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Introduction and Auxiliary Results

Brouwer Fixed Point Theorem
Let B be a closed ball in Rn and f : B → B a continuous mapping. Then there exists
x∗ ∈ B such that f (x∗) = x∗.

Poincaré-Miranda Theorem
Let L ∈ Rn, Li ≥ 0, Ω = {x ∈ Rn : |xi | ≤ Li , i = 1, ..., n} and f : Ω→ Rn a continuous
vector field such that

fi (x1, . . . , xi−1,−Li , xi+1, . . . , xn) ≥ 0, for all 1 ≤ i ≤ n

fi (x1, . . . , xi−1, Li , xi+1, . . . , xn) ≤ 0, for all 1 ≤ i ≤ n

Then there is a point x∗ ∈ Ω such that f (x∗) = 0.
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Introduction and auxiliary results

Theorem 1
Let Bn = {x ∈ Rn : ‖x‖ ≤ 1}. If f : Bn → Rn is a continuous vector field such that
∀x ∈ ∂Bn, f (x) · x > 0, then the equation f (x) = 0 has a solution in Bn.
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Introduction and auxiliary results

Periodic solution of

u′′(t) + λu(t) + F (u(t))′ = e(t)

F is class C 1 and bounded in R and F’ is bounded in R.

e is a 2π-periodic continuous function.

λ a real parameter.

Considering the homogeneous linear part u′′ + λu = 0 it is particularly interesting to

consider the case where λ is an eigenvalue, i.e., there are non-trivial 2π-periodic solutions.
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Introduction and Auxiliary Results

{
u”(t) + F(u(t))’ = e(t)
u(0) = u(2π), u′(0) = u′(2π)

By integrating in [0, 2π] we see that a necessary condition for this problem to be solvable

is
∫ 2π

0
e(t)dt = 0. We now show it is also sufficient.

By integration we get {
u’(t) + F(u(t)) = E(t) + C
u(0) = u(2π), u′(0) = u′(2π)

Where C is a constant and E is a fixed antiderivative.

Note that E is 2π-periodic because
∫ 2π

0
e(t)dt = 0.

João G. Silva (FCUL) Fixed point theory and periodic solutions of differential equations with non-invertible linear part04/09/2020 5 / 15



Introduction and Auxiliary Results

{
u”(t) + F(u(t))’ = e(t)
u(0) = u(2π), u′(0) = u′(2π)

By integrating in [0, 2π] we see that a necessary condition for this problem to be solvable

is
∫ 2π

0
e(t)dt = 0. We now show it is also sufficient.

By integration we get {
u’(t) + F(u(t)) = E(t) + C
u(0) = u(2π), u′(0) = u′(2π)

Where C is a constant and E is a fixed antiderivative.

Note that E is 2π-periodic because
∫ 2π

0
e(t)dt = 0.

João G. Silva (FCUL) Fixed point theory and periodic solutions of differential equations with non-invertible linear part04/09/2020 5 / 15



Introduction and Auxiliary Results

{
u”(t) + F(u(t))’ = e(t)
u(0) = u(2π), u′(0) = u′(2π)

By integrating in [0, 2π] we see that a necessary condition for this problem to be solvable

is
∫ 2π

0
e(t)dt = 0. We now show it is also sufficient.

By integration we get {
u’(t) + F(u(t)) = E(t) + C
u(0) = u(2π), u′(0) = u′(2π)

Where C is a constant and E is a fixed antiderivative.

Note that E is 2π-periodic because
∫ 2π

0
e(t)dt = 0.

João G. Silva (FCUL) Fixed point theory and periodic solutions of differential equations with non-invertible linear part04/09/2020 5 / 15



Introduction and auxiliary results

Consider the "initial value version" correspondent to the previous problem.{
u′(t) + F (u(t)) = E(t) + C

u(0) = x
(1)

The solution of this problem will depend on x and C, therefore we have a solution

u(t, x ,C). By the integral formula of solutions we have that u is a solution of (1) if and
only if

u(t, x ,C) = x +

∫ t

0
(E(s) + C − F (u(s, x ,C)))ds

Theorem
Let J = [a, b], K ⊂ R compact and f : J × R× K → R continuous and Lipchitz in the
second variable variable. Let σ = (α, β, µ). Then the integral equation

u(x , σ) = β +

∫ x

α

f (t, u(t, σ), µ)dt

has a unique solution ∀α ∈ J, β ∈ R, µ ∈ K and the solution u(x , σ), is continuous in
J × J × R× K .
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Introduction and Auxiliary Results

Because we want a 2π-periodic solution

u(0) = u(2π)⇐⇒ 2πC +

∫ 2π

0
E(s)− F (u(s, x ,C))ds = 0

F and E are bounded functions (E is class C 1 in [0, 2π] ) we can conclude that in order

for u to be a periodic function, C has lower and upper bound, a and b, respectively.

Let h : [a, b]→ R, h(C) = 2πC +

∫ 2π

0
E(s)− F (u(s, x ,C))ds.

By considering a large enough b and a small enough a we have h(a) < 0 and h(b) > 0

and by applying Bolzano’s theorem there is a C ′ ∈]a, b[ such that h(C ′) = 0, that is

u(t, x ,C ′) is 2π-periodic.
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Main result and proofs

u′′(t) + u(t) + F (u(t))′ = e(t)

Theorem
Let e(t) be a 2π-periodic function, F (∞) and F (−∞) exist and be finite. By setting

ec =

∫ 2π

0
cos(x)e(x)dx , and es =

∫ 2π

0
sin(x)e(x)dx

Then
1 The condition 2(F (∞)− F (−∞)) >

√
e2
s + e2

c is sufficient to the existence of a
2π-periodic solution of the differential equation u′′(t) + u(t) + F (u(t))′ = e(t).

2 If ∀x ∈ R,m ≤ F (x) ≤ M, for some m,M ∈ R with m ≤ M, then the condition
2(M −m) ≥

√
e2
s + e2

c is necessary to the existence of a 2π-periodic solution of the
differential equation u′′(t) + u(t) + F (u(t))′ = e(t).
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Main result and proofs

We want to prove the existence of a solution to the problem{
u”(t) + u(t) + F(u(t))’ = e(t)
u(0) = u(2π), u′(0) = u′(2π)

(2)

Let u be a class C 2 function. Consider the decomposition

u(x) = A cos(x) + B sin(x) + W (x ,A,B)

where A = u(0) and u′(0) = B.

Therefore W (0,A,B) = W ′(0,A,B) = 0.{
W”(t,A,B)+W(t,A,B)+F(Acos(t) + B sin(t) + W (t,A,B))′ = e(t)

W(0,A,B) = W(2π,A,B) = 0,W ′(0,A,B) = W ′(2π,A,B) = 0
(3)

W (t,A,B) =

∫ t

0
sin(t − x)(e(x)− F (A cos(x) + B sin(x) + W (x ,A,B))′)dx
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Main result and proofs

W ′(t,A,B) =

∫ t

0
cos(t − x)(e(x)− F (A cos(x) + B sin(x) + W (x ,A,B))′)dx

{
W(2π,A,B) = 0
W ′(2π,A,B) = 0

⇔

⇔


∫ 2π

0
sin(2π − x)(e(x)− F (A cos(x) + B sin(x) + W (x ,A,B))′)dx = 0∫ 2π

0
cos(2π − x)(e(x)− F (A cos(x) + B sin(x) + W (x ,A,B))′)dx = 0

⇔

⇔


∫ 2π

0
sin(x)F (A cos(x) + B sin(x) + W (x ,A,B))′)dx − es = 0

−
∫ 2π

0
cos(x)F (A cos(x) + B sin(x) + W (x ,A,B))′dx + ec = 0

Using integration by parts we get the system
es +

∫ 2π

0
cos(x)F (A cos(x) + B sin(x) + W (x ,A,B))dx = 0

ec −
∫ 2π

0
sin(x)F (A cos(x) + B sin(x) + W (x ,A,B))dx = 0
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Main result and proofs

We define the vector field (X (A,B),Y (A,B)):


X(A,B) = ec −

∫ 2π

0
sin(x)F (A cos(x) + B sin(x) + W (x ,A,B))dx

Y (A,B) = es +

∫ 2π

0
cos(x)F (A cos(x) + B sin(x) + W (x ,A,B))dx

Let (A,B) ∈ R2, R =
√
A2 + B2 and φ ∈ R, such that

cos(φ) = B√
A2+B2

, sin(φ) = A√
A2+B2

.
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Main result and proofs

Consider the dot product:

(−Y (A,B),X (A,B)) · (A,B) =

= -Aes −
∫ 2π

0
A cos(x)F (A cos(x) + B sin(x) + W (x ,A,B)) dx + Bec −∫ 2π

0
B sin(x)F (A cos(x) + B sin(x) + W (x ,A,B))dx =

= Bec − Aes −
∫ 2π

0
(A cos(x) + B sin(x))F (A cos(x) + B sin(x) + W (x ,A,B))dx =

= Bec − Aes −
∫ 2π

0
R sin(x + φ)F (R sin(x + φ) + W (x ,A,B))dx

≤ ‖(A,B)‖ × ‖(es , ec)‖ −
∫ 2π

0
R sin(x + φ)F (R sin(x + φ) + W (x ,A,B))dx =

= R×
√
e2
c + e2

s −
∫ 2π

0
R sin(x + φ)F (R sin(x + φ) + W (x ,A,B))dx =

= R
(√

e2
c + e2

s −
∫ 2π

0
sin(x + φ)F (R sin(x + φ) + W (x ,A,B))dx

)
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Main result and proofs

With the assumptions on F we have that

√
e2
c + e2

s −
∫ 2π

0
sin(x + φ)F (R sin(x + φ) + W (x ,A,B))dx →√

e2
c + e2

s − 2(F (∞)− F (−∞)) < 0

as R →∞ uniformly with respect to φ ∈ R. Note that W is a bounded function in
[0, 2π] independently of A,B.

Therefore there is R0 ∈ R such that,

∀(A,B) ∈ R2 : ‖(A,B)‖ ≥ R0 =⇒ (−Y (A,B),X (A,B)) · (A,B) < 0

and in particular,

∀(A,B) ∈ R2 : ‖(A,B)‖ = R0 =⇒ (Y (A,B),−X (A,B)) · (A,B) > 0

By theorem 1 there is a (A∗,B∗) ∈ R2 with ‖(A∗,B∗)‖ < R0 such that

X (A∗,B∗) = Y (A∗,B∗) = 0.

Hence we have a solution of (2).
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Final remarks

u′′(t) + u(t) + F (u(t))′ + g(u(t)) = e(t)
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