Embeddings of Cuntz Algebras and applications to representations of Higman-Thompson groups

Francisco Araújo

Instituto Superior Técnico

3 Setembro 2020

Francisco Araújo (IST)

Embeddings of Cuntz Algebras

3 Setembro 2020 1 / 40

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A linear space V with a inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ such that all Cauchy sequences in V converge to an element of V is denoted a Hilbert space.

Examples:

- \mathbb{R}^n is a Hilbert space with the usual dot product.
- $\ell^2(X)$, the space of functions $f : X \to \mathbb{C}$ such that $\sum_{x \in X} |f(x)|^2 < \infty$ is a Hilbert space.
- $L^2[0,1]$, the space of Lebesgue integrable functions $f:[0,1] \to \mathbb{R}$ such that $\int_0^1 |f(x)|^2 dx < \infty$ with the inner product:

$$\langle f,g\rangle = \int_0^1 f(x)\overline{g(x)}dx.$$

イロト イ理ト イヨト ト

A function A from a Hilbert space V to a Hilbert space H is said to be a bounded linear operator if it is linear:

$$A(x + y) = A(x) + A(y)$$
 $A(\alpha x) = \alpha A(x)$

and there exists a number $\|A\| \in \mathbb{R}$ such that

 $||A(x)|| \le ||A|| ||x||$

for any $x \in V$. The space of all bounded linear operators from an Hilbert space H to itself is denoted by B(H).

Examples:

• Matrix are the bounded linear operators between \mathbb{R}^n or \mathbb{C}^n spaces.

イロト 不得 トイラト イラト 一日

Given a Bounded linear operator A, its adjoint A^* is the only bounded linear operator such that $\langle A(x), y \rangle = \langle x, A^*(y) \rangle$ for any x, y.

Definition

A bounded linear operator $U: H_1 \rightarrow H_2$ is said to be unitary if $UU^* = I$ and $U^*U = I$, where I denotes the identity function. This is equivalent to U being surjective and satisfying

$$\langle Ux, Uy \rangle = \langle x, y \rangle$$

Unitary operators correspond to the isomorphisms in the category of Hilbert spaces, and play a main role in theory of representations.

イロト 不得 トイヨト イヨト 二日

A representation of a group G on a Hilbert space H is a group homomorphism $\rho: G \to B(H)$. ρ is said to be irreducible if there is no proper invariant subspace K of H such that $\rho(K) \subset K$. Given a group G, the representations $\rho_1: G \to B(H_1)$ and $\rho_2: G \to B(H_2)$ are said to be unitarily equivalent if there is a unitary operator U such that for any $g \in G$, $U\rho_1(g) = \rho_2(g)U$.

$$\begin{array}{ccc} H_1 \stackrel{U}{\rightarrow} H_2 \\ \rho_1(g) & & & \downarrow \rho_2(g) \\ H_1 \stackrel{U}{\rightarrow} H_2 \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

C*-algebras

Definition

A sixplet $(A, +, \times, \cdot, \|\cdot\|, *)$ is said to be a C*-algebra if the triplet $(A, +, \cdot)$ is a complex vector space, and the function \times satisfies the identities

$$(x \times y) \times z = x \times (y \times z)$$

$$(x+y) \times z = x \times z + y \times z$$

$$\ \, \bullet \ \, (x\times y)=(\alpha\cdot x)\times y=x\times (\alpha\cdot y) \ \, \text{for any} \ \, \alpha\in\mathbb{C}.$$

Furthermore the norm $\|\cdot\|$ satisfies $\|xy\| \le \|x\|\|y\|$, and every Cauchy sequence in *A* converges to an element of *A*. The function * is called an involution and satisfies

$$(x^*)^* = x \quad (xy)^* = y^*x^* \quad (\lambda \cdot x + y)^* = \overline{\lambda} \cdot x^* + y^* \quad ||xx^*|| = ||x^2||$$

Theorem

Every C^* -algebra A is a sub C^* -algebra of B(H) for some Hilbert space H.

Francisco Araújo (IST)

The Cuntz algebra \mathcal{O}_n is the C*-algebra generated by the *n* isometries $\{s_1, s_2, \ldots, s_n\}$ satisfying

$$\sum_{j=1}^n s_j s_j^* = 1$$
 $s_i^* s_j = \delta_{ij}$

for any $i, j \in \{1, 2, ..., n\}$.

イロト 不得 トイヨト イヨト 二日

The Higman-Thompson group V_n is the group of piecewise linear functions $g : [0, 1[\rightarrow [0, 1[$ such that:

- g is bijective in [0, 1[.
- g(M) = M.
- $g'(x) = n^k$ for some k in the points where it is differentiable.
- If g is not differentiable in x, then $x \in M$.

The Higman-Thompson group T_n is the subset of V_n such that g has at most one discontinuity. The Higman-Thompson group F_n is the subset of T_n such that g has no discontinuities.

イロト 不得 トイヨト イヨト 二日

3 Setembro 2020 9 / 40

Francisco Araújo (IST)

3 Setembro 2020 1

10 / 40

Let A be an alphabet with n letters. An admissible language $L := \{a_1, \ldots, a_m\}$ is a subset of A^* such that $A^{\omega} = \bigcup_{i=1}^m a_i A^{\omega}$ and no a_i is a prefix for a_j , for all $i, j \in \{1, \ldots, m\}$. If $\{a_1, \ldots, a_m\}$ and $\{b_1, \ldots, b_m\}$, we say that T is an admissible transformation

 $T = \begin{bmatrix} a_1 & a_2 & \dots & a_m \\ b_1 & b_2 & \dots & b_m \end{bmatrix},$

The Higman-Thompson group V_n , is the group of all admissible transformations of a *n*-letters alphabet. We may assume, without loss of generality, that $b_1 < b_2 < \ldots < b_m$, where \leq is the lexicographic order. In order for a table to be associated to a function that belongs to T_n , we additionally need to have: $a_i < a_{i+1} < \ldots < a_m < a_1 < \ldots < a_{i-1}$ for some $i \in \{1, 2, \ldots, m\}$. For the table to be associated to a function that belongs to F_n , we need to have i = 1.

Examples:

$$\begin{bmatrix} 1 & \dots & i & \dots & n \\ 1 & \dots & n & \dots & i \end{bmatrix}$$
$$\begin{bmatrix} 1 & \dots & i1 & i2 & \dots & in & \dots & n1 & n2 & \dots & nn \\ 1 & \dots & n1 & n2 & \dots & nn & \dots & i1 & i2 & \dots & in \end{bmatrix}$$
$$\begin{bmatrix} 1 & 21 & 22 & 23 & 24 & 3 & 4 \\ 1 & 2 & 3 & 41 & 42 & 43 & 44 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 Setembro 2020 14 / 40

Given any integer $k \ge 1$, the Cuntz Algebra $\mathcal{O}_{k(n-1)+1}$ is embedded in \mathcal{O}_n . An embedding is the function $\iota : \mathcal{O}_{k(n-1)+1} \to \mathcal{O}_n$ satisfying:

$$\iota(\hat{s}_1) = s_1^k \qquad \iota(\hat{s}_{1+i(n-1)+(j-1)}) = \iota(\hat{s}_{i(n-1)+j}) = s_1^{k-i}s_j$$

for $0 \le i < k$, $2 \le j \le n$.

proof:

$$s_1^k(s_1^*)^k + \sum_{i=1}^k \sum_{j=2}^n s_1^{k-i} s_j s_j^* (s_1^*)^{k-i} = 1$$

イロト 不得 トイヨト イヨト 二日

Embeddings of Higman-Thompson groups

Theorem

Let $\Psi_n: V_n \to \mathcal{O}_n$ be defined as

$$\Psi(g) = \Psi\left(\begin{bmatrix}a_1 & a_2 & \dots & a_m\\b_1 & b_2 & \dots & b_m\end{bmatrix}\right) = s_{a_1}s_{b_1}^* + s_{a_2}s_{b_2}^* + \dots + s_{a_m}s_{b_m}^*$$

Then Ψ is a faithful unitary representation of V_n in the group of unitaries of \mathcal{O}_n .

Our objective is that there is a group homomorphism E such that

$$\begin{array}{ccc} \mathcal{O}_{k(n-1)+1} \stackrel{\iota}{\longrightarrow} \mathcal{O}_{n} \\ & \uparrow \Psi_{k(n-1)+1} & \downarrow \Psi_{n}^{-1} \\ \mathcal{V}_{k(n-1)+1} \stackrel{\iota}{\longrightarrow} \mathcal{V}_{n} \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Embeddings of Higman-Thompson groups

Definition

Let $\gamma: Y \to X^*$ be the function such that, for all $y \in Y$:

$$\iota(\hat{s}_y) = s_{\gamma(y)}$$

Also, let $f: Y^* \to X^*$ be such that

$$f(u) = f(u_1u_2\ldots u_m) = \gamma(u_1)\gamma(u_2)\ldots\gamma(u_m)$$

. That is, the function such that:

$$\begin{array}{rcl} (\hat{s}_u) & = & \iota(\hat{s}_{u_1u_2...u_m}) & = & \iota(\hat{s}_{u_1})\ldots\iota(\hat{s}_{u_m}) \\ & = & s_{\gamma(u_1)}\ldots s_{\gamma(u_m)} & = & s_{\gamma(u_1)\gamma(u_2)...\gamma(u_m)} & = & s_{f(u)} \end{array}$$

So, for example, since $\iota(\hat{s_1}) = \underbrace{s_1 \dots s_1}_{k \text{ times}}$, we have $\gamma(1) = \underbrace{(1) \dots (1)}_{k \text{ times}}$.

The function E such that,

$$E: \begin{bmatrix} u_1 & u_2 & \dots & u_m \\ v_1 & v_2 & \dots & v_m \end{bmatrix} \mapsto \begin{bmatrix} f(u_1) & f(u_2) & \dots & f(u_m) \\ f(v_1) & f(v_2) & \dots & f(v_m) \end{bmatrix}$$

is an embedding of $V_{1+k(n-1)}$, $T_{1+k(n-1)}$ and $F_{1+k(n-1)}$ in V_n , T_n and F_n respectively.

イロト 不得下 イヨト イヨト

Embeddings dos grupos de Higman-Thompson

Lemma

f is injective.

Corollary

If f(a) is a prefix of f(b), then a is a prefix of b.

Proof Sketch: we prove that it sends elements of $V_{1+k(n-1)}$ to elements of V_n , this is:

$$Y^{\omega} = \bigcup_{i=1}^{m} u_i Y^{\omega} = \bigcup_{i=1}^{m} v_i Y^{\omega} \Rightarrow X^{\omega} = \bigcup_{i=1}^{m} f(u_i) X^{\omega} = \bigcup_{i=1}^{m} f(v_i) X^{\omega}$$

and that f preserves the lexicographic order,

$$a < b \Rightarrow f(a) < f(b)$$

< □ > < □ > < □ > < □ > < □ > < □ >

Embeddings of Higman-Thompson groups

Francisco Araújo (IST)

Embeddings of Cuntz Algebras

3 Setembro 2020

20 / 40

Embeddings of Higman-Thompson groups

3 Setembro 2020 21 / 40

There is an embedding of V_2 in V_n . Given any $i, j \ge 2$ there are quasi-isometric embeddings from F_i to F_j . There is a quasi-isometric embedding from $T_{k(n-1)+1}$ to T_n , but that there are no embeddings from T_2 to T_n . If there is a non trivial embedding from \mathcal{O}_m to \mathcal{O}_n , then m must be equal to k(n-1)+1, for some $k \ge 1$.

イロト 不得 トイヨト イヨト 二日

Given a Hilbert space H and a representation $\pi : \mathcal{O}_n \to B(H)$, the function $\rho_{\pi} : V_n \to B(H)$:

$$ho_{\pi}(g) = (\pi \circ \Psi)(g)$$

is a unitary representation of V_n in H.

イロト イポト イヨト イヨト 二日

Fix $x \in [0,1[$. We define its orbit as $\operatorname{orb}(x) := \{f^z(x) : z \in \mathbb{Z}\}$, where $f(y) = ny \mod 1$. Note that $f^{-1}(x) = \{\frac{x}{n}, \frac{x+1}{n}, \dots, \frac{x+(n-1)}{n}\}$,

$$f^{-2}(x) = \bigcup_{y \in f^{-1}(x)} f^{-1}(y)$$

and so on.

イロト イポト イヨト イヨト 二日

The Hilbert space H_x

Let \sim be a binary relation in [0,1[such that $y \sim x$ if and only if $y \in orb(x)$. This is equivalent to existing $a, b \in \mathbb{Z}$ such that $f^a(y) = f^b(x)$. \sim is an equivalence relation whose equivalence classes are the different orbits.

Theorem

Denote by $H_x = \ell^2(orb(x))$. The set $\{\delta_y : y \in orb(x)\}$, where $\delta_y : orb(x) \to \mathbb{R}$ is the function

$$\delta_y(z) = \begin{cases} 1 & y = z \\ 0 & y \neq z \end{cases}$$

is an orthonormal basis of H_x .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hilbert space H_x

Definition

Define $S_i \in B(H_x)$ as

$$S_i \delta_y = \delta_{\frac{y+(i-1)}{n}}$$

Since these are linear bounded operators of a Hilbert space, they have an adjoint, which is given by

$$S_i^* \delta_y = \begin{cases} \delta_{yn-(i-1)} & y \in \left[\frac{i-1}{n}, \frac{i}{n}\right] \\ 0 & y \notin \left[\frac{i-1}{n}, \frac{i}{n}\right] \end{cases}$$

for the basis of H_x . One can easily verify that the operators S_i satisfy the Cuntz relations. We therefore have the following result.

Theorem

The function $\pi_x : \mathcal{O}_n \to B(H_x)$ such that $\pi_x(s_i) = S_i$ is a representation of \mathcal{O}_n in H_x .

Francisco Araújo (IST)

Given $g \in V_n$ and $y \in orb(x)$, we have $g(y) \in orb(x)$ $\rho_x(g)(\delta_y) = \delta_{g(y)}$

イロト 不得 トイヨト イヨト 二日

Lemma

Let $k \in orb(x)$. Then, given $m \in \mathbb{Z}$, $kn^m \mod 1 \in orb(x)$

Lemma

Let $k \in orb(x)$. Then for any $a \in \mathbb{N}$ such that the number of digits in base n of a is m, we have that $kn^{-m} + an^{-m} \in orb(x)$.

Lemma

Let $g \in V_n$, $f(x) = nx \mod 1$ and $orb(x) = \bigcup_{m \in \mathbb{Z}} \{f^m(x)\}$. Then, for all $y \in orb(x)$, $g(y) \in orb(x)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Representations ρ_x

Lemma

Let $y \in orb(x)$ and $u \in X^*$, such that $u = u_1 \dots u_k$. Then $S_u \delta_y = S_{u_1} \dots S_{u_k} \delta_y = \delta_a$, where

$$a = yn^{-k} + \sum_{i=1}^k \frac{u_i - 1}{n^i}.$$

Lemma

Let $y \in orb(x)$ and $v \in X^*$, such that $v = v_1 \dots v_m v_{m+1}$. Then, $y \in \phi(v)$ if and only if $b \in \phi(v_{m+1})$, where

$$b=n^m\left(y-\sum_{i=1}^m\frac{v_i-1}{n^i}\right).$$

A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Representations ρ_x

Lemma

Let $y \in orb(x)$ and $v \in X^*$, such that $v = v_1 \dots v_m$ and $y \in \phi(v)$. Then $S_v^* \delta_y = \delta_b$, where

$$b=n^m\left(y-\sum_{i=1}^m\frac{v_i-1}{n^i}\right).$$

Lemma

Let
$$v \in X^*$$
. If $y \notin \phi(v)$ then $S_v^* \delta_y = 0$.

Lemma

Let
$$y \in orb(x)$$
. Then, $\rho_x(g)\delta_y = \delta_{g(y)}$.

Francisco Araújo (IST)

3 Setembro 2020 31 / 40

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Let
$$\iota' : \pi_x(\mathcal{O}_{k(n-1)+1}) \to B(H_x^{(k(n-1)+1)})$$
 be defined as
 $\iota'(\hat{S}_1) = S_1^k \qquad \iota'(\hat{S}_{i(n-1)+j}) = S_1^{k-i}S_j$
for $0 \le i < k, 2 \le j \le n$.

$$\begin{array}{ccc} \mathcal{O}_{k(n-1)+1} \xleftarrow[\pi_x^{-1}]{\pi_x^{-1}} \pi_x(\mathcal{O}_{k(n-1)+1}) \\ \downarrow & \qquad \qquad \downarrow^{\iota'} \\ \mathcal{O}_n \xrightarrow[\pi_x']{\pi_x^{\prime}} & \pi_x^{\prime}(\mathcal{O}_n) \end{array}$$

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Let
$$y \in orb_m(x)$$
 for some $m \ge 2$ and $M = \{\hat{S}_1, \ldots, \hat{S}_m, \hat{S}_1^*, \ldots, \hat{S}_m^*\}$.
Then there exist $T_1, T_2, \ldots, T_k \in M$ such that $\delta_y = T_1 T_2 \ldots T_k \delta_x$.

Theorem

Let $U: H_x^{(k(n-1)+1)} \to H_x^{(n)}$ be the function such that, given $\delta_y \in H_x^{(k(n-1)+1)}$

$$U(\delta_y) = U(T_1 \dots T_k \delta_x) = \iota'(T_1 \dots T_k) \delta_x.$$

Then U is a unitary operator.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

The operator U

Let
$$x \in [0, 1[$$
. Then, $\pi_x : \mathcal{O}_{k(n-1)+1} \to B(H_x^{(k(n-1)+1)})$ and
 $\iota' \circ \pi_x : \mathcal{O}_{k(n-1)+1} \to B(U(H_x^{(k(n-1)+1)}))$ are unitarily equivalent.

$$\begin{array}{ccc} H_{x}^{(k(n-1)+1)} & \stackrel{U}{\longrightarrow} & U(H_{x}^{(k(n-1)+1)}) \\ \pi_{x}(a) & & & \downarrow^{\iota'(\pi_{x}(a))} \\ H_{x}^{(k(n-1)+1)} & \stackrel{U}{\longrightarrow} & U(H_{x}^{(k(n-1)+1)}) \end{array}$$

Francisco Araújo (IST)

イロト イヨト イヨト イヨト

Given $x, y \in [0, 1[$, the transformation $\pi_x : \mathcal{O}_{k(n-1)+1} \to B(H_x^{(k(n-1)+1)})$ is unitarily equivalent to $\pi_y : \mathcal{O}_{k(n-1)+1} \to B(H_y^{(k(n-1)+1)})$ if and only if $\iota' \circ \pi_x : \mathcal{O}_{k(n-1)+1} \to B(U(H_x^{(k(n-1)+1)}))$ is unitarily equivalent to $\iota' \circ \pi_y : \mathcal{O}_{k(n-1)+1} \to B(U(H_x^{(k(n-1)+1)}))$. Furthermore, π_x is irreducible in $H_x^{(k(n-1)+1)}$ if and only if $\iota' \circ \pi_x$ is irreducible in $U(H_x^{(k(n-1)+1)})$.

Proof:

$$\begin{array}{ccc} U_1(H_x^{(k(n-1)+1)}) \xrightarrow{K} U_2(H_y^{(k(n-1)+1)}) \\ & \downarrow^{\prime}(\pi_x(a)) \downarrow & \downarrow^{\prime\prime}(\pi_y(a)) \\ & U_1(H_x^{(k(n-1)+1)}) \xrightarrow{K} U_2(H_y^{(k(n-1)+1)}) \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By the previous theorem, we obtain the following commutative diagram

$$U_{1}(H_{x}^{(k(n-1)+1)}) \xrightarrow{U_{1}^{*}} H_{x}^{(k(n-1)+1)} \xrightarrow{K} H_{y}^{(k(n-1)+1)} \xrightarrow{U_{2}} U_{2}(H_{y}^{(k(n-1)+1)})$$

$$\downarrow^{\iota'(\pi_{x}(a))} \qquad \qquad \downarrow^{\pi_{x}(a)} \qquad \qquad \downarrow^{\pi_{y}(a)} \qquad \qquad \downarrow^{\iota'(\pi_{y}(a))}$$

$$U_{1}(H_{x}^{(k(n-1)+1)}) \xrightarrow{U_{1}^{*}} H_{x}^{(k(n-1)+1)} \xrightarrow{K} H_{y}^{(k(n-1)+1)} \xrightarrow{U_{2}} U_{2}(H_{y}^{(k(n-1)+1)})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

Let
$$x \in [0, 1[$$
. Then, $\rho_x^{(k(n-1)+1)} : V_{k(n-1)+1} \to B(H_x^{(k(n-1)+1)})$ and $\rho_x^{(n)} \circ E : V_{k(n-1)+1} \to B(U(H_x^{(k(n-1)+1)}))$ are unitarily equivalent.

Corollary

Given
$$x, y \in [0, 1[, \rho_x^{(k(n-1)+1)} \sim \rho_y^{(k(n-1)+1)}$$
 if and only if $\rho_x^{(n)} \circ E \sim \rho_y^{(n)} \circ E$. Also, $\rho_x^{(k(n-1)+1)}$ is an irreducible representation in $H_x^{(k(n-1)+1)}$ if and only if $\rho_x^{(n)} \circ E$ is irreducible in $U(H_x^{(k(n-1)+1)})$.

3

<ロト < 四ト < 三ト < 三ト

Using

Corollary

Let $x, y \in [0, 1[$. Then, given $\iota' \circ \pi_x : \mathcal{O}_{k(n-1)+1} \to B(U(H_x^{(k(n-1)+1)})), \iota' \circ \pi_y : \mathcal{O}_{k(n-1)+1} \to B(U(H_y^{(k(n-1)+1)}))$, we have that $\iota' \circ \pi_x \sim \iota' \circ \pi_y$ if and only if $x \sim y$. Also, $\iota' \circ \pi_x$ is irreducible in $U(H_x^{(k(n-1)+1)})$.

Theorem

Let $x, y \in [0, 1[$. Then, given $\rho_x^{(n)} : V_n \to B(H_x^{(n)}), \rho_y^{(n)} : V_n \to B(H_y^{(n)}),$ we have that $\rho_x^{(n)} \sim \rho_y^{(n)}$ if and only if $x \sim y$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Let $n \ge 2$. Then

$$C^*_{\rho_x^{(2)}}(E(V_n)) = \iota'(\pi_x(\mathcal{O}_n)).$$

Theorem

Let $n \geq 2$. Then, $\rho_x^{(n)}$ and $\rho_y^{(n)}$ are irreducible representations of V_n in $H_x^{(n)}$, and $\rho_x^{(n)} \sim \rho_y^{(n)}$ if and only if $x \sim y$. For any $k \geq 1$, $(\rho_x^{(n)} \circ E)$ is an irreducible representation of $V_{k(n-1)+1}$ in $U(H_x^{(k(n-1)+1)})$, a subspace of $H_x^{(n)}$. Furthermore, given another such representation $(\rho_y^{(n)} \circ E)$, $(\rho_x^{(n)} \circ E) \sim (\rho_y^{(n)} \circ E)$ if and only if $x \sim y$.