Kähler and Tropical Geometry for the Universal Approximation Theorem

João Camarneiro

Tutor: José Mourão

Encontro Nacional Novos Talentos em Matemática

28 de julho de 2021

▲口▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シスペ

Redes neuronais artificiais

- Camada de input, camada(s) oculta(s), camada de output
- Pesos das arestas
- Enviesamentos (bias) dos neurónios
- Função de ativação

Aproximador de funções

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma função desconhecida que pretendemos aproximar. σ

$$f_{W_1, W_2, b}(x) = W_2 \ \sigma(W_1 x + b)$$

onde W_1, W_2 são aplicações lineares.

Aproximador de funções

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma função desconhecida que pretendemos aproximar. σ

$$f_{W_1,W_2,b}(x) = W_2 \sigma(W_1 x + b)$$

onde W_1, W_2 são aplicações lineares.

Teorema de Aproximação Universal para redes neuronais artificiais

Seja $K \subseteq \mathbb{R}^{d_1}$ um compacto e $f: K \to \mathbb{R}^{d_3}$ uma função contínua. Então, qualquer que seja $\varepsilon > 0$, existem $d_2 \in \mathbb{Z}^+$, $W_1 \in \operatorname{Mat}_{d_2 \times d_1}$, $W_2 \in \operatorname{Mat}_{d_3 \times d_2}$ e $b \in \mathbb{R}^{d_2}$ tais que $||f - f_{W_1, W_2, b}||_{L^2(K)} < \varepsilon$.

Funções de ativação usuais

João Camarneiro Kähler and Tropical Geometry for the UAT

4/20

Espaços projetivos complexos

Uma relação de equivalência em $\mathbb{C}^{n+1} \setminus \{0\}$:

 $z \sim w \iff$ existe $\lambda \in \mathbb{C}^*$ tal que $z = \lambda w$

Então, o **espaço projetivo complexo** de dimensão n é definido como o conjunto das classes de equivalência de \sim .

$$\mathbb{CP}^n = \frac{\mathbb{C}^{n+1} \setminus \{0\}}{\sim}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Exemplo

• $[2:1] = [-6:-3] \in \mathbb{CP}^1$

•
$$[i:0:-2] = [1:0:2i] \in \mathbb{CP}^2$$

• Um ponto $[Z_0: Z_1: \cdots: Z_n] \in \mathbb{CP}^n$ é uma classe de equivalência com múltiplos representantes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

- Um ponto $[Z_0: Z_1: \cdots: Z_n] \in \mathbb{CP}^n$ é uma classe de equivalência com múltiplos representantes.
- Em $U_0 = \{ [Z_0 : Z_1 : \cdots : Z_n] \in \mathbb{CP}^n : Z_0 \neq 0 \}$ estão bem definidas as coordenadas locais $z : U_0 \subseteq \mathbb{CP}^n \to \mathbb{C}^n$,

$$z_j = \frac{Z_j}{Z_0}, \quad U_0 \cong \mathbb{C}^n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

- Um ponto $[Z_0: Z_1: \cdots: Z_n] \in \mathbb{CP}^n$ é uma classe de equivalência com múltiplos representantes.
- Em $U_0 = \{ [Z_0 : Z_1 : \cdots : Z_n] \in \mathbb{CP}^n : Z_0 \neq 0 \}$ estão bem definidas as coordenadas locais $z : U_0 \subseteq \mathbb{CP}^n \to \mathbb{C}^n$,

$$z_j = \frac{Z_j}{Z_0}, \quad U_0 \cong \mathbb{C}^n.$$

- Podemos pensar nestes pontos através das suas coordenadas $z = (z_1, \ldots, z_n) \in \mathbb{C}^n.$
- \mathbb{CP}^n é uma variedade de dimensão 2n.

• Seja $U \subseteq \mathbb{CP}^n$ o aberto onde $Z_j \neq 0$ para todo o $j = 0, 1, \dots, n.$

- Seja $U \subseteq \mathbb{CP}^n$ o aberto onde $Z_j \neq 0$ para todo o $j = 0, 1, \dots, n$.
- Em U, temos z_j = Z_j/Z₀ ≠ 0. Podemos reescrever em coordenadas polares: z_j = r_je^{iθ_j}.

- Seja $U \subseteq \mathbb{CP}^n$ o aberto onde $Z_j \neq 0$ para todo o $j = 0, 1, \dots, n.$
- Em U, temos z_j = Z_j/Z₀ ≠ 0. Podemos reescrever em coordenadas polares: z_j = r_je^{iθ_j}.
- $r_j > 0$ e portanto $r_j = e^{y_j}$ com $y_j \in \mathbb{R}$. Logo:

$$z_j = e^{y_j + i\theta_j} = e^{w_j}$$

• Vai ser conveniente trabalhar com a *coordenada logarítmica* $w = (y, \theta)$ e a sua parte real y.

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - 釣んで

Toros

• Definimos o **toro** de dimensão n como $\mathbb{T}^n = (S^1)^n.$

▲口> ▲団> ▲目> ▲目> 三日 ろんの

8/20

Toros

• Definimos o **toro** de dimensão n como $\mathbb{T}^n = (S^1)^n$.

▲口> ▲団> ▲目> ▲目> 三日 ろんの

8/20

$$S^1 = \{e^{it} : t \in \mathbb{R}\}$$

Toros

• Definimos o **toro** de dimensão n como $\mathbb{T}^n = (S^1)^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

 $S^1 = \{e^{it} : t \in \mathbb{R}\} \qquad \{e^{i(t+is)} : t, s \in \mathbb{R}\}$

Toros

• Definimos o **toro** de dimensão n como $\mathbb{T}^n = (S^1)^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

 $S^1 = \{e^{it} : t \in \mathbb{R}\} \qquad \{e^{i(t+is)} : t, s \in \mathbb{R}\} = \mathbb{C}^*$

Toros

• Definimos o **toro** de dimensão n como $\mathbb{T}^n = (S^1)^n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

 $S^1 = \{e^{it} : t \in \mathbb{R}\} \qquad \{e^{i(t+is)} : t, s \in \mathbb{R}\} = \mathbb{C}^*$

• Podemos considerar a **complexificação** do toro: $\mathbb{T}^n_{\mathbb{C}} = (\mathbb{C}^*)^n$.

Ação de \mathbb{T}^n em \mathbb{CP}^n

Consideramos uma ação do toro \mathbb{T}^n em \mathbb{CP}^n :

$$(e^{it_1}, \dots, e^{it_n}) \cdot [Z_0 : Z_1 : \dots : Z_n] = [Z_0 : e^{it_1}Z_1 : \dots : e^{it_n}Z_n]$$

9/20

Ação de \mathbb{T}^n em \mathbb{CP}^n

Consideramos uma ação do toro \mathbb{T}^n em \mathbb{CP}^n :

$$(e^{it_1}, \dots, e^{it_n}) \cdot [Z_0 : Z_1 : \dots : Z_n] = [Z_0 : e^{it_1}Z_1 : \dots : e^{it_n}Z_n]$$

Caso n = 1: rotações na esfera de Riemann; as órbitas são os paralelos.

Ação de \mathbb{T}^n em \mathbb{CP}^n

A ação estende a uma ação do toro complexo $(\mathbb{C}^*)^n$:

$$(w_1, \ldots, w_n) \cdot [Z_0 : Z_1 : \cdots : Z_n] = [Z_0 : w_1 Z_1 : \cdots : w_n Z_n]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Ação de \mathbb{T}^n em \mathbb{CP}^n

A ação estende a uma ação do toro complexo $(\mathbb{C}^*)^n$:

$$(w_1, \dots, w_n) \cdot [Z_0 : Z_1 : \dots : Z_n] = [Z_0 : w_1 Z_1 : \dots : w_n Z_n]$$

Caso n = 1: órbita densa + polos

O caso do \mathbb{CP}^2

 $(e^{it_1}, e^{it_2}) \cdot [Z_0 : Z_1 : Z_2] = [Z_0 : e^{it_1}Z_1 : e^{it_2}Z_2]$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ ♀ 11/20

O caso do \mathbb{CP}^2

$$(e^{it_1}, e^{it_2}) \cdot [Z_0 : Z_1 : Z_2] = [Z_0 : e^{it_1}Z_1 : e^{it_2}Z_2]$$

Podemos tomar como aplicação momento para esta ação o seguinte $\mu:\mathbb{CP}^2\to\mathbb{R}^2:$

$$\mu([Z_0:Z_1:Z_2]) = \left(\frac{|Z_1|^2}{|Z_0|^2 + |Z_1|^2 + |Z_2|^2}, \frac{|Z_2|^2}{|Z_0|^2 + |Z_1|^2 + |Z_2|^2}\right)$$

O caso do \mathbb{CP}^2

$$(e^{it_1}, e^{it_2}) \cdot [Z_0 : Z_1 : Z_2] = [Z_0 : e^{it_1}Z_1 : e^{it_2}Z_2]$$

Podemos tomar como aplicação momento para esta ação o seguinte $\mu:\mathbb{CP}^2\to\mathbb{R}^2:$

$$\mu([Z_0:Z_1:Z_2]) = \left(\frac{|Z_1|^2}{|Z_0|^2 + |Z_1|^2 + |Z_2|^2}, \frac{|Z_2|^2}{|Z_0|^2 + |Z_1|^2 + |Z_2|^2}\right)$$

Nas coordenadas logarítmicas (y, θ) :

$$\mu(y_1, y_2, \theta_1, \theta_2) = \left(\frac{e^{2y_1}}{1 + e^{2y_1} + e^{2y_2}}, \frac{e^{2y_2}}{1 + e^{2y_1} + e^{2y_2}}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(で)

O caso do \mathbb{CP}^2

$$(e^{it_1}, e^{it_2}) \cdot [Z_0 : Z_1 : Z_2] = [Z_0 : e^{it_1}Z_1 : e^{it_2}Z_2]$$

Podemos tomar como aplicação momento para esta ação o seguinte $\mu:\mathbb{CP}^2\to\mathbb{R}^2:$

$$\mu([Z_0:Z_1:Z_2]) = \left(\frac{|Z_1|^2}{|Z_0|^2 + |Z_1|^2 + |Z_2|^2}, \frac{|Z_2|^2}{|Z_0|^2 + |Z_1|^2 + |Z_2|^2}\right)$$

Nas coordenadas logarítmicas (y, θ) :

$$\mu(y_1, y_2, \theta_1, \theta_2) = \left(\frac{e^{2y_1}}{1 + e^{2y_1} + e^{2y_2}}, \frac{e^{2y_2}}{1 + e^{2y_1} + e^{2y_2}}\right)$$

Observação

No caso
$$n=1,$$
 fica $\mu(y)=\frac{e^{2y}}{1+e^{2y}}=\frac{1}{1+e^{-2y}},$ a função de ativação sigmoide.

Aplicação momento e convexidade

Aplicação momento e convexidade

Imagem da aplicação momento de \mathbb{CP}^2 (em \mathbb{R}^2):

• É um polítopo convexo: o **polítopo momento**, *P*.

イロト イロト イヨト イヨト 三日 二

Aplicação momento e convexidade

Imagem da aplicação momento de \mathbb{CP}^2 (em \mathbb{R}^2): $(0,\frac{1}{2})$ (0,0) $(\frac{1}{2},0)$

- É um polítopo convexo: o **polítopo momento**, *P*.
- Cada ponto no polítopo corresponde a uma órbita da ação de T².

Aplicação momento e convexidade

Imagem da aplicação momento de \mathbb{CP}^2 (em \mathbb{R}^2):

- É um polítopo convexo: o **polítopo momento**, *P*.
- Cada ponto no polítopo corresponde a uma órbita da ação de T².
- Interior do polítopo: órbita densa da ação de $\mathbb{T}^2_{\mathbb{C}}$

Aplicação momento e convexidade

 $(\frac{1}{2},0)$

Imagem da aplicação momento de \mathbb{CP}^2 (em \mathbb{R}^2): $(0, \frac{1}{2})$

(0,0)

- É um polítopo convexo: o **polítopo momento**, *P*.
- Cada ponto no polítopo corresponde a uma órbita da ação de T².
- Interior do polítopo: órbita densa da ação de $\mathbb{T}^2_{\mathbb{C}}$
- Coordenadas simpléticas (x,θ) na órbita densa

$$x_1 = \frac{e^{2y_1}}{1 + e^{2y_1} + e^{2y_2}}, \quad x_2 = \frac{e^{2y_2}}{1 + e^{2y_1} + e^{2y_2}}$$

Podemos considerar a função de transição da coordenada y para a coordenada x.

$$\sigma : \mathbb{R}^2 \to P^\circ$$
$$\sigma(y_1, y_2) = \left(\frac{e^{2y_1}}{1 + e^{2y_1} + e^{2y_2}}, \frac{e^{2y_2}}{1 + e^{2y_1} + e^{2y_2}}\right)$$

Vamos utilizá-la como função de ativação.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Podemos considerar a função de transição da coordenada y para a coordenada x.

$$\sigma : \mathbb{R}^2 \to P^\circ$$

$$\sigma(y_1, y_2) = \left(\frac{e^{2y_1}}{1 + e^{2y_1} + e^{2y_2}}, \frac{e^{2y_2}}{1 + e^{2y_1} + e^{2y_2}}\right)$$

Vamos utilizá-la como função de ativação.

Comparando com a função sigmoide:

$$\tilde{\sigma}(y_1, y_2) = \left(\frac{e^{2y_1}}{1 + e^{2y_1}}, \frac{e^{2y_2}}{1 + e^{2y_2}}\right)$$

<□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 13/20

Teorema de Aproximação Universal

Seja $K \subseteq \mathbb{R}$ um compacto e $f: K \to \mathbb{R}$ uma função contínua. Então, qualquer que seja $\varepsilon > 0$, existem $d \in \mathbb{Z}^+$, aplicações lineares $W_1: \mathbb{R} \to \mathbb{R}^d$, $W_2: \mathbb{R}^d \to \mathbb{R}$ e um vetor $b \in \mathbb{R}^d$ tais que $||f - f_{W_1, W_2, b}||_{L^2(K)} < \varepsilon$.

$$f_{W_1, W_2, b}(x) = W_2 \sigma(W_1 x + b)$$

14/20

Teorema de Aproximação Universal

Seja $K \subseteq \mathbb{R}$ um compacto e $f: K \to \mathbb{R}$ uma função contínua. Então, qualquer que seja $\varepsilon > 0$, existem $d \in \mathbb{Z}^+$, aplicações lineares $W_1: \mathbb{R} \to \mathbb{R}^d$, $W_2: \mathbb{R}^d \to \mathbb{R}$ e um vetor $b \in \mathbb{R}^d$ tais que $||f - f_{W_1, W_2, b}||_{L^2(K)} < \varepsilon$.

$$f_{W_1, W_2, b}(x) = W_2 \sigma(W_1 x + b)$$

Ideia: Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_i \cap K$ seja suficientemente pequeno.

(日)

14/20

Teorema de Aproximação Universal

Seja $K \subseteq \mathbb{R}$ um compacto e $f: K \to \mathbb{R}$ uma função contínua. Então, qualquer que seja $\varepsilon > 0$, existem $d \in \mathbb{Z}^+$, aplicações lineares $W_1: \mathbb{R} \to \mathbb{R}^d$, $W_2: \mathbb{R}^d \to \mathbb{R}$ e um vetor $b \in \mathbb{R}^d$ tais que $||f - f_{W_1, W_2, b}||_{L^2(K)} < \varepsilon$.

$$f_{W_1,W_2,b}(x) = W_2 \sigma(W_1 x + b)$$

Ideia: Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_j \cap K$ seja suficientemente pequeno.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ●

Teorema de Aproximação Universal

Seja $K \subseteq \mathbb{R}$ um compacto e $f: K \to \mathbb{R}$ uma função contínua. Então, qualquer que seja $\varepsilon > 0$, existem $d \in \mathbb{Z}^+$, aplicações lineares $W_1: \mathbb{R} \to \mathbb{R}^d$, $W_2: \mathbb{R}^d \to \mathbb{R}$ e um vetor $b \in \mathbb{R}^d$ tais que $||f - f_{W_1, W_2, b}||_{L^2(K)} < \varepsilon$.

$$f_{W_1, W_2, b}(x) = W_2 \sigma(W_1 x + b)$$

Ideia: Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_i \cap K$ seja suficientemente pequeno.

Aproximar f por uma função em escada definida nestes intervalos.

14/20

Fan de \mathbb{CP}^n

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ ♡ 15/20

Degeneração tropical

- Função de ativação $\sigma:\mathbb{R}^n\to P^\circ$
- Degeneração tropical: $\sigma_t(y) = \sigma(ty)$, $\sigma_{\infty} = \lim_{t \to +\infty} \sigma_t$

Degeneração tropical

- Função de ativação $\sigma:\mathbb{R}^n\to P^\circ$
- Degeneração tropical: $\sigma_t(y) = \sigma(ty)$, $\sigma_{\infty} = \lim_{t \to +\infty} \sigma_t$
- No caso n = 1: $\sigma(ty) = \frac{e^{2ty}}{1 + e^{2ty}}$

$$\sigma_{\infty}(y) = \begin{cases} 0 & \text{se } y < 0 \\ \frac{1}{2} & \text{se } y = 0 \\ 1 & \text{se } y > 0 \end{cases}$$

Degeneração tropical

- Função de ativação $\sigma:\mathbb{R}^n\to P^\circ$
- Degeneração tropical: $\sigma_t(y) = \sigma(ty), \ \sigma_{\infty} = \lim_{t \to +\infty} \sigma_t$
- No caso n = 1: $\sigma(ty) = \frac{e^{2ty}}{1 + e^{2ty}}$

$$\sigma_{\infty}(y) = \begin{cases} 0 & \text{se } y < 0 \\ \frac{1}{2} & \text{se } y = 0 \\ 1 & \text{se } y > 0 \end{cases}$$

Lema

A função limite $\sigma_{\infty} = \lim_{t \to +\infty} \sigma_t$ é em escada: toma um valor constante no interior de cada cone do fan de \mathbb{CP}^n .

Exemplo (caso n = 2):

João Camarneiro Kähler and Tropical Geometry for the UAT

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ ♡ 17/20

Outro ingrediente

Consideremos uma divisão de \mathbb{R} em intervalos I_0, I_1, \ldots, I_N .

Lema

Existe uma aplicação afim $L : \mathbb{R} \to \mathbb{R}^N$ que envia os intervalos I_j nos cones maximais do fan de \mathbb{CP}^N .

Exemplo:

Retomando a demonstração

• Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_j \cap K$ seja suficientemente pequeno, aproximar f por uma função em escada $g = \sum_{j=0}^N c_j \mathbb{1}_{I_j}$ definida nestes intervalos.

Retomando a demonstração

- Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_j \cap K$ seja suficientemente pequeno, aproximar f por uma função em escada $g = \sum_{j=0}^N c_j \mathbb{1}_{I_j}$ definida nestes intervalos.
- Enviar os intervalos para o fan de \mathbb{CP}^N ($L:\mathbb{R}\to\mathbb{R}^N$)

・ロト ・四ト ・ヨト ・ヨト - ヨー

Retomando a demonstração

- Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_j \cap K$ seja suficientemente pequeno, aproximar f por uma função em escada $g = \sum_{j=0}^N c_j \mathbb{1}_{I_j}$ definida nestes intervalos.
- Enviar os intervalos para o fan de \mathbb{CP}^N ($L:\mathbb{R}\to\mathbb{R}^N$)
- Função em escada, $\sigma_\infty:\mathbb{R}^N o \mathbb{R}^N$

Retomando a demonstração

- Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_j \cap K$ seja suficientemente pequeno, aproximar f por uma função em escada $g = \sum_{j=0}^N c_j \mathbb{1}_{I_j}$ definida nestes intervalos.
- Enviar os intervalos para o fan de \mathbb{CP}^N $(L:\mathbb{R}\to\mathbb{R}^N)$
- Função em escada, $\sigma_\infty:\mathbb{R}^N \to \mathbb{R}^N$
- Ajustar as constantes: $W : \mathbb{R}^N \to \mathbb{R}$

《曰》《御》《曰》《曰》 [] [] []

Retomando a demonstração

- Dividir \mathbb{R} em intervalos I_0, I_1, \ldots, I_N de modo a que $I_j \cap K$ seja suficientemente pequeno, aproximar f por uma função em escada $g = \sum_{j=0}^N c_j \mathbb{1}_{I_j}$ definida nestes intervalos.
- Enviar os intervalos para o fan de \mathbb{CP}^N $(L:\mathbb{R}\to\mathbb{R}^N)$
- Função em escada, $\sigma_\infty:\mathbb{R}^N \to \mathbb{R}^N$
- Ajustar as constantes: $W : \mathbb{R}^N \to \mathbb{R}$
- Função aproximadora: $W \circ \sigma \circ (tL)$, com t suficientemente grande.

Referências

• George Jeffreys e Siu-Cheong Lau, Kähler Geometry of Quiver Varieties and Machine Learning (2021), arXiv:2101.11487.

イロト 不得 トイヨト イヨト ニヨー