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Levy's Theorem

Theorem (Levy's Theorem)

Let X = {X;, Ft,0 < t < oo} be a continuous, adapted process
taking values in R such that the process

Mt:Xt*XO, 0§t<OO

is a continuous local martingale relative to the filtration {F;},
and whose quadratic variation is given by

(M, M) = t;

Then {X;, F¢+,0 < t < oo} is a Brownian Motion.
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» Levy’'s Continuity Theorem

» Convergence in Distribution of Random Variables <+ Pointwise
Convergence of their Characteristic Functions

» Characterization of the Brownian Motion

» Many Other Topics ( For Example Infinitely Divisible
Laws)
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Probability Theory

» Probability Space (22, F,P)
> Filtration {F¢,t € I'}, where [ = N (discrete time) or [ = R]
(continuous time)

Definition (Usual Conditions)

A filtration F; is said to have the usual conditions if it is right
continuous and Fy contains all the P-negligible events in F.



Probability Theory

Definition (Measurable Process)

A stochastic process X is called measurable if, YA € B(R?), the set
{(t,w), X¢(w) € A} belongs to the product o-field B(R{) ® F, or

(t,w) = Xe(w) : (R x Q,B(RY) @ F) — (RY, B(RY))
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Probability Theory

Definition (Measurable Process)

A stochastic process X is called measurable if, YA € B(R?), the set
{(t,w), X¢(w) € A} belongs to the product o-field B(R{) ® F, or

(t,w) = Xe(w) : (R x Q,B(Ry) ® F) — (RY, B(RY))
is measurable.

Definition (Adapted Process)

A sequence of r.v. X; is said to be adapted to F; if
X; € Fi,Vt €T, which means that for every A € B(RY),



Conditional Expectation

Given a o-field G and an integrable random variable Y, Eg(Y)
must satisfy the conditions:

1. Eg(Y) €cg
2. VAeg

/Y(W)P(dW)I/Eg(Y)(W)P(dW).
A A



Conditional Expectation

Given a o-field G and an integrable random variable Y, Eg(Y)
must satisfy the conditions:

1. Eg(Y) €cg
2. VAeg

/Y(W)P(dW)I/Eg(Y)(W)P(dW).
A A

» (Geometric Perspective)
Suppose E(Y?) < co. Then Eg(Y) is the random variable
X € G that minimizes E(Y — X)2.
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Martingales

LetF=Nand S, = X1 +... + X,.
To understand what information do we need from the past, our
focus is to analyze E(Sp+1|Sn).
» If X, are independent r.v. with E(X,) = 0, we have
E(Sn+1|Sn) = Sh-
» This independence condition is much stronger than what we
need!

» Mathematically, martingales appeared to give exactly what we
need! We only need that E(X,+1|S,) = 0.



Martingales

Definition (Martingale)
A sequence of r.v. X; is said to be a martingale with respect to a
filtration {F;,t € Ry} if it satisfies:
1. E(]X¢]) < oo (integrability),
2. Xt € F¢ (measurability),
3. ER(X:) =Xs, Vs<t.
Also, if in the last equation we have < or >, X; is called a

supermartingale or submartingale, respectively. The class of
continuous martingales is denoted by M€.



Doob- Meyer Decomposition

Theorem (Doob-Meyer Decomposition)

Any submartingale X; can be written in X; = M; + A;, where
M; € M€ and A; is an increasing process.



Square Integrable Martingales

Definition (Square Integrable Martingale)

A continuous martingale X = {X;, 7,0 < t < oo} is said to be
square integrable if E(X;)? < oo,Vt > 0. The class of stochastic
processes with this property is denoted by MS, where the ¢ is for
continuous.



Square Integrable Martingales

Definition (Square Integrable Martingale)

A continuous martingale X = {X;, 7,0 < t < oo} is said to be
square integrable if E(X;)? < oo,Vt > 0. The class of stochastic
processes with this property is denoted by MS, where the ¢ is for
continuous.

Definition (Quadratic Variation)

(X)¢ is called the quadratic variation of X;, where (X); is the
adapted increasing process in the Doob -Meyer Decomposition of
X2. Or also, it is the unique process such that X2 — (X) is a
martingale.

If we consider a partition 0 =ty < t; < ... < t, =t of [0, t]

t = //m Z(th th 1



Square Integrable Martingales

Definition (Cross Variation)

If X, Y € MS§, their cross variation is
(X, Y)e=3[(X+ Y)e = (X = V).
And again, it can be thought of as

n

<X7 Y>t = n/ir)noo Z(th - th—l)(ytk - Ytk—l)
k=1



Local Martingales

Definition (Stopping and Optional Times)
Let T be a random time. Then T is a stopping time with respect
to the filtration {F;,t € I'} if the event {w € Q: T(w) < t} € F;

for every t > 0.
A random time is an optional time if {w € Q: T(w) < t} € F; for

every t > 0.



Local Martingales

Definition (Stopping and Optional Times)

Let T be a random time. Then T is a stopping time with respect

to the filtration {F;,t € I'} if the event {w € Q: T(w) < t} € F;
for every t > 0.

A random time is an optional time if {w € Q: T(w) < t} € F; for
every t > 0.

Definition (Local Martingale)

Let X = {X¢, F+,0 < t < oo} be a continuous process with Xo = 0
P -a.s. If there exists a nondecreasing sequence {T,}°° of
stopping times of F; such that {Xt(") = XiaT,} is @ martingale for
each n > 1 and P[limp,— o T, = o0] = 1, then we say that X is a
continuous local martingale. It is usually written X € MS/oc.
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Brownian Motion

Consider the half-line [0, 00) and divide it in tiny intervals of length
d as it is shown below.
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Figure 1: Dividing the half-line

Each one of these intervals corresponds to a time slot of length 4.



Brownian Motion

Consider the half-line [0, 00) and divide it in tiny intervals of length
d as it is shown below.

T N S IR Y RN B I
0 d 20 30 46 55 65 76 8 96 106 - t=ns

Figure 1: Dividing the half-line

Each one of these intervals corresponds to a time slot of length 4.
Let us assume that we toss a fair coin and create the random
variable for each interval [i, i + 1]

X9 =

1

V8, with probability 1/2
—+/8, with probability 1/2
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Brownian Motion
Note that X;'s are independent and

E[Xig] = 07
Var(X?) = 6.

Therefore, we define the process BI(t) as

Bi(t) = ZX‘S
Then Vt € [0,00), as n — oo and 6 — 0

BY 2 B(t) ~ N(0, t)

Since the coin tosses are independent, we conclude that B(t) has
independent increments, which means that for
0<t; <ty <..<ty the random variables

B(t2) — B(t1), B(t3) — B(t2), ..., B(tm) — B(tm-1)

are independent.



Brownian Motion

Definition (Brownian Motion)

A standard, one dimensional Brownian Motion is a continuous
process B = {B;} adapted to a filtration {F;,t € '} that satisfies
the properties

» By =0 P-as,,
> B; — Bs is independent of F, for 0 < s < ¢,
» B; — Bs is normally distributed with mean 0 and variance t — s,

which means it has independent and stationary increments.
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Brownian Motion Sample Paths

If B = {B;} is a standard Brownian Motion, so are the following
transformations:
1. (Scaling Property)

2. (Time-Inversion)

3. (Time-reversal)

Zi =Bt —Br_;, 0<t<T.

4. (Symmetry)
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Stochastic Calculus

How can we define

T
= /0 Xi(w)dM¢(w)

for a general stochastic process X7

Definition (Simple Process)

A process S is called simple if there exists a strictly increasing
sequence of real numbers {t,}7° ; such that tp = 0 and
limp—sooty = 00, as well as a sequence of random variables {€,}72,
with sup>olen(w)] < C, Yw € Q, €, € Fy,, such that

Se(w) = eo(@)Loy(£) + D €i(w)lie; 103 (1).
i=0



Stochastic Calculus

The natural path to proceed is to apply the martingale transform
and define the integral of a simple process by

I:(S) = ZGI(Mt/\t,-+1 — Miag), 0<t < o0.
i=0
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Properties of the Integral

lh(X) =0 P-as.
(Linearity) Il(aX +B8Y)=al(X)+BI(Y) Va,5€R

(Martingale Property) E[l(X)|Fs] = Is(X) P-a.s.
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[td6's Rule

Definition (Semimartingale)

A continuous semimartingale X = {X;, F+,0 < t < oo} is an
adapted process which has the decomposition P-a.s.

Xt:X0+Mt+Bt; O§t<OO

where M = {M,, F;,0 < t < 00} € M€ and B = {B,} is the
difference of continuous non decreasing, adapted processes

B = Al — A;.

This decomposition should be the minimal decomposition of B, i.e,
A/ and A; are the positive and negative variations of B on [0, t].



[td6's Rule

Theorem (Ité's Rule)

Let f : R — R be a function of class C? and let

X = {X¢, Fr;0 < t < oo} be a continuous semimartingale. Then
P-a.s.

F(Xe) = f(X0)+/0t f’(Xs)dMs+/0t f’(Xs)st—&—;/Ot F/(Xs)d (M),

with 0 < t < co. The above equality can be also be written in
differential form:

d(F(X0)) = F(X)dM: + F/(X0)dB: + %f”(Xt)d<M>t.



Examples

Let {B; : t > 0} a Brownian Motion. Then when considering
f(x) = x2/2 and g(x) = x3/3 we have from Itd's Rule:

t
1
/ BsdBs = =(B? — t)
0 2

t 1 t
/ deBszBS—/ Bsds.
0 3 0

For f, applying the formula above we have

82 BZ t t
2 2 0 0

Using the fact By = 0 Pa.s. and the properties of Brownian Motion
we have the result.

and



Multidimensional Formula

Theorem (Multidimensional Formula)

Let {My =M™, ..., MDY with M) € Meoc for1 < i < d and
{B: = (Bgl), ey Bgd))} a vector of adapted processes of bounded
variation with By = OPa.s.

Let X; = Xog + M; + By, where Xg € Fo. Let

f(t,x) : [0,00) x R — R be of class C12. Then, P-a.s.

t

d
0 t o (i)
f(t,X:) = 1(0,Xp) —l—/o ot (s, Xs)ds + I._E 1/0 P (s, Xs)dBs




Levy's Theorem

Theorem (Levy's Theorem)

Let X = {X; = (Xt(l), e Xt(d)),]-'t,O <t < oo} be a continuous,
adapted process in R? such that, for every component 1 < k < d,
the process

ME = x® _ x0 0<t<oo

is a continuous local martingale relative to the filtration
{F¢, t € I'}, and whose cross variations are given by

(MW MUY, =655t 1<k,j<d

Then {X;, F¢,0 < t < oo} is a d-dimensional Brownian Motion.



Levy's Theorem

» What we need to prove is that for 0 < s < ¢, the random
vector X; — Xs is independent of Fs and has a d-variate
normal distribution with mean zero and covariance matrix
equal to (t —s) X Iy.
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What we need to prove is that for 0 < s < t, the random
vector X; — Xs is independent of Fs and has a d-variate
normal distribution with mean zero and covariance matrix
equal to (t —s) X Iy.

But now, from Levy's continuity theorem, it suffices to prove
that for u € R

E[e u.(Xe—Xs)) ‘./_"] — e*EHUH (t— 5) P — a.s.

When we fix u = (u1, ..., ug) € R?, the function f(x) = e/(4X)
satisfies

4 —1f(x) = iujf(x) o f(x) = —ujukf(x)
Ox; P O Oxi T




Levy's Theorem

» Therefore, using the multidimensional formula for the real and

imaginary parts of f, we obtain
1. R(ei(u.X,)) _ R(ei(“'X‘)) _ % ;1:1 Uj2 fst eil(uXo) gy
2 I(ei(u.Xt)) — TelluXs) + 27:1 uj fst ei(u.XV)dM‘Sf)

and we have:

d t d t
(X)) _ ai(uXs) - , iwX) gpqg0) 1 2 i(u.X)
el (uXe) _ qi( )—HEIUJ/se dM; 2j§1uj Se dv.
J= =



Levy's Theorem
> Note that |f(x)| <1 Vx € R? and since (MU)), = t, this
implies that MU) ¢ MS. Hence, the real and imaginary parts
of {fot ei(“'XV)dM\(;/),]-"t; 0 < t < oo} are not only in Me/oc
but also in MS5.
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Levy's Theorem
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Note that |f(x)| < 1Vx € RY and since (M), = t, this
implies that MU) ¢ MS. Hence, the real and imaginary parts
of {fot ei(“'XV)dM\(;j),]-"t; 0 < t < oo} are not only in Me/oc
but also in MS5.

Consequently

E[/t e/(X0) g %)
s

Now, for each A € F5 and multiplying the last equation by
e~ /(t-Xs)1 » and applying expected values we obtain

5} =0, P-—as.

which is an integral equation already solved with solution :

E[evX=XD1,] = P(A)e 2Vt A e £,
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