Fixed point theory and periodic solutions of differential equations with non-invertible linear part

João G. Silva
FCUL
04/09/2020

Introduction and Auxiliary Results

Brouwer Fixed Point Theorem

Let B be a closed ball in \mathbb{R}^{n} and $f: B \rightarrow B$ a continuous mapping. Then there exists $x^{*} \in B$ such that $f\left(x^{*}\right)=x^{*}$.

Introduction and Auxiliary Results

Brouwer Fixed Point Theorem

Let B be a closed ball in \mathbb{R}^{n} and $f: B \rightarrow B$ a continuous mapping. Then there exists $x^{*} \in B$ such that $f\left(x^{*}\right)=x^{*}$.

Poincaré-Miranda Theorem

Let $L \in \mathbb{R}^{n}, L_{i} \geq 0, \Omega=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq L_{i}, i=1, \ldots, n\right\}$ and $f: \Omega \rightarrow \mathbb{R}^{n}$ a continuous vector field such that

$$
\begin{gathered}
f_{i}\left(x_{1}, \ldots, x_{i-1},-L_{i}, x_{i+1}, \ldots, x_{n}\right) \geq 0, \text { for all } 1 \leq i \leq n \\
f_{i}\left(x_{1}, \ldots, x_{i-1}, L_{i}, x_{i+1}, \ldots, x_{n}\right) \leq 0, \text { for all } 1 \leq i \leq n
\end{gathered}
$$

Then there is a point $x^{*} \in \Omega$ such that $f\left(x^{*}\right)=0$.

Introduction and auxiliary results

Theorem 1

Let $\mathbb{B}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$. If $f: \mathbb{B}^{n} \rightarrow \mathbb{R}^{n}$ is a continuous vector field such that $\forall x \in \partial \mathbb{B}^{n}, f(x) \cdot x>0$, then the equation $f(x)=0$ has a solution in \mathbb{B}^{n}.

Introduction and auxiliary results

Periodic solution of

$$
u^{\prime \prime}(t)+\lambda u(t)+F(u(t))^{\prime}=e(t)
$$

F is class C^{1} and bounded in \mathbb{R} and F^{\prime} is bounded in \mathbb{R}.
e is a 2π-periodic continuous function.
λ a real parameter.
Considering the homogeneous linear part $u^{\prime \prime}+\lambda u=0$ it is particularly interesting to consider the case where λ is an eigenvalue, i.e., there are non-trivial 2π-periodic solutions.

$$
\left\{\begin{array}{l}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \\
\mathrm{u}(0)=\mathrm{u}(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

Introduction and Auxiliary Results

$$
\left\{\begin{array}{l}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \\
\mathrm{u}(0)=\mathrm{u}(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

By integrating in $[0,2 \pi]$ we see that a necessary condition for this problem to be solvable is $\int_{0}^{2 \pi} e(t) d t=0$. We now show it is also sufficient.

Introduction and Auxiliary Results

$$
\left\{\begin{array}{l}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \\
\mathrm{u}(0)=\mathrm{u}(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

By integrating in $[0,2 \pi]$ we see that a necessary condition for this problem to be solvable is $\int_{0}^{2 \pi} e(t) d t=0$. We now show it is also sufficient.
By integration we get

$$
\left\{\begin{array}{l}
\mathrm{u}^{\prime}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))=\mathrm{E}(\mathrm{t})+\mathrm{C} \\
\mathrm{u}(0)=\mathrm{u}(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

Where C is a constant and E is a fixed antiderivative.
Note that E is 2π-periodic because $\int_{0}^{2 \pi} e(t) d t=0$.

Introduction and auxiliary results

Consider the "initial value version" correspondent to the previous problem.

$$
\left\{\begin{array}{l}
u^{\prime}(t)+F(u(t))=E(t)+C \tag{1}\\
u(0)=x
\end{array}\right.
$$

Introduction and auxiliary results

Consider the "initial value version" correspondent to the previous problem.

$$
\left\{\begin{array}{l}
u^{\prime}(t)+F(u(t))=E(t)+C \tag{1}\\
u(0)=x
\end{array}\right.
$$

The solution of this problem will depend on x and C, therefore we have a solution $u(t, x, C)$. By the integral formula of solutions we have that u is a solution of (1) if and only if

$$
u(t, x, C)=x+\int_{0}^{t}(E(s)+C-F(u(s, x, C))) d s
$$

Introduction and auxiliary results

Consider the "initial value version" correspondent to the previous problem.

$$
\left\{\begin{array}{l}
u^{\prime}(t)+F(u(t))=E(t)+C \tag{1}\\
u(0)=x
\end{array}\right.
$$

The solution of this problem will depend on x and C, therefore we have a solution $u(t, x, C)$. By the integral formula of solutions we have that u is a solution of (1) if and only if

$$
u(t, x, C)=x+\int_{0}^{t}(E(s)+C-F(u(s, x, C))) d s
$$

Theorem

Let $J=[a, b], K \subset \mathbb{R}$ compact and $f: J \times \mathbb{R} \times K \rightarrow \mathbb{R}$ continuous and Lipchitz in the second variable variable. Let $\sigma=(\alpha, \beta, \mu)$. Then the integral equation

$$
u(x, \sigma)=\beta+\int_{\alpha}^{x} f(t, u(t, \sigma), \mu) d t
$$

has a unique solution $\forall \alpha \in J, \beta \in \mathbb{R}, \mu \in K$ and the solution $u(x, \sigma)$, is continuous in $J \times J \times \mathbb{R} \times K$.

Introduction and Auxiliary Results

Because we want a 2π-periodic solution

$$
u(0)=u(2 \pi) \Longleftrightarrow 2 \pi C+\int_{0}^{2 \pi} E(s)-F(u(s, x, C)) d s=0
$$

F and E are bounded functions (E is class C^{1} in $[0,2 \pi]$) we can conclude that in order for u to be a periodic function, C has lower and upper bound, a and b, respectively.

Introduction and Auxiliary Results

Because we want a 2π-periodic solution

$$
u(0)=u(2 \pi) \Longleftrightarrow 2 \pi C+\int_{0}^{2 \pi} E(s)-F(u(s, x, C)) d s=0
$$

F and E are bounded functions (E is class C^{1} in $[0,2 \pi]$) we can conclude that in order for u to be a periodic function, C has lower and upper bound, a and b, respectively.

Let $h:[a, b] \rightarrow \mathbb{R}, h(C)=2 \pi C+\int_{0}^{2 \pi} E(s)-F(u(s, x, C)) d s$.
By considering a large enough b and a small enough a we have $h(a)<0$ and $h(b)>0$ and by applying Bolzano's theorem there is a $\left.C^{\prime} \in\right] a, b\left[\right.$ such that $h\left(C^{\prime}\right)=0$, that is $u\left(t, x, C^{\prime}\right)$ is 2π-periodic.

Main result and proofs

$$
u^{\prime \prime}(t)+u(t)+F(u(t))^{\prime}=e(t)
$$

Main result and proofs

$$
u^{\prime \prime}(t)+u(t)+F(u(t))^{\prime}=e(t)
$$

Theorem

Let $e(t)$ be a 2π-periodic function, $F(\infty)$ and $F(-\infty)$ exist and be finite. By setting

$$
e_{c}=\int_{0}^{2 \pi} \cos (x) e(x) d x, \text { and } e_{s}=\int_{0}^{2 \pi} \sin (x) e(x) d x
$$

Then
(1) The condition $2(F(\infty)-F(-\infty))>\sqrt{e_{s}^{2}+e_{c}^{2}}$ is sufficient to the existence of a 2π-periodic solution of the differential equation $u^{\prime \prime}(t)+u(t)+F(u(t))^{\prime}=e(t)$.
(2) If $\forall x \in \mathbb{R}, m \leq F(x) \leq M$, for some $m, M \in \mathbb{R}$ with $m \leq M$, then the condition $2(M-m) \geq \sqrt{e_{s}^{2}+e_{c}^{2}}$ is necessary to the existence of a 2π-periodic solution of the differential equation $u^{\prime \prime}(t)+u(t)+F(u(t))^{\prime}=e(t)$.

Main result and proofs

We want to prove the existence of a solution to the problem

$$
\left\{\begin{array}{c}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{u}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \tag{2}\\
u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

Main result and proofs

We want to prove the existence of a solution to the problem

$$
\left\{\begin{array}{c}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{u}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \tag{2}\\
u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

Let u be a class C^{2} function. Consider the decomposition

$$
u(x)=A \cos (x)+B \sin (x)+W(x, A, B)
$$

where $A=u(0)$ and $u^{\prime}(0)=B$.

Main result and proofs

We want to prove the existence of a solution to the problem

$$
\left\{\begin{array}{c}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{u}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \tag{2}\\
u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

Let u be a class C^{2} function. Consider the decomposition

$$
u(x)=A \cos (x)+B \sin (x)+W(x, A, B)
$$

where $A=u(0)$ and $u^{\prime}(0)=B$.
Therefore $W(0, A, B)=W^{\prime}(0, A, B)=0$.

$$
\left\{\begin{array}{l}
\mathrm{W}{ }^{\prime}(\mathrm{t}, \mathrm{~A}, \mathrm{~B})+\mathrm{W}(\mathrm{t}, \mathrm{~A}, \mathrm{~B})+\mathrm{F}(\mathrm{~A} \cos (t)+B \sin (t)+\mathrm{W}(t, A, B))^{\prime}=e(t) \tag{3}\\
\mathrm{W}(0, \mathrm{~A}, \mathrm{~B})=\mathrm{W}(2 \pi, A, B)=0, \mathrm{~W}^{\prime}(0, A, B)=W^{\prime}(2 \pi, A, B)=0
\end{array}\right.
$$

Main result and proofs

We want to prove the existence of a solution to the problem

$$
\left\{\begin{array}{c}
\mathrm{u}^{\prime \prime}(\mathrm{t})+\mathrm{u}(\mathrm{t})+\mathrm{F}(\mathrm{u}(\mathrm{t}))^{\prime}=\mathrm{e}(\mathrm{t}) \tag{2}\\
u(0)=u(2 \pi), u^{\prime}(0)=u^{\prime}(2 \pi)
\end{array}\right.
$$

Let u be a class C^{2} function. Consider the decomposition

$$
u(x)=A \cos (x)+B \sin (x)+W(x, A, B)
$$

where $A=u(0)$ and $u^{\prime}(0)=B$.
Therefore $W(0, A, B)=W^{\prime}(0, A, B)=0$.

$$
\left\{\begin{array}{l}
\mathrm{W}{ }^{\prime \prime}(\mathrm{t}, \mathrm{~A}, \mathrm{~B})+\mathrm{W}(\mathrm{t}, \mathrm{~A}, \mathrm{~B})+\mathrm{F}(\mathrm{~A} \cos (t)+B \sin (t)+\mathrm{W}(t, A, B))^{\prime}=e(t) \tag{3}\\
\mathrm{W}(0, \mathrm{~A}, \mathrm{~B})=\mathrm{W}(2 \pi, A, B)=0, \mathrm{~W}^{\prime}(0, A, B)=W^{\prime}(2 \pi, A, B)=0
\end{array}\right.
$$

$$
W(t, A, B)=\int_{0}^{t} \sin (t-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x
$$

Main result and proofs

$$
W^{\prime}(t, A, B)=\int_{0}^{t} \cos (t-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x
$$

Main result and proofs

$$
W^{\prime}(t, A, B)=\int_{0}^{t} \cos (t-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x
$$

$$
\left\{\begin{array}{r}
W(2 \pi, A, B)=0 \\
W^{\prime}(2 \pi, A, B)=0
\end{array} \Leftrightarrow\right.
$$

$$
\begin{gathered}
\Leftrightarrow\left\{\begin{array}{l}
\int_{0}^{2 \pi} \sin (2 \pi-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x=0 \\
\int_{0}^{2 \pi} \cos (2 \pi-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x=0
\end{array} \Leftrightarrow\right. \\
\Leftrightarrow\left\{\begin{array}{l}
\left.\int_{0}^{2 \pi} \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x-e_{s}=0 \\
-\int_{0}^{2 \pi} \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime} d x+e_{c}=0
\end{array}\right.
\end{gathered}
$$

Main result and proofs

$$
W^{\prime}(t, A, B)=\int_{0}^{t} \cos (t-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x
$$

$$
\left\{\begin{array}{c}
\mathrm{W}(2 \pi, A, B)=0 \\
W^{\prime}(2 \pi, A, B)=0
\end{array} \Leftrightarrow\right.
$$

$$
\begin{gathered}
\Leftrightarrow\left\{\begin{array}{l}
\int_{0}^{2 \pi} \sin (2 \pi-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x=0 \\
\int_{0}^{2 \pi} \cos (2 \pi-x)\left(e(x)-F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x=0
\end{array} \Leftrightarrow\right. \\
\Leftrightarrow\left\{\begin{array}{l}
\left.\int_{0}^{2 \pi} \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime}\right) d x-e_{s}=0 \\
-\int_{0}^{2 \pi} \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B))^{\prime} d x+e_{c}=0
\end{array}\right.
\end{gathered}
$$

Using integration by parts we get the system

$$
\left\{\begin{array}{l}
\mathrm{e}_{s}+\int_{0}^{2 \pi} \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x=0 \\
e_{c}-\int_{0}^{2 \pi} \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x=0
\end{array}\right.
$$

Main result and proofs

We define the vector field $(X(A, B), Y(A, B))$:

$$
\left\{\begin{array}{l}
X(\mathrm{~A}, \mathrm{~B})=\mathrm{e}_{c}-\int_{0^{2 \pi}}^{2 \pi} \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x \\
Y(A, B)=e_{s}+\int_{0}^{2 \pi} \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x
\end{array}\right.
$$

Main result and proofs

We define the vector field $(X(A, B), Y(A, B))$:

$$
\left\{\begin{array}{l}
X(A, B)=\mathrm{e}_{c}-\int_{0}^{2 \pi} \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x \\
Y(A, B)=e_{s}+\int_{0}^{2 \pi} \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x
\end{array}\right.
$$

Let $(A, B) \in \mathbb{R}^{2}, R=\sqrt{A^{2}+B^{2}}$ and $\phi \in \mathbb{R}$, such that

$$
\cos (\phi)=\frac{B}{\sqrt{A^{2}+B^{2}}}, \sin (\phi)=\frac{A}{\sqrt{A^{2}+B^{2}}} .
$$

Main result and proofs

Consider the dot product:
$(-Y(A, B), X(A, B)) \cdot(A, B)=$

Main result and proofs

Consider the dot product:

$$
\begin{aligned}
& (-Y(A, B), X(A, B)) \cdot(A, B)= \\
& =-A e_{s}-\int_{0}^{2 \pi} A \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x+B e_{c}- \\
& \int_{0}^{2 \pi} B \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x= \\
& =B e_{c}-A e_{s}-\int_{0}^{2 \pi}(A \cos (x)+B \sin (x)) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x=
\end{aligned}
$$

Main result and proofs

Consider the dot product:

$$
\begin{aligned}
& (-Y(A, B), X(A, B)) \cdot(A, B)= \\
& =-\mathrm{Ae}_{s}-\int_{0}^{2 \pi} A \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x+B e_{c}- \\
& \int_{0}^{2 \pi} B \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x= \\
& =\mathrm{Be}_{c}-A e_{s}-\int_{0}^{2 \pi}(A \cos (x)+B \sin (x)) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x= \\
& =\mathrm{Be}_{c}-A e_{s}-\int_{0}^{2 \pi} R \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x
\end{aligned}
$$

Main result and proofs

Consider the dot product:

$$
\begin{aligned}
& (-Y(A, B), X(A, B)) \cdot(A, B)= \\
& =-\mathrm{Ae}_{s}-\int_{0}^{2 \pi} A \cos (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x+B e_{c}- \\
& \int_{0}^{2 \pi} B \sin (x) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x= \\
& =\mathrm{Be}_{c}-A e_{s}-\int_{0}^{2 \pi}(A \cos (x)+B \sin (x)) F(A \cos (x)+B \sin (x)+W(x, A, B)) d x= \\
& =\mathrm{Be}_{c}-A e_{s}-\int_{0}^{2 \pi} R \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x \\
& \leq\|(A, B)\| \times\left\|\left(e_{s}, e_{c}\right)\right\|-\int_{0}^{2 \pi} R \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x= \\
& =\mathrm{R} \times \sqrt{e_{c}^{2}+e_{s}^{2}}-\int_{0}^{2 \pi} R \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x= \\
& =\mathrm{R}\left(\sqrt{e_{c}^{2}+e_{s}^{2}}-\int_{0}^{2 \pi} \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x\right)
\end{aligned}
$$

Main result and proofs

With the assumptions on F we have that

$$
\begin{gathered}
\sqrt{e_{c}^{2}+e_{s}^{2}}-\int_{0}^{2 \pi} \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x \rightarrow \\
\sqrt{e_{c}^{2}+e_{s}^{2}}-2(F(\infty)-F(-\infty))<0
\end{gathered}
$$

as $R \rightarrow \infty$ uniformly with respect to $\phi \in \mathbb{R}$. Note that W is a bounded function in $[0,2 \pi]$ independently of A, B.

Main result and proofs

With the assumptions on F we have that

$$
\begin{gathered}
\sqrt{e_{c}^{2}+e_{s}^{2}}-\int_{0}^{2 \pi} \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x \rightarrow \\
\sqrt{e_{c}^{2}+e_{s}^{2}}-2(F(\infty)-F(-\infty))<0
\end{gathered}
$$

as $R \rightarrow \infty$ uniformly with respect to $\phi \in \mathbb{R}$. Note that W is a bounded function in $[0,2 \pi]$ independently of A, B.

Therefore there is $R_{0} \in \mathbb{R}$ such that,

$$
\forall(A, B) \in \mathbb{R}^{2}:\|(A, B)\| \geq R_{0} \Longrightarrow(-Y(A, B), X(A, B)) \cdot(A, B)<0
$$

and in particular,

$$
\forall(A, B) \in \mathbb{R}^{2}:\|(A, B)\|=R_{0} \Longrightarrow(Y(A, B),-X(A, B)) \cdot(A, B)>0
$$

Main result and proofs

With the assumptions on F we have that

$$
\begin{gathered}
\sqrt{e_{c}^{2}+e_{s}^{2}}-\int_{0}^{2 \pi} \sin (x+\phi) F(R \sin (x+\phi)+W(x, A, B)) d x \rightarrow \\
\sqrt{e_{c}^{2}+e_{s}^{2}}-2(F(\infty)-F(-\infty))<0
\end{gathered}
$$

as $R \rightarrow \infty$ uniformly with respect to $\phi \in \mathbb{R}$. Note that W is a bounded function in $[0,2 \pi]$ independently of A, B.

Therefore there is $R_{0} \in \mathbb{R}$ such that,

$$
\forall(A, B) \in \mathbb{R}^{2}:\|(A, B)\| \geq R_{0} \Longrightarrow(-Y(A, B), X(A, B)) \cdot(A, B)<0
$$

and in particular,

$$
\forall(A, B) \in \mathbb{R}^{2}:\|(A, B)\|=R_{0} \Longrightarrow(Y(A, B),-X(A, B)) \cdot(A, B)>0
$$

By theorem 1 there is a $\left(A^{*}, B^{*}\right) \in \mathbb{R}^{2}$ with $\left\|\left(A^{*}, B^{*}\right)\right\|<R_{0}$ such that $X\left(A^{*}, B^{*}\right)=Y\left(A^{*}, B^{*}\right)=0$.

Hence we have a solution of (2).

Final remarks

$$
u^{\prime \prime}(t)+u(t)+F(u(t))^{\prime}+g(u(t))=e(t)
$$

Bibliography

- Schafer Uwe. From Sperner's Lemma to Differential Equations in Banach Spaces: an Introduction to Fixed Point Theorems and Their Applications. KIT Scientific Publ., 2014.
- Pascoletti, Anna e Zanolin, Fabio. A Path crossing lemma and applications to nonlinear second order equations under slowly varying pertubations.Le Matematiche, Vol LXV, 2010.
- Park, Sehie e Jeong, Kwang Sik. Fixed point and non-retract theorems-Classical circular tours. Taiwanese Journal of Mathematics, Vol. 5, 2001.
- Lazer, Alan C., A second look at the first result of Landesman-Lazer type, October 25, 2000 (https://ejde.math.txstate.edu/conf-proc/05/I1/lazer.pdf)

