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Continuity Equation
Momentum Equations

Three Dimensional components:
∇ · ~V = 0
ρD~V

Dt = −∇p + ρ~g + µ∇2~V
+ boundary conditions + inicial conditions
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Kolmogorov Theory

Velocity in the K41
The state of the flow is characterized by the mean energy
dissipation per unit mass: ε̄
Velocity difference: δu(l) ≡| u(r + l)− u(r) |, eddy of size l � L;
δu(l) = ˜f (l , ¯)ε by dimensional analysis:
[δu] = ms−1; [l ] = m; [ε̄] = m2s−3

[δu] = [l ]α[ε̄]β =⇒ α = β = 1/3
Resulting in: λδu(l) = f [λ(ε̄l)1/3]
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Kolmogorov Theory

Scale and Dissipation
With the previous result and the NSE we can estimate the rate of
change of the energy per unit volume due to dissipation at scale η,
when it becomes important in contrast to L.
ε̄ ∼ νui∂jjui ∼ νδu(η)2/η2

So the Kolmogorov scale:
η ∼ (ε̄/η3)−1/4 depends on the Reynolds numbers as η ∼ Re−3/4

Pedro Marçal Optimization and Control in Shell Models of Turbulence



Context
Main body of work & study

Numerical Integration and Optimization
Conclusions and further work

Bibliography

Shell Models
GOY Model
Parameter space & energy
Process and complex variable separation
Linearization of the equations

Numeric simulation
The energy cascade can be visualized by setting diferent base
parameters.

Figure:
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Spectral energy density

The mean of the square of the velocity difference is called
second order structure function:
S2(l) ≡≺ δu(l)2 �∼ (ε̄l)2/3 is related to the spectral energy
density through a Fourier transform.
We can also express the energy density of the flux:

E = 1
2
�

u(x)2dx = 1
2 (2π)3 �∞

0 ui (k)ui (k)∗dk =
1
2 (2π)34π

�∞
0 k2 | u(k) |2 dk ≡

�∞
0 E (k)dk

Using the Parseval’s identity in fourier transforms of spectral
velocities:

1
(2π)3

�
ui (x)ui (x)dx =

�
ui (−k ′)ui (k ′)dk ′ =

�
ui (k ′)ui (k ′)∗dk ′ with ui (x) ∈ R =⇒ ui (−k ′) = ui (k ′)∗
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Spectral energy density

Integration was performed over the sphere and absorving the
spacial variable into dx, results in:

E (k) = (2π)4k2 | u(k) |2and S2(l) =
�

[u(l + x)− u(x)]2dx
Combining both e quations and after several complex
integration processes we obtain:
E (k) = 1

2πk
�∞

0 xsin(x)S2(x/k)dx ∼ ε̄−2/3k−5/3
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Spectral energy density

Figure:
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The four-fifth law

A special case occurs for a third order struture function,
associated with energy conservation. Again considering a
homogeneus and isotropic turbulent fluid left alone after
intense stirring. As the kinetic change is 0, the mean energy
dissipation is:

ε̄ = − 1
2∂t [u]
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Scalling relation
After several integrations and calculation regarding isotropy and
the NSE, remains a simple equation regarding the third order
structure function:
S3 = −4

5 ε̄l
This law is a cornerstone of fluid dynamics. Not only is it in
agreement with the phenomenology described in the K41 as it is
exact and among few exact results derived from NSE.
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GOY Model

Gledzer & Obukhov

Model and given inicial conditions
Lu = fn
Lu =
dun
dt − ikn

(
un+1un+2 − ε

q un+1un−1 + ε−1
q un−2un−1

)∗
+ νk2

nun

Constants used
Force and solution for the GOY model
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Parameter Space for the GOY model

Number of Shells
Kinematic viscosity
Initial force
Free Parameters

Values used
N = 24; ν = 10−7; fn = (1 + i)× 5× 10−3
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2D and 3D models

2D/3D selector
Complex non linear coeficients
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Constant manipulation and restraints

Constants changed

GOY model constant substituiton
an = kn = k0qn

bn = −1
2kn−1

cn = −1
2kn−2

All components with shell index, n 6 0 are taken as zero
Resulting in:

(
d
dt + vk2

n

)
un = i (anun+1un+2 + bnun+1un−1 + cnun−1un−2)∗ + fn
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Separation

Splitting complex variables un = xn + iyn:

Real Part(
d
dt + vk2

n

)
xn = an (xn+1yn+2 + xn+2yn+1) +

bn (xn−1yn+1 + xn+1yn−1) + cn (xn−2yn−1 + xn−1yn−2) + fx

Imaginary Part(
d
dt + vk2

n

)
yn = ian (xn+1xn+2 − yn+2yn+1) +

ibn (xn−1xn+1 − yn+1yn−1) + icn(xn−2xn−1 − yn−1yn−2) + ify
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Verification

Jupyter Notebook, Python, algorithm used to verify the
separated variables equations.

Algorithm
Load a complex variable with pseudo-random numbers
(u = x + iy);
Write the complex GOY model in simple for loops, all the
N=24 shells;
Write the separated GOY equations as for loops;
Write a function that retrieves the diference between the 3
functions;
Return the biggest difference(0 meaning these equations were
well determined).
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Process

Linearized the system of real and imaginary equations around set
solutions.
Simple example[

xn
yn

]
=
[

x̃n
ỹn

]
+ ε

[
xn
yn

]
The term of order ε2will not be considered (ε� 1)
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Linear Scheme

d
dt



x1
x2
x3
...

xn
y1
y2
y3
...

yn



= −ν



k2
1 x1

k2
2 x2

k2
3 x3
...

k2
nxn

k2
1 y1

k2
2 y2

k2
3 y3
...

k2
nyn



+
[
C1 C2
C3 C4

]



x1
x2
x3
...

xn
y1
y2
y3
...

yn



+ ,

where the block matrices C1 ,C2 ,C3 ,C4 ,are given by:
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Coeficient Part Matrix

C1 =


0 a1 ỹ3 a1 ỹ2

b2 ỹ3 0 a2 ỹ4 + b2 ỹ1 a2 ỹ3
c3 ỹ2 b3 ỹ4 + c3 ỹ1 0 a3 ỹ5 + b3 ỹ2 a3 ỹ4

c3 ỹ2 b3 ỹ4 + c3 ỹ1 0 a3 ỹ5 + b3 ỹ2 a3 ỹ4
c3 ỹ2 b3 ỹ4 + c3 ỹ1 0 a3 ỹ5 + b3 ỹ2 a3 ỹ4

. . .
. . .

. . .
. . .

. . .
cn ỹn cn ỹn−2 0
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Adjoint operator

Cost functional in the separated variables equations
Determining the adjoint operator and transpose matrix
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Classic fourth order RK

Generic expression
un+1 = un + ∆t

∑
biki

Inicial Value Problem
y´ = f (t, y); y(t0) = y0
yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)
tn+1 = tn + h
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Classic fourth order RK & GOY model

RK4
k1 = f (tn, yn)
k2 = f (tn + h

2 , yn + h
2k1)

k3 = f (tn + h
2 , yn + h

2k2)
k4 = f (tn + h, yn + hk3)
h = 10−4; n ≈ 2.5× 108
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Computing the problem and force optimization

Optimization Process
Choosing an initial guess f (0); n = 0
Solve the GOY model equations, with f = f (0)

Solve the adjoint operator from matrix C1...
Obtain the cost functional gradient
Find a parameter...
Update the variable and repeat.
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Understanding the Optimization Problem
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Finding the particular solution

Process(
d
dt + vk2

n

)
un = i (anun+1un+2 + bnun+1un−1 + cnun−1un−2)∗ + fn

A solution is calculated for every time step.
A solution consists of 24 pairs of real and imaginary numbers.
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Finding other solutions and changing the inicial force.

Plugging the solutions xnynand using the Runge Kutta method for
integration, we find solutions for the values x̃n & ỹn.
Python algorithm was used to find these solutions.
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Algorithm
Using the GOY separated equations xn; ynare found for a certain
δt. Using RK4
Using the linearized equations, and matrices C1, C2, C3, C4 for
each time step:
x̃n and ỹn are calculated
Repeat the process
Expected iterations around 2× 108
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Conclusions

The force optimization process and the verification of convergence
for the solutions was not fully completed, mostly due to lack of
time, but also to some limitations in Python.
It would have been better to do the long computing algorithms in
a simpler language such as Fortran. The objective of the long
numeric runs was to find the optimal force or aproaching it,
optimal in a way that would recreate and verify the energy cascade
found in the GOY model and in the K41.
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