{N-1} c_{x,x+1}(\eta) (f(\eta^{x,x+1}) - f(\eta)),$$

where, for $1 \le x \le N-2$,

$$\begin{aligned} c_{x,x+1}(\eta) &= \left(1 + \frac{E}{N^{\gamma}}\right) \eta(x) \left[1 - \eta(x+1)\right] + \eta(x+1) \left[1 - \eta(x)\right], \\ c_{0,1}(\eta) &= \left(\frac{\kappa}{N^{\theta}} + \frac{E}{N^{\delta}}\right) \alpha \left[1 - \eta(1)\right] + \frac{\kappa}{N^{\theta}} \eta(1) \left[1 - \alpha\right], \\ c_{N-1,N}(\eta) &= \left(\frac{\kappa}{N^{\theta}} + \frac{E}{N^{\delta}}\right) \eta(N-1) \left[1 - \beta\right] + \frac{\kappa}{N^{\theta}} \beta \left[1 - \eta(N-1)\right]. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ���

Hydrodynamic limit

- We want to derive the partial differential equations which describe the space-time evolution of the density of particles in the system.
- In order to observe a non trivial hydrodynamics evolution, we must rescale time by N^2 at the microscopic level: instead of $\{\eta_t^N : t \ge 0\}$, we consider the process $\{\eta_{tN^2}^N : t \ge 0\}$, which has generator $N^2 \mathscr{L}_N$.

For any configuration $\eta \in \Omega_N$, define the empirical measure

$$\pi^{N}(\eta) = \frac{1}{N-1} \sum_{x=1}^{N-1} \eta(x) \delta_{\frac{x}{N}}.$$

and, for any trajectory $\eta_{\cdot} \in \mathscr{D}([0,T],\Omega_N)$, let $\pi_t^N(\eta_{\cdot}) = \pi^N(\eta_{tN^2})$.

Hydrodynamic limit

Notation: $\langle \pi^N(\eta), G \rangle = \int_0^1 G(q) \pi^N(\eta, dq) = \frac{1}{N-1} \sum_{x=1}^{N-1} \eta(x) G(\frac{x}{N}).$

Hypothesis: Let ρ₀: [0,1] → [0,1] be a measurable function and let {μ_N}_{N∈ℕ} be a sequence of probability measures on Ω_N such that, for any continuous function G: [0,1] → ℝ and any ε > 0

$$\lim_{N\to\infty}\mu_N\Big(\eta\in\Omega_N:\Big|\langle\pi^N(\eta),G\rangle-\int_0^1G(q)\rho_0(q)dq\Big|>\varepsilon\Big)=0.$$

• **Goal:** Show that, for any $t \in [0, T]$, any continuous function $G: [0, 1] \rightarrow \mathbb{R}$ and any $\varepsilon > 0$

$$\lim_{N\to\infty}\mathbb{P}_{\mu_N}\Big(\eta_\cdot:\Big|\langle\pi_t^N(\eta_\cdot),G\rangle-\int_0^1G(q)\rho(t,q)dq\Big|>\varepsilon\Big)=0,$$

where $\rho(t,q)$ is the unique weak solution of some PDE with initial condition ρ_0 (hydrodynamic equation).

Notion of weak solution

We say that $\rho : [0, T] \times [0, 1] \rightarrow [0, 1]$ is a weak solution of the viscous Burgers equation with Dirichlet boundary conditions

$$\begin{cases} \partial_t \rho = \partial_q^2 \rho - E \,\partial_q \sigma(\rho), \\ \rho(t,0) = a, \quad \rho(t,1) = b, \quad t \in [0,T], \\ \rho(0,q) = \rho_0(q), \quad q \in [0,1], \end{cases}$$

where $\sigma(\rho) = \rho(1-\rho)$, if $\rho \in L^2([0,T], \mathcal{H}^1)$ and ρ satisfies the weak formulation

$$\int_{0}^{1} \rho_{t}(q)G_{t}(q) dq - \int_{0}^{1} \rho_{0}(q)G_{0}(q) dq - \int_{0}^{t} \int_{0}^{1} \rho_{s}(q) \left(\partial_{q}^{2} + \partial_{s}\right)G_{s}(q) dq ds + \int_{0}^{t} \int_{0}^{1} E\sigma(\rho_{s}(q))\partial_{q}G_{s}(q)dq ds + \int_{0}^{t} \left(b\partial_{q}G_{s}(1) - a\partial_{q}G_{s}(0)\right)ds = 0,$$

for all $t \in [0, T]$ and any function $G \in C_0^{1,2}([0, T] \times [0, 1])$.

Dynkin's Martingale

Fix any function $G:[0,T] \times [0,1] \rightarrow \mathbb{R}$. By Dynkin's formula,

$$M_t^N(G) = \langle \pi_t^N, G_t \rangle - \langle \pi_0^N, G_0 \rangle - \int_0^t N^2 \mathscr{L}_N \langle \pi_s^N, G_s \rangle \, ds$$

is a martingale (with respect to the filtration $\{\mathscr{F}_t\}_{t\geq 0}$ induced by the process: $\mathscr{F}_t = \sigma(\{\eta_s : s < t\}))$. Since the expectation of a martingale is constant and $M_0^N(G) = 0$, we have, for any $t \in [0, T]$,

$$0 = \mathbb{E}_{\mu_N} \bigg[\langle \pi_t^N, G_t \rangle - \langle \pi_0^N, G_0 \rangle - \int_0^t N^2 \mathscr{L}_N \langle \pi_s^N, G_s \rangle \, ds \bigg].$$

This equation allows us to find out what PDE's we will obtain.

うして ふゆう ふほう ふほう ふしつ

Limit PDE's

If $\gamma = 1$, the density $\rho(t,q)$ is a weak solution of the viscous Burgers equation:

$$\partial_t \rho = \partial_q^2 \rho - E \,\partial_q \sigma(\rho),$$

where $\sigma(\rho) = \rho(1-\rho)$, with the following boundary conditions:

$$\delta \uparrow (2) (1) \begin{cases} \rho(t,0) = \alpha \\ \rho(t,1) = \beta \end{cases} (2) \begin{cases} \partial_{q}\rho(t,0) = \kappa(\rho_{t}(0) - \alpha) - E\sigma(\rho_{t}(0)) \\ \partial_{q}\rho(t,1) = \kappa(\beta - \rho_{t}(1)) - E\sigma(\rho_{t}(1)) \end{cases}$$

$$(3) \begin{cases} \rho(t,0) = \alpha + E\sigma(\alpha) \\ \rho(t,1) = \beta + E\sigma(\beta) \end{cases} (4) \begin{cases} \partial_{q}\rho(t,0) = -E\sigma(\rho_{t}(0)) \\ \partial_{q}\rho(t,1) = -E\sigma(\rho_{t}(1)) \end{cases}$$

$$(5) \begin{cases} \partial_{q}\rho(t,0) = (\kappa + E\alpha)\rho_{t}(0) - (\kappa + E)\alpha - E\sigma(\rho_{t}(0)) \\ \partial_{q}\rho(t,1) = -(\kappa + E(1 - \beta))\rho_{t}(1) + \kappa\beta - E\sigma(\rho_{t}(1)) \end{cases}$$

$$(6) \begin{cases} \partial_{q}\rho(t,0) = -E\alpha(1 - \rho_{t}(0)) - E\sigma(\rho_{t}(0)) \\ \partial_{q}\rho(t,1) = -E(1 - \beta)\rho_{t}(1) - E\sigma(\rho_{t}(1)) \end{cases}$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 三 ● ○ Q ○

Limit PDE's

If $\gamma > 1$, the density $\rho(t,q)$ is a weak solution of the heat equation:

$$\partial_t \rho = \partial_q^2 \rho$$

with the following boundary conditions:

$$\delta \uparrow (2) \land (4) \land (6) \land (1) \begin{cases} \rho(t,0) = \alpha \\ \rho(t,1) = \beta \end{cases} (2) \begin{cases} \partial_q \rho(t,0) = \kappa(\rho_t(0) - \alpha) \\ \partial_q \rho(t,1) = \kappa(\beta - \rho_t(1)) \end{cases}$$
$$(3) \begin{cases} \rho(t,0) = \alpha + E\sigma(\alpha) \\ \rho(t,1) = \beta + E\sigma(\beta) \end{cases} (4) \begin{cases} \partial_q \rho(t,0) = 0 \\ \partial_q \rho(t,1) = 0 \end{cases}$$
$$(5) \begin{cases} \partial_q \rho(t,0) = (\kappa + E\alpha)\rho_t(0) - (\kappa + E)\alpha \\ \partial_q \rho(t,1) = -(\kappa + E(1 - \beta))\rho_t(1) + \kappa\beta \end{cases}$$
$$(6) \begin{cases} \partial_q \rho(t,0) = -E\alpha(1 - \rho_t(0)) \\ \partial_q \rho(t,1) = -E(1 - \beta)\rho_t(1) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Hydrodynamic limit

To prove the results, we need to:

- Show that the sequence $\{\mathbb{Q}_N\}_{N\in\mathbb{N}}$ is **tight**, where \mathbb{Q}_N is the probability measure on $\mathscr{D}([0, T], \mathscr{M}^+)$ induced by the Markov process $\{\pi_t^N : t \ge 0\}$ and by \mathbb{P}_{μ_N} .
 - ▷ Tightness implies that every subsequence of $\{Q_N\}_{N \in \mathbb{N}}$ has a further subsequence which is weakly convergent.
- Show that every weak limit point Q of a subsequence of {Q_N}_{N∈N} is concentrated on trajectories of measures which are absolutely continuous and whose density is the unique weak solution of the corresponding PDE:

 $\mathbb{Q}(\pi_{\cdot}:\pi_{t}(dq)=\rho(t,q)dq \text{ and } \rho \text{ is solution of the PDE})=1.$

References

- Patrícia Gonçalves, Hydrodynamics for symmetric exclusion in contact with reservoirs (2017).
- Claude Kipnis, Claudio Landim, Scaling Limits of Interacting Particle Systems, Springer-Verlag (1999).
- Thomas Liggett, Interacting Particles Systems, Springer (1985).
- Thomas M. Liggett, Continuous Time Markov Processes: an Introduction, American Mathematical Society (2010).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()