Brownian Motion and Levy's Theorem

Guilherme Varela

IST
3/09/2020

Levy's Theorem

Theorem (Levy's Theorem)
Let $X=\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ be a continuous, adapted process taking values in \mathbb{R} such that the process

$$
M_{t}=X_{t}-X_{0}, \quad 0 \leq t<\infty
$$

is a continuous local martingale relative to the filtration $\left\{\mathcal{F}_{t}\right\}$, and whose quadratic variation is given by

$$
\langle M, M\rangle_{t}=t
$$

Then $\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ is a Brownian Motion.

Paul Levy (1886-1971)

Paul Levy (1886-1971)

- Levy's Continuity Theorem
- Convergence in Distribution of Random Variables \leftrightarrow Pointwise Convergence of their Characteristic Functions

Paul Levy (1886-1971)

- Levy's Continuity Theorem
- Convergence in Distribution of Random Variables \leftrightarrow Pointwise Convergence of their Characteristic Functions
- Characterization of the Brownian Motion

Paul Levy (1886-1971)

- Levy's Continuity Theorem
- Convergence in Distribution of Random Variables \leftrightarrow Pointwise Convergence of their Characteristic Functions
- Characterization of the Brownian Motion
- Many Other Topics (For Example Infinitely Divisible Laws)

Probability Theory

- Probability Space $(\Omega, \mathcal{F}, \mathbb{P})$
- Filtration $\left\{\mathcal{F}_{t}, t \in \Gamma\right\}$, where $\Gamma=\mathbb{N}$ (discrete time) or $\Gamma=\mathbb{R}_{0}^{+}$ (continuous time)

Probability Theory

- Probability Space $(\Omega, \mathcal{F}, \mathbb{P})$
- Filtration $\left\{\mathcal{F}_{t}, t \in \Gamma\right\}$, where $\Gamma=\mathbb{N}$ (discrete time) or $\Gamma=\mathbb{R}_{0}^{+}$ (continuous time)

Definition (Usual Conditions)

A filtration \mathcal{F}_{t} is said to have the usual conditions if it is right continuous and \mathcal{F}_{0} contains all the \mathbb{P}-negligible events in \mathcal{F}.

Probability Theory

Definition (Measurable Process)

A stochastic process X is called measurable if, $\forall A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, the set $\left\{(t, \omega), X_{t}(\omega) \in A\right\}$ belongs to the product σ-field $\mathcal{B}\left(\mathbb{R}_{0}^{+}\right) \otimes \mathcal{F}$, or

$$
(t, \omega) \rightarrow X_{t}(\omega):\left(\mathbb{R}_{0}^{+} \times \Omega, \mathcal{B}\left(\mathbb{R}_{0}^{+}\right) \otimes \mathcal{F}\right) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)
$$

is measurable.

Probability Theory

Definition (Measurable Process)

A stochastic process X is called measurable if, $\forall A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, the set $\left\{(t, \omega), X_{t}(\omega) \in A\right\}$ belongs to the product σ-field $\mathcal{B}\left(\mathbb{R}_{0}^{+}\right) \otimes \mathcal{F}$, or

$$
(t, \omega) \rightarrow X_{t}(\omega):\left(\mathbb{R}_{0}^{+} \times \Omega, \mathcal{B}\left(\mathbb{R}_{0}^{+}\right) \otimes \mathcal{F}\right) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)
$$

is measurable.

Definition (Adapted Process)

A sequence of r.v. X_{t} is said to be adapted to \mathcal{F}_{t} if $X_{t} \in \mathcal{F}_{t}, \forall t \in \Gamma$, which means that for every $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, $\left\{\omega \in \Omega: X_{t}(\omega) \in A\right\} \in \mathcal{F}_{t}$.

Conditional Expectation

Given a σ-field \mathcal{G} and an integrable random variable $Y, \mathbb{E}_{\mathcal{G}}(Y)$ must satisfy the conditions:

1. $\mathbb{E}_{\mathcal{G}}(Y) \in \mathcal{G}$
2. $\forall \wedge \in \mathcal{G}$

$$
\int_{\Lambda} Y(w) \mathbb{P}(d w)=\int_{\Lambda} \mathbb{E}_{\mathcal{G}}(Y)(w) \mathbb{P}(d w)
$$

Conditional Expectation

Given a σ-field \mathcal{G} and an integrable random variable $Y, \mathbb{E}_{\mathcal{G}}(Y)$ must satisfy the conditions:

1. $\mathbb{E}_{\mathcal{G}}(Y) \in \mathcal{G}$
2. $\forall \wedge \in \mathcal{G}$

$$
\int_{\Lambda} Y(w) \mathbb{P}(d w)=\int_{\Lambda} \mathbb{E}_{\mathcal{G}}(Y)(w) \mathbb{P}(d w)
$$

- (Geometric Perspective) Suppose $\mathbb{E}\left(Y^{2}\right)<\infty$. Then $\mathbb{E}_{\mathcal{G}}(Y)$ is the random variable $X \in \mathcal{G}$ that minimizes $\mathbb{E}(Y-X)^{2}$.

Martingales

Let $\Gamma=\mathbb{N}$ and $S_{n}=X_{1}+\ldots+X_{n}$.
To understand what information do we need from the past, our focus is to analyze $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)$.

Martingales

Let $\Gamma=\mathbb{N}$ and $S_{n}=X_{1}+\ldots+X_{n}$.
To understand what information do we need from the past, our focus is to analyze $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)$.

- If X_{n} are independent r.v. with $\mathbb{E}\left(X_{n}\right)=0$, we have $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)=S_{n}$.

Martingales

Let $\Gamma=\mathbb{N}$ and $S_{n}=X_{1}+\ldots+X_{n}$.
To understand what information do we need from the past, our focus is to analyze $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)$.

- If X_{n} are independent r.v. with $\mathbb{E}\left(X_{n}\right)=0$, we have $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)=S_{n}$.
- This independence condition is much stronger than what we need!

Martingales

Let $\Gamma=\mathbb{N}$ and $S_{n}=X_{1}+\ldots+X_{n}$.
To understand what information do we need from the past, our focus is to analyze $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)$.

- If X_{n} are independent r.v. with $\mathbb{E}\left(X_{n}\right)=0$, we have $\mathbb{E}\left(S_{n+1} \mid S_{n}\right)=S_{n}$.
- This independence condition is much stronger than what we need!
- Mathematically, martingales appeared to give exactly what we need! We only need that $\mathbb{E}\left(X_{n+1} \mid S_{n}\right)=0$.

Martingales

Definition (Martingale)

A sequence of r.v. X_{t} is said to be a martingale with respect to a filtration $\left\{\mathcal{F}_{t}, t \in \mathbb{R}_{0}^{+}\right\}$if it satisfies:

1. $\mathbb{E}\left(\left|X_{t}\right|\right)<\infty$ (integrability),
2. $X_{t} \in \mathcal{F}_{t}$ (measurability),
3. $\mathbb{E}_{\mathcal{F}_{s}}\left(X_{t}\right)=X_{s}, \quad \forall s \leq t$.

Also, if in the last equation we have \leq or \geq, X_{t} is called a supermartingale or submartingale, respectively. The class of continuous martingales is denoted by \mathcal{M}^{c}.

Doob- Meyer Decomposition

Theorem (Doob-Meyer Decomposition)
Any submartingale X_{t} can be written in $X_{t}=M_{t}+A_{t}$, where $M_{t} \in \mathcal{M}^{c}$ and A_{t} is an increasing process.

Square Integrable Martingales

Definition (Square Integrable Martingale)
A continuous martingale $X=\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ is said to be square integrable if $\mathbb{E}\left(X_{t}\right)^{2}<\infty, \forall t \geq 0$. The class of stochastic processes with this property is denoted by \mathcal{M}_{2}^{c}, where the c is for continuous.

Square Integrable Martingales

Definition (Square Integrable Martingale)

A continuous martingale $X=\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ is said to be square integrable if $\mathbb{E}\left(X_{t}\right)^{2}<\infty, \forall t \geq 0$. The class of stochastic processes with this property is denoted by \mathcal{M}_{2}^{c}, where the c is for continuous.

Definition (Quadratic Variation)

$\langle X\rangle_{t}$ is called the quadratic variation of X_{t}, where $\langle X\rangle_{t}$ is the adapted increasing process in the Doob -Meyer Decomposition of X_{t}^{2}. Or also, it is the unique process such that $X_{t}^{2}-\langle X\rangle_{t}$ is a martingale.
If we consider a partition $0=t_{0}<t_{1}<\ldots<t_{n}=t$ of $[0, t]$

$$
\langle X\rangle_{t}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2}
$$

Square Integrable Martingales

Definition (Cross Variation)
If $X, Y \in \mathcal{M}_{2}^{c}$, their cross variation is
$\langle X, Y\rangle_{t}=\frac{1}{4}\left[\langle X+Y\rangle_{t}-\langle X-Y\rangle_{t}\right]$.
And again, it can be thought of as

$$
\langle X, Y\rangle_{t}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(X_{t_{k}}-X_{t_{k-1}}\right)\left(Y_{t_{k}}-Y_{t_{k-1}}\right)
$$

Local Martingales

Definition (Stopping and Optional Times)

Let T be a random time. Then T is a stopping time with respect to the filtration $\left\{\mathcal{F}_{t}, t \in \Gamma\right\}$ if the event $\{\omega \in \Omega: T(\omega) \leq t\} \in \mathcal{F}_{t}$ for every $t \geq 0$.
A random time is an optional time if $\{\omega \in \Omega: T(\omega)<t\} \in \mathcal{F}_{t}$ for every $t \geq 0$.

Local Martingales

Definition (Stopping and Optional Times)

Let T be a random time. Then T is a stopping time with respect to the filtration $\left\{\mathcal{F}_{t}, t \in \Gamma\right\}$ if the event $\{\omega \in \Omega: T(\omega) \leq t\} \in \mathcal{F}_{t}$ for every $t \geq 0$.
A random time is an optional time if $\{\omega \in \Omega: T(\omega)<t\} \in \mathcal{F}_{t}$ for every $t \geq 0$.

Definition (Local Martingale)
Let $X=\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ be a continuous process with $X_{0}=0$ \mathbb{P}-a.s. If there exists a nondecreasing sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ of stopping times of \mathcal{F}_{t} such that $\left\{X_{t}^{(n)}=X_{t \wedge T_{n}}\right\}$ is a martingale for each $n \geq 1$ and $\mathbb{P}\left[\lim _{n \rightarrow \infty} T_{n}=\infty\right]=1$, then we say that X is a continuous local martingale. It is usually written $X \in \mathcal{M}^{\text {c,loc }}$.

Brownian Motion

Brownian Motion

Consider the half-line $[0, \infty)$ and divide it in tiny intervals of length δ as it is shown below.

Figure 1: Dividing the half-line

Each one of these intervals corresponds to a time slot of length δ.

Brownian Motion

Consider the half-line $[0, \infty)$ and divide it in tiny intervals of length δ as it is shown below.

Figure 1: Dividing the half-line

Each one of these intervals corresponds to a time slot of length δ. Let us assume that we toss a fair coin and create the random variable for each interval $[i, i+1]$

$$
X_{i}^{\delta}= \begin{cases}\sqrt{\delta}, & \text { with probability } 1 / 2 \\ -\sqrt{\delta}, & \text { with probability } 1 / 2\end{cases}
$$

Brownian Motion

Note that X_{i} 's are independent and

$$
\begin{gathered}
\mathbb{E}\left[X_{i}^{\delta}\right]=0, \\
\operatorname{Var}\left(X_{i}^{\delta}\right)=\delta .
\end{gathered}
$$

Brownian Motion

Note that X_{i} 's are independent and

$$
\begin{gathered}
\mathbb{E}\left[X_{i}^{\delta}\right]=0 \\
\operatorname{Var}\left(X_{i}^{\delta}\right)=\delta
\end{gathered}
$$

Therefore, we define the process $B_{n}^{\delta}(t)$ as

$$
B_{n}^{\delta}(t)=B(n \delta)=\sum_{i=1}^{n} X_{i}^{\delta}
$$

Then $\forall t \in[0, \infty)$, as $n \rightarrow \infty$ and $\delta \rightarrow 0$

$$
B_{n}^{\delta} \xrightarrow{\text { dist }} B(t) \sim N(0, t)
$$

Brownian Motion

Note that X_{i} 's are independent and

$$
\begin{gathered}
\mathbb{E}\left[X_{i}^{\delta}\right]=0 \\
\operatorname{Var}\left(X_{i}^{\delta}\right)=\delta
\end{gathered}
$$

Therefore, we define the process $B_{n}^{\delta}(t)$ as

$$
B_{n}^{\delta}(t)=B(n \delta)=\sum_{i=1}^{n} X_{i}^{\delta}
$$

Then $\forall t \in[0, \infty)$, as $n \rightarrow \infty$ and $\delta \rightarrow 0$

$$
B_{n}^{\delta} \xrightarrow{\text { dist }} B(t) \sim N(0, t)
$$

Since the coin tosses are independent, we conclude that $B(t)$ has independent increments, which means that for $0 \leq t_{1}<t_{2}<\ldots<t_{n}$, the random variables

$$
B\left(t_{2}\right)-B\left(t_{1}\right), B\left(t_{3}\right)-B\left(t_{2}\right), \ldots, B\left(t_{m}\right)-B\left(t_{m-1}\right)
$$

are independent.

Brownian Motion

Definition (Brownian Motion)

A standard, one dimensional Brownian Motion is a continuous process $B=\left\{B_{t}\right\}$ adapted to a filtration $\left\{\mathcal{F}_{t}, t \in \Gamma\right\}$ that satisfies the properties

- $B_{0}=0 \mathbb{P}$-a.s.,
- $B_{t}-B_{s}$ is independent of \mathcal{F}_{s} for $0 \leq s \leq t$,
- $B_{t}-B_{s}$ is normally distributed with mean 0 and variance $t-s$, which means it has independent and stationary increments.

Brownian Motion Sample Paths

If $B=\left\{B_{t}\right\}$ is a standard Brownian Motion, so are the following transformations:

Brownian Motion Sample Paths

If $B=\left\{B_{t}\right\}$ is a standard Brownian Motion, so are the following transformations:

1. (Scaling Property)

$$
X_{t}=\frac{1}{\sqrt{a}} B_{a t} \quad, a>0
$$

Brownian Motion Sample Paths

If $B=\left\{B_{t}\right\}$ is a standard Brownian Motion, so are the following transformations:

1. (Scaling Property)

$$
X_{t}=\frac{1}{\sqrt{a}} B_{a t} \quad, a>0
$$

2. (Time-Inversion)

$$
Y_{t}= \begin{cases}t B_{\frac{1}{t}}, & 0<t<\infty \\ 0, & t=0\end{cases}
$$

Brownian Motion Sample Paths

If $B=\left\{B_{t}\right\}$ is a standard Brownian Motion, so are the following transformations:

1. (Scaling Property)

$$
X_{t}=\frac{1}{\sqrt{a}} B_{a t} \quad, a>0
$$

2. (Time-Inversion)

$$
Y_{t}= \begin{cases}t B_{\frac{1}{t}}, & 0<t<\infty \\ 0, & t=0\end{cases}
$$

3. (Time-reversal)

$$
Z_{t}=B_{T}-B_{T-t}, \quad 0 \leq t \leq T
$$

Brownian Motion Sample Paths

If $B=\left\{B_{t}\right\}$ is a standard Brownian Motion, so are the following transformations:

1. (Scaling Property)

$$
X_{t}=\frac{1}{\sqrt{a}} B_{a t} \quad, a>0
$$

2. (Time-Inversion)

$$
Y_{t}= \begin{cases}t B_{\frac{1}{t}}, & 0<t<\infty \\ 0, & t=0\end{cases}
$$

3. (Time-reversal)

$$
Z_{t}=B_{T}-B_{T-t}, \quad 0 \leq t \leq T
$$

4. (Symmetry)

$$
-B=\left\{-B_{t}\right\} .
$$

Stochastic Calculus

How can we define

$$
I_{T}(X)=\int_{0}^{T} X_{t}(\omega) d M_{t}(\omega)
$$

for a general stochastic process X ?

Stochastic Calculus

How can we define

$$
I_{T}(X)=\int_{0}^{T} X_{t}(\omega) d M_{t}(\omega)
$$

for a general stochastic process X ?
Definition (Simple Process)
A process S is called simple if there exists a strictly increasing sequence of real numbers $\left\{t_{n}\right\}_{n=0}^{\infty}$ such that $t_{0}=0$ and $\lim _{n \rightarrow \infty} t_{n}=\infty$, as well as a sequence of random variables $\left\{\epsilon_{n}\right\}_{n=0}^{\infty}$ with $\sup _{n \geq 0}\left|\epsilon_{n}(\omega)\right| \leq C, \forall \omega \in \Omega, \epsilon_{n} \in \mathcal{F}_{t_{n}}$, such that

$$
S_{t}(\omega)=\epsilon_{0}(\omega) 1_{\{0\}}(t)+\sum_{i=0}^{\infty} \epsilon_{i}(\omega) 1_{\left\{t_{i}, t_{i+1}\right\}}(t)
$$

Stochastic Calculus

The natural path to proceed is to apply the martingale transform and define the integral of a simple process by

$$
I_{t}(S)=\sum_{i=0}^{\infty} \epsilon_{i}\left(M_{t \wedge t_{i+1}}-M_{t \wedge t_{i}}\right), \quad 0 \leq t<\infty
$$

Properties of the Integral

Properties of the Integral

$$
I_{0}(X)=0 \mathbb{P} \text {-a.s. }
$$

Properties of the Integral

$$
I_{0}(X)=0 \mathbb{P} \text {-a.s. }
$$

(Linearity) $\quad I(\alpha X+\beta Y)=\alpha I(X)+\beta I(Y) \quad \forall \alpha, \beta \in \mathbb{R}$

Properties of the Integral

$$
I_{0}(X)=0 \mathbb{P} \text {-a.s. }
$$

(Linearity) $\quad I(\alpha X+\beta Y)=\alpha I(X)+\beta I(Y) \quad \forall \alpha, \beta \in \mathbb{R}$
(Martingale Property) $\mathbb{E}\left[I_{t}(X) \mid \mathcal{F}_{s}\right]=I_{s}(X) \mathbb{P}$-a.s.

Itô's Rule

Itô's Rule

Definition (Semimartingale)

A continuous semimartingale $X=\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ is an adapted process which has the decomposition \mathbb{P}-a.s.

$$
X_{t}=X_{0}+M_{t}+B_{t} ; \quad 0 \leq t<\infty
$$

where $M=\left\{M_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\} \in \mathcal{M}^{\text {c,loc }}$ and $B=\left\{B_{t}\right\}$ is the difference of continuous non decreasing, adapted processes

$$
B_{t}=A_{t}^{+}-A_{t}^{-} .
$$

This decomposition should be the minimal decomposition of B, i.e, A_{t}^{+}and A_{t}^{-}are the positive and negative variations of B on $[0, t]$.

Itô's Rule

Theorem (Itô's Rule)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of class C^{2} and let $X=\left\{X_{t}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ be a continuous semimartingale. Then \mathbb{P}-a.s.
$f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) d M_{s}+\int_{0}^{t} f^{\prime}\left(X_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) d\langle M\rangle_{s}$,
with $0 \leq t<\infty$. The above equality can be also be written in differential form:

$$
d\left(f\left(X_{t}\right)\right)=f^{\prime}\left(X_{t}\right) d M_{t}+f^{\prime}\left(X_{t}\right) d B_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) d\langle M\rangle_{t}
$$

Examples

Let $\left\{B_{t}: t \geq 0\right\}$ a Brownian Motion. Then when considering $f(x)=x^{2} / 2$ and $g(x)=x^{3} / 3$ we have from Itô's Rule:

$$
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right)
$$

and

$$
\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s
$$

For f, applying the formula above we have

$$
\frac{B_{t}^{2}}{2}=\frac{B_{0}^{2}}{2}+\int_{0}^{t} B_{s} d B_{s}+\int_{0}^{t} d\langle B\rangle_{s}
$$

Using the fact $B_{0}=0$ Pa.s. and the properties of Brownian Motion we have the result.

Multidimensional Formula

Theorem (Multidimensional Formula)
Let $\left\{M_{t}=\left(M_{t}^{(1)}, \ldots, M_{t}^{(d)}\right\}\right.$ with $M_{t}^{(i)} \in \mathcal{M}^{c, l o c}$ for $1 \leq i \leq d$ and $\left\{B_{t}=\left(B_{t}^{(1)}, \ldots, B_{t}^{(d)}\right)\right\}$ a vector of adapted processes of bounded variation with $B_{0}=0$ Pa.s.
Let $X_{t}=X_{0}+M_{t}+B_{t}$, where $X_{0} \in \mathcal{F}_{0}$. Let $f(t, x):[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be of class $C^{1,2}$. Then, \mathbb{P}-a.s.

$$
\begin{aligned}
f\left(t, X_{t}\right) & =f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial}{\partial t} f\left(s, X_{s}\right) d s+\sum_{i=1}^{d} \int_{0}^{t} \frac{\partial}{\partial x_{i}} f\left(s, X_{s}\right) d B_{s}^{(i)} \\
& +\sum_{j=1}^{d} \int_{0}^{t} \frac{\partial}{\partial x_{l}} f\left(s, X_{s}\right) d M_{s}^{(j)} \\
& +\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f\left(s, X_{s}\right) d\left\langle M^{(i)}, M^{(j)}\right\rangle_{s}, \quad 0 \leq t<\infty
\end{aligned}
$$

Levy's Theorem

Theorem (Levy's Theorem)
Let $X=\left\{X_{t}=\left(X_{t}^{(1)}, \ldots, X_{t}^{(d)}\right), \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ be a continuous, adapted process in \mathbb{R}^{d} such that, for every component $1 \leq k \leq d$, the process

$$
M_{t}^{(k)}=X_{t}^{(k)}-X_{0}^{(k)}, \quad 0 \leq t<\infty
$$

is a continuous local martingale relative to the filtration $\left\{\mathcal{F}_{t}, t \in \Gamma\right\}$, and whose cross variations are given by

$$
\left\langle M^{(k)}, M^{(j)}\right\rangle_{t}=\delta_{k j} t ; \quad 1 \leq k, j \leq d
$$

Then $\left\{X_{t}, \mathcal{F}_{t}, 0 \leq t<\infty\right\}$ is a d-dimensional Brownian Motion.

Levy's Theorem

- What we need to prove is that for $0 \leq s<t$, the random vector $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and has a d-variate normal distribution with mean zero and covariance matrix equal to $(t-s) \times I_{d}$.

Levy's Theorem

- What we need to prove is that for $0 \leq s<t$, the random vector $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and has a d-variate normal distribution with mean zero and covariance matrix equal to $(t-s) \times I_{d}$.
- But now, from Levy's continuity theorem, it suffices to prove that for $u \in \mathbb{R}^{d}$

$$
\mathbb{E}\left[e^{i\left(u .\left(X_{t}-X_{s}\right)\right)} \mid \mathcal{F}_{s}\right]=e^{-\frac{1}{2}\|u\|^{2}(t-s)}, \quad \mathbb{P}-\text { a.s. }
$$

Levy's Theorem

- What we need to prove is that for $0 \leq s<t$, the random vector $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and has a d-variate normal distribution with mean zero and covariance matrix equal to $(t-s) \times I_{d}$.
- But now, from Levy's continuity theorem, it suffices to prove that for $u \in \mathbb{R}^{d}$

$$
\mathbb{E}\left[e^{i\left(u .\left(X_{t}-X_{s}\right)\right)} \mid \mathcal{F}_{s}\right]=e^{-\frac{1}{2}\|u\|^{2}(t-s)}, \quad \mathbb{P}-\text { a.s. }
$$

- When we fix $u=\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{R}^{d}$, the function $f(x)=e^{i(u . x)}$ satisfies

$$
\frac{\partial}{\partial x_{j}} f(x)=i u_{j} f(x), \frac{\partial^{2}}{\partial x_{j} \partial x_{k}} f(x)=-u_{j} u_{k} f(x) .
$$

Levy's Theorem

- Therefore, using the multidimensional formula for the real and imaginary parts of f, we obtain

$$
\begin{aligned}
& \text { 1. } \mathcal{R}\left(e^{i\left(u . X_{t}\right)}\right)=\mathcal{R}\left(e^{i\left(u . X_{s}\right)}\right)-\frac{1}{2} \sum_{j=1}^{d} u_{j}^{2} \int_{s}^{t} e^{i\left(u . X_{v}\right)} d v \\
& \text { 2. } \mathcal{I}\left(e^{i\left(u . X_{t}\right)}\right)=\mathcal{I} e^{i\left(u . X_{s}\right)}+\sum_{j=1}^{d} u_{j} \int_{s}^{t} e^{i\left(u . X_{v}\right)} d M_{v}^{(j)}
\end{aligned}
$$

and we have:

$$
e^{i\left(u \cdot X_{t}\right)}=e^{i\left(u \cdot X_{s}\right)}+i \sum_{j=1}^{d} u_{j} \int_{s}^{t} e^{i\left(u \cdot X_{v}\right)} d M_{v}^{(j)}-\frac{1}{2} \sum_{j=1}^{d} u_{j}^{2} \int_{s}^{t} e^{i\left(u \cdot X_{v}\right)} d v
$$

Levy's Theorem

- Note that $|f(x)| \leq 1 \forall x \in \mathbb{R}^{d}$ and since $\left\langle M^{(j)}\right\rangle_{t}=t$, this implies that $M^{(j)} \in \mathcal{M}_{2}^{c}$. Hence, the real and imaginary parts of $\left\{\int_{0}^{t} e^{i\left(u . X_{v}\right)} d M_{v}^{(j)}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ are not only in $\mathcal{M}^{c, \text { loc }}$ but also in \mathcal{M}_{2}^{c}.

Levy's Theorem

- Note that $|f(x)| \leq 1 \forall x \in \mathbb{R}^{d}$ and since $\left\langle M^{(j)}\right\rangle_{t}=t$, this implies that $M^{(j)} \in \mathcal{M}_{2}^{c}$. Hence, the real and imaginary parts of $\left\{\int_{0}^{t} e^{i\left(u . X_{v}\right)} d M_{v}^{(j)}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ are not only in $\mathcal{M}^{c, \text { loc }}$ but also in \mathcal{M}_{2}^{c}.
- Consequently

$$
\mathbb{E}\left[\int_{s}^{t} e^{i\left(u . X_{v}\right)} d M_{v}^{(j)} \mid \mathcal{F}_{s}\right]=0, \quad \mathbb{P}-\text { a.s. }
$$

Levy's Theorem

- Note that $|f(x)| \leq 1 \forall x \in \mathbb{R}^{d}$ and since $\left\langle M^{(j)}\right\rangle_{t}=t$, this implies that $M^{(j)} \in \mathcal{M}_{2}^{c}$. Hence, the real and imaginary parts of $\left\{\int_{0}^{t} e^{i\left(u . X_{v}\right)} d M_{v}^{(j)}, \mathcal{F}_{t} ; 0 \leq t<\infty\right\}$ are not only in $\mathcal{M}^{c, \text { loc }}$ but also in \mathcal{M}_{2}^{c}.
- Consequently

$$
\mathbb{E}\left[\int_{s}^{t} e^{i\left(u . X_{v}\right)} d M_{v}^{(j)} \mid \mathcal{F}_{s}\right]=0, \quad \mathbb{P}-\text { a.s. }
$$

- Now, for each $A \in \mathcal{F}_{s}$ and multiplying the last equation by $e^{-i\left(u . X_{s}\right)} \mathbb{1}_{A}$ and applying expected values we obtain

$$
\mathbb{E}\left[e^{\left(u .\left(X_{t}-X_{s}\right)\right)_{1}} \mathbb{1}_{A}\right]=\mathbb{P}(A)-\frac{1}{2}\|u\|^{2} \int_{s}^{t} \mathbb{E}\left[e^{\left(u \cdot\left(X_{v}-X_{s}\right)\right)_{1}} \mathbb{1}_{A}\right] d v
$$

which is an integral equation already solved with solution :

$$
\mathbb{E}\left[e^{\left(u \cdot\left(X_{t}-X_{s}\right)\right)_{1}} \mathbb{1}_{A}\right]=\mathbb{P}(A) e^{-\frac{1}{2}\|u\|^{2}(t-s)}, \quad \forall A \in \mathcal{F}_{s}
$$

References

- I.Karatzas and S.E.Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag(1987)
- J.M.Steele, Stochastic Calculus and Financial Applications,Springer (2000)
- R.Durret, Probability: Theory and Examples, Version 5, January 11,2019
- K.L.Chung, A Course In Probability Theory,Academic Press, Third Edition (2001)
- P.Billingsley, Convergence of Probability Measures, John Wiley Sons,Inc, Second Edition 1999

