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Levy’s Theorem

Theorem (Levy’s Theorem)
Let X = {Xt ,Ft , 0 ≤ t <∞} be a continuous, adapted process
taking values in R such that the process

Mt = Xt − X0, 0 ≤ t <∞

is a continuous local martingale relative to the filtration {Ft},
and whose quadratic variation is given by

〈M,M〉t = t;

Then {Xt ,Ft , 0 ≤ t <∞} is a Brownian Motion.
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Probability Theory

I Probability Space (Ω,F ,P)

I Filtration {Ft , t ∈ Γ}, where Γ = N (discrete time) or Γ = R+
0

(continuous time)

Definition (Usual Conditions)
A filtration Ft is said to have the usual conditions if it is right
continuous and F0 contains all the P-negligible events in F .
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Probability Theory

Definition (Measurable Process)
A stochastic process X is called measurable if, ∀A ∈ B(Rd), the set
{(t, ω),Xt(ω) ∈ A} belongs to the product σ-field B(R+

0 )⊗F , or

(t, ω) −→ Xt(ω) : (R+
0 × Ω,B(R+

0 )⊗F) −→ (Rd ,B(Rd))

is measurable.

Definition (Adapted Process)
A sequence of r.v. Xt is said to be adapted to Ft if
Xt ∈ Ft ,∀t ∈ Γ, which means that for every A ∈ B(Rd),
{ω ∈ Ω : Xt(ω) ∈ A} ∈ Ft .
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Conditional Expectation

Given a σ-field G and an integrable random variable Y , EG(Y )
must satisfy the conditions:
1. EG(Y ) ∈ G
2. ∀Λ ∈ G ∫

Λ
Y (w)P(dw) =

∫
Λ

EG(Y )(w)P(dw).

I (Geometric Perspective)
Suppose E(Y 2) <∞. Then EG(Y ) is the random variable
X ∈ G that minimizes E(Y − X )2.
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Martingales

Let Γ = N and Sn = X1 + ...+ Xn.
To understand what information do we need from the past, our
focus is to analyze E(Sn+1|Sn).

I If Xn are independent r.v. with E(Xn) = 0, we have
E(Sn+1|Sn) = Sn.

I This independence condition is much stronger than what we
need!

I Mathematically, martingales appeared to give exactly what we
need! We only need that E(Xn+1|Sn) = 0.
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Martingales

Definition (Martingale)
A sequence of r.v. Xt is said to be a martingale with respect to a
filtration {Ft , t ∈ R+

0 } if it satisfies:
1. E(|Xt |) <∞ (integrability),
2. Xt ∈ Ft (measurability),
3. EFs (Xt) = Xs , ∀s ≤ t.

Also, if in the last equation we have ≤ or ≥, Xt is called a
supermartingale or submartingale, respectively. The class of
continuous martingales is denoted byMc .



Doob- Meyer Decomposition

Theorem (Doob-Meyer Decomposition)
Any submartingale Xt can be written in Xt = Mt + At , where
Mt ∈Mc and At is an increasing process.



Square Integrable Martingales

Definition (Square Integrable Martingale)
A continuous martingale X = {Xt ,Ft , 0 ≤ t <∞} is said to be
square integrable if E(Xt)

2 <∞,∀t ≥ 0. The class of stochastic
processes with this property is denoted byMc

2, where the c is for
continuous.

Definition (Quadratic Variation)
〈X 〉t is called the quadratic variation of Xt , where 〈X 〉t is the
adapted increasing process in the Doob -Meyer Decomposition of
X 2
t . Or also, it is the unique process such that X 2

t − 〈X 〉t is a
martingale.
If we consider a partition 0 = t0 < t1 < ... < tn = t of [0, t]

〈X 〉t = lim
n−→∞

n∑
k=1

(Xtk − Xtk−1)2.
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Square Integrable Martingales

Definition (Cross Variation)
If X ,Y ∈Mc

2, their cross variation is
〈X ,Y 〉t = 1

4 [〈X + Y 〉t − 〈X − Y 〉t ].
And again, it can be thought of as

〈X ,Y 〉t = lim
n−→∞

n∑
k=1

(Xtk − Xtk−1)(Ytk − Ytk−1)



Local Martingales

Definition (Stopping and Optional Times)
Let T be a random time. Then T is a stopping time with respect
to the filtration {Ft , t ∈ Γ} if the event {ω ∈ Ω : T (ω) ≤ t} ∈ Ft

for every t ≥ 0.
A random time is an optional time if {ω ∈ Ω : T (ω) < t} ∈ Ft for
every t ≥ 0.

Definition (Local Martingale)
Let X = {Xt ,Ft , 0 ≤ t <∞} be a continuous process with X0 = 0
P -a.s. If there exists a nondecreasing sequence {Tn}∞n=1 of
stopping times of Ft such that {X (n)

t = Xt∧Tn} is a martingale for
each n ≥ 1 and P[limn−→∞Tn =∞] = 1, then we say that X is a
continuous local martingale. It is usually written X ∈Mc,loc .
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Brownian Motion

Consider the half-line [0,∞) and divide it in tiny intervals of length
δ as it is shown below.

Figure 1: Dividing the half-line

Each one of these intervals corresponds to a time slot of length δ.
Let us assume that we toss a fair coin and create the random
variable for each interval [i , i + 1]

X δ
i =

{√
δ, with probability 1/2
−
√
δ, with probability 1/2

.
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Brownian Motion
Note that Xi ’s are independent and

E[X δ
i ] = 0,

Var(X δ
i ) = δ.

Therefore, we define the process Bδn(t) as

Bδn(t) = B(nδ) =
n∑

i=1

X δ
i .

Then ∀t ∈ [0,∞), as n −→∞ and δ −→ 0

Bδn
dist−−→ B(t) ∼ N(0, t)

Since the coin tosses are independent, we conclude that B(t) has
independent increments, which means that for
0 ≤ t1 < t2 < ... < tn, the random variables

B(t2)− B(t1),B(t3)− B(t2), ...,B(tm)− B(tm−1)

are independent.
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Brownian Motion

Definition (Brownian Motion)
A standard, one dimensional Brownian Motion is a continuous
process B = {Bt} adapted to a filtration {Ft , t ∈ Γ} that satisfies
the properties
I B0 = 0 P-a.s.,
I Bt − Bs is independent of Fs for 0 ≤ s ≤ t,
I Bt −Bs is normally distributed with mean 0 and variance t − s,

which means it has independent and stationary increments.



Brownian Motion Sample Paths
If B = {Bt} is a standard Brownian Motion, so are the following
transformations:

1. (Scaling Property)

Xt =
1√
a
Bat , a > 0

2. (Time-Inversion)

Yt =

{
tB 1

t
, 0 < t <∞,

0, t = 0.

3. (Time-reversal)

Zt = BT − BT−t , 0 ≤ t ≤ T .

4. (Symmetry)
−B = {−Bt}.
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Stochastic Calculus

How can we define

IT (X ) =

∫ T

0
Xt(ω)dMt(ω)

for a general stochastic process X?

Definition (Simple Process)
A process S is called simple if there exists a strictly increasing
sequence of real numbers {tn}∞n=0 such that t0 = 0 and
limn−→∞tn =∞, as well as a sequence of random variables {εn}∞n=0
with supn≥0|εn(ω)| ≤ C , ∀ω ∈ Ω, εn ∈ Ftn , such that

St(ω) = ε0(ω)1{0}(t) +
∞∑
i=0

εi (ω)1{ti ,ti+1}(t).
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Stochastic Calculus

The natural path to proceed is to apply the martingale transform
and define the integral of a simple process by

It(S) =
∞∑
i=0

εi (Mt∧ti+1 −Mt∧ti ), 0 ≤ t <∞.



Properties of the Integral

I0(X ) = 0 P-a.s.

(Linearity) I (αX + βY ) = αI (X ) + βI (Y ) ∀α, β ∈ R

(Martingale Property) E[It(X )|Fs ] = Is(X ) P-a.s.
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Itô’s Rule

Definition (Semimartingale)
A continuous semimartingale X = {Xt ,Ft , 0 ≤ t <∞} is an
adapted process which has the decomposition P-a.s.

Xt = X0 + Mt + Bt ; 0 ≤ t <∞

where M = {Mt ,Ft , 0 ≤ t <∞} ∈Mc,loc and B = {Bt} is the
difference of continuous non decreasing, adapted processes

Bt = A+
t − A−t .

This decomposition should be the minimal decomposition of B, i.e,
A+
t and A−t are the positive and negative variations of B on [0, t].
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Itô’s Rule

Theorem (Itô’s Rule)
Let f : R −→ R be a function of class C 2 and let
X = {Xt ,Ft ; 0 ≤ t <∞} be a continuous semimartingale. Then
P-a.s.

f (Xt) = f (X0) +

∫ t

0
f ′(Xs)dMs +

∫ t

0
f ′(Xs)dBs +

1
2

∫ t

0
f ′′(Xs)d〈M〉s ,

with 0 ≤ t <∞. The above equality can be also be written in
differential form:

d(f (Xt)) = f ′(Xt)dMt + f ′(Xt)dBt +
1
2
f ′′(Xt)d〈M〉t .



Examples

Let {Bt : t ≥ 0} a Brownian Motion. Then when considering
f (x) = x2/2 and g(x) = x3/3 we have from Itô’s Rule:∫ t

0
BsdBs =

1
2

(B2
t − t)

and ∫ t

0
B2
s dBs =

1
3
B3
t −

∫ t

0
Bsds.

For f , applying the formula above we have

B2
t

2
=

B2
0
2

+

∫ t

0
BsdBs +

∫ t

0
d〈B〉s .

Using the fact B0 = 0 Pa.s. and the properties of Brownian Motion
we have the result.



Multidimensional Formula

Theorem (Multidimensional Formula)
Let {Mt = (M

(1)
t , ...,M

(d)
t } with M

(i)
t ∈Mc,loc for 1 ≤ i ≤ d and

{Bt = (B
(1)
t , ...,B

(d)
t )} a vector of adapted processes of bounded

variation with B0 = 0Pa.s.
Let Xt = X0 + Mt + Bt , where X0 ∈ F0. Let
f (t, x) : [0,∞)× Rd −→ R be of class C 1,2. Then, P-a.s.

f (t,Xt) = f (0,X0) +

∫ t

0

∂

∂t
f (s,Xs)ds +

d∑
i=1

∫ t

0

∂

∂xi
f (s,Xs)dB

(i)
s

+
d∑

j=1

∫ t

0

∂

∂xl
f (s,Xs)dM

(j)
s

+
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
f (s,Xs)d〈M(i),M(j)〉s , 0 ≤ t <∞.



Levy’s Theorem

Theorem (Levy’s Theorem)
Let X = {Xt = (X

(1)
t , ...,X

(d)
t ),Ft , 0 ≤ t <∞} be a continuous,

adapted process in Rd such that, for every component 1 ≤ k ≤ d ,
the process

M
(k)
t = X

(k)
t − X

(k)
0 , 0 ≤ t <∞

is a continuous local martingale relative to the filtration
{Ft , t ∈ Γ}, and whose cross variations are given by

〈M(k),M(j)〉t = δkj t; 1 ≤ k, j ≤ d

Then {Xt ,Ft , 0 ≤ t <∞} is a d-dimensional Brownian Motion.



Levy’s Theorem
I What we need to prove is that for 0 ≤ s < t, the random

vector Xt − Xs is independent of Fs and has a d-variate
normal distribution with mean zero and covariance matrix
equal to (t − s)× Id .

I But now, from Levy’s continuity theorem, it suffices to prove
that for u ∈ Rd

E[e i(u.(Xt−Xs))|Fs ] = e−
1
2‖u‖

2(t−s), P− a.s.

I When we fix u = (u1, ..., ud) ∈ Rd , the function f (x) = e i(u.x)

satisfies
∂

∂xj
f (x) = iuj f (x),

∂2

∂xj∂xk
f (x) = −ujuk f (x).
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Levy’s Theorem

I Therefore, using the multidimensional formula for the real and
imaginary parts of f , we obtain

1. R(e i(u.Xt)) = R(e i(u.Xs ))− 1
2

∑d
j=1 u

2
j

∫ t

s
e i(u.Xv )dv

2. I(e i(u.Xt)) = Ie i(u.Xs ) +
∑d

j=1 uj
∫ t

s
e i(u.Xv )dM

(j)
v

and we have:

e i(u.Xt) = e i(u.Xs)+i
d∑

j=1

uj

∫ t

s
e i(u.Xv )dM

(j)
v −

1
2

d∑
j=1

u2
j

∫ t

s
e i(u.Xv )dv .



Levy’s Theorem
I Note that |f (x)| ≤ 1 ∀x ∈ Rd and since 〈M(j)〉t = t, this

implies that M(j) ∈Mc
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