The Genus of a Laurent Polynomial

João G. Silva FCUL

Advisor: Carlos A.A. Florentino

July 29, 2021

Index

1. Preliminaries

- Riemann surfaces,multiplicity and ramification
- Riemann-Hurwitz formula
- Hyperelliptic Riemann surface

2. Khovanskii's Theorem

- k-gonal curves
- Newton Polygon of a Laurent polynomial
- Toric compactification
- Khovanskii's Theorem
- Example: "The rectangle"

3. Isomorphic Riemann Surfaces and affine transformations

- \mathbb{Z}-affine transformation
- Isomorphic Riemann surfaces

4. References

Introduction and preliminaries

Riemann Surface

A Riemann surface is a complex manifold of dimension one, that is a set that around each point is locally homeomorphic to \mathbb{C}.

Definition - Holomorphic map

A holomorphic map between Riemann surfaces $F: X \rightarrow Y$ is one which is holomorphic when viewed as a map between regions in the complex plane.

Definition

Let $F: X \longrightarrow Y$ be a non-constant holomorphic map defined at $p \in X$. The multiplicity of F at p , denoted mult $t_{p}(F)$, is the unique integer m such that there are local coordinates near p and $F(p)$ with F having the form $z \rightarrow z^{m}$. If $m>1$ we call p a ramification point and $F(p)$ a branch point

Affine plane curves

Definition

An affine plane curve is the locus of zeros in \mathbb{C}^{2} of a polynomial $f(x, y)$. A polynomial $f(x, y)$ is nonsingular at a root p if either partial derivative $\frac{\partial f}{\partial x}$ or $\frac{\partial f}{\partial y}$ is non zero at p. The affine plane curve X of roots of f is nonsingular at p if f is nonsingualar at p. The curve X is nonsingular, or smooth, if it is non singular at each of its points.

Theorem

If $f \in \mathbb{C}[x, y]$ is an irreducible polynomial then its locus of roots, X, is connected. Hence if f is a nonsingular and irreducible, X is a Riemann surface.

Lemma

Let X be a smooth afine plane curve defined by $f(x, y)=0$, where f is a polynomial. Define $\pi: X \longrightarrow \mathbb{C}$ by $\pi(x, y)=x$, then π is ramified at $p \in X$ if and only if $\frac{\partial f}{\partial y}(p)=0$.

Riemann-Hurwitz formula

Proposition

Let $F: X \longrightarrow Y$ be a non-constant holomorphic map between compact Riemann surfaces. For each $y \in Y$, define

$$
d_{y}(F)=\sum_{p \in F^{-1}(y)} m u l t_{p}(F)
$$

Then $d_{y}(F)$ is constant, independently of $y \in Y$. We call this constant the degree of F and we denote it by $\operatorname{deg}(F)$.

Riemann-Hurwitz Formula

Let X, Y be two compact Riemann surfaces and $F: X \longrightarrow Y$ be a non-constant holomorphic map. Then

$$
2 g(X)-2=\operatorname{deg}(F)(2 g(Y)-2)+\sum_{p \in X}\left[m u l t_{p}(F)-1\right],
$$

where $g(X), g(Y)$ denote de genus of the surfaces X and Y, respectively.

Hyperelliptic Riemann surfaces

Let $h(x)$ be a polynomial of degree $2 n+1+\epsilon, \epsilon \in\{0,1\}$ with distinct roots.
Then the affine plane curve X defined by $y^{2}=h(x)$ is smooth.
Let $k(z)=z^{2 n+2} h(1 / z)$ (k is also a polynomial with distinct roots).
Form the smooth affine plane curve Y defined by the equation $w^{2}=k(z)$. Let $U=\{(x, y) \in X: x \neq 0\}$ and $V=\{(z, w) \in Y: z \neq 0\}$. (Note that U and V are open sets in X and Y, respectively). Define an isomophism

$$
\begin{aligned}
& \phi: U \longrightarrow V \\
& \quad \phi(x, y)=(z, w)=\left(1 / x, y / x^{n+1}\right)
\end{aligned}
$$

Form the compact Riemann surface Z obtained by glueing X and Y along U and V via ϕ.

$$
\begin{array}{r}
\pi: Z \longrightarrow \mathbb{C}_{\infty} \\
\quad(x, y) \mapsto x
\end{array}
$$

Hyperelliptic Riemann surfaces

π has degree 2 and the branch points of π are the roots of h (and the point ∞ if h has odd degree). Therefore the inverse image of any point under π is either two points with multiplicity one, or one point with multiplicity two.
By the Riemann-Hurwitz formula we have

$$
2 g(Z)-2=2(0-2)+2 n+2 \quad \Longrightarrow \quad g(Z)=n
$$

$(0,2)$

$(0,0)$

$$
(2 n+1+\varepsilon, 0)
$$

k-gonal curves

Theorem

Let $p(x)$ be a polynomial of degree $k(n+1)-1+\epsilon(\epsilon \in\{0,1\})$ with distinct roots. Let X be the affine plane curve defined by $X=F^{-1}(0) \subset \mathbb{C}^{2}$ with

$$
F(x, y):=y^{k}-p(x) .
$$

Then X admits a compactification $Z=X \cup\left\{\infty_{1}, \cdots, \infty_{k}\right\}$ with k points at infinity $(z=0)$, with Z being a Riemann surface of genus
$g=\frac{1}{2}\left(k^{2}(n+1)-k(n+3)\right)+1$.
Moreover the genus of Z coincides with the number of points with integer coordinates in the triangle of vertices $(0,0),(k n+k, 0),(0, k)$.
($0, \mathrm{k}$)

Newton Polygon

Definition

Given a Laurent polynomial

$$
f(x, y)=\sum_{j=a}^{b} \sum_{k=c}^{d} a_{j . k} x^{j} y^{k}
$$

consider the polygon defined as the convex hull of the points $(j, k) \in \mathbb{R}^{2}$ such that $a_{j, k} \neq 0$. To this polygon we call the Newton polygon associated to f and we denote it by $\Delta(f)$

Definition

Let $f \in \mathbb{C}\left[x, y, x^{-1}, y^{-1}\right]$ be a Laurent polynomial we define the translated polynomial $T_{k, l}[f](x, y)=x^{k} y^{l} f(x, y)$ for $k, l \in \mathbb{Z}$ and the reflected polynomial $R[f](x, y)=f\left(\frac{1}{x}, \frac{1}{y}\right)$

Toric compactification

Definition

Let $f \in \mathbb{C}\left[x, y, x^{-1}, y^{-1}\right]$ be a Laurent polynomial, we define X_{f} as

$$
X_{f}=f^{-1}(\{0\})
$$

and $U_{f}=X_{f} \cap\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)$.
Toric compactification
. Let $f(x, y) \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Write f in the following form:

$$
f(x, y)=\sum_{j=a}^{b} \sum_{k=c}^{d} c_{j . k} x^{j} y^{k}
$$

Assume $c_{a, c}, c_{b, d} \neq 0$. Define the polynomials $F(x, y)=x^{-a} y^{-c} f(x, y)$ and $G(z, w)=z^{b} w^{d} f(1 / z, 1 / w)$. Suppose that F and G are nonsingular. Consider the isomorphism

$$
\begin{aligned}
& \phi: U_{F} \longrightarrow U_{G} \\
& \quad \phi(x, y)=(z, w)=(1 / x, 1 / y)
\end{aligned}
$$

Toric compactification

Toric compactification

Let $X_{t}(f)$ be the compact Riemann surface obtained by glueing X_{F} and X_{G} along U_{F} and U_{G} via ϕ. To the type of glueing we call toric glueing and to $X_{t}(f)$ we call the toric compactification of the affine plane curve X_{F}.

Remark

When we perform this type of compactification one naturally asks how many points are we adding to X_{F}, that is how many ∞ 's are we adding to X_{F}. Using the same notation as above the answer to this question is the number of distinct solutions to the equations $G(0, w)=0$ and $G(z, 0)=0$.

Khovanskii's Theorem

Theorem
Let $f \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ be a Laurent polynomial, such that we can perform the toric compactification $X_{t}(f)$. Then we can also perform the toric compactifications on $R[f]$ and $T_{k, l}[f]$, for any $k, l \in \mathbb{Z}$. And

$$
X_{t}(f) \cong X_{t}(R[f]) \cong X_{t}\left(T_{k, l}[f]\right)
$$

Khovanskii's Theorem
Let $f \in \mathbb{C}\left[x, y, x^{-1}, y^{-1}\right]$ be a Laurent polynomial, such that we can perform the toric compactification $X_{t}(f)$, then we have the following equality

$$
g\left(X_{t}(f)\right)=\#\left(\operatorname{int}(\Delta(f)) \cap \mathbb{Z}^{2}\right)
$$

Where $X_{t}(f)$ is as above and $\Delta(f)$ is the Newton polygon of f.

Khovanskii's Theorem - Example

The rectangle
Let $k, I \in \mathbb{N}$, and $f(x, y)=\lambda+x^{k}+y^{\prime}+x^{k} y^{\prime}=0$ with $\lambda \in \mathbb{C} \backslash\{0,1\}$.

$$
y^{\prime}=-\frac{x^{k}+\lambda}{x^{k}+1}
$$

To see that f is nonsingular in X_{f} we verify that the system

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}(x, y)=0 \\
\frac{\partial f}{\partial y}(x, y)=0
\end{array}\right.
$$

is impossible. As before we consider new variables $z=1 / x, w=1 / y$ and define $g(z, w)=z^{k} w^{\prime} f(1 / z, 1 / w)$. g is also nonsingular in X_{g}. Now form the compact Riemann surface $X_{t}(f)$. Consider the holomorphic map

$$
\begin{gathered}
\pi: X_{t}(f) \longrightarrow \mathbb{C}_{\infty} \\
\pi(x, y)=x
\end{gathered}
$$

Khovanskii's Theorem - Example

This map has degree $I(\operatorname{deg}(\pi)=I)$ and using the Lemma we see that it has $2 k$ ramification points with multiplicity I. Hence by the Riemann-Hurwitz formula we have

$$
g\left(X_{t}(f)\right)=(I-1)(k-1)
$$

And the number of interior lattice points of the rectangle with vertices $(0,0),(k, 0),(0, I),(k, l)$

Isomorphic Riemann Surfaces and affine transformations

Definition

A \mathbb{Z}-affine transformation is a map

$$
\begin{aligned}
\psi & : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& x \mapsto A x+b
\end{aligned}
$$

Where $A \in G L_{2}(\mathbb{Z})$ and $b \in \mathbb{Z}^{2}$.

Definition

Let $\psi: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2},(i, j) \mapsto(k(i, j), l(i, j))$ be a \mathbb{Z}-affine transformation and $f(x, y)=\sum_{j=a}^{b} \sum_{j=c}^{d} c_{i, j} x^{i} y^{j} \in \mathbb{C}\left[x, y, x^{-1}, y^{-1}\right]$ a Laurent polynomial we define $\psi[f]$ as

$$
\psi[f](x, y)=\sum_{j=-a}^{b} \sum_{j=-c}^{d} c_{i, j} x^{k(i, j)} y^{\prime(i, j)}
$$

Isomorphic Riemann Surfaces and affine transformations

Theorem

Let $f \in \mathbb{C}\left[x, y, x^{-1}, y^{-1}\right]$ be a nonsingular Laurent polynomial such that and ψ be an \mathbb{Z}-affine transformation and let $\psi[f]$ be as before, then

$$
X_{\psi[f]} \cong X_{f}
$$

Proof (idea)

We need only to verify the result for translations and the \mathbb{Z}-affine transformations associated to the matrices

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } C=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Bibliography

- Miranda, Rick. Algebraic Curves and Riemann Surfaces, American Mathematical Society.
- Florentino, Carlos, Notas de Análise Complexa, 2011.
- Cools, Filip and Castryck, Wouter, Newton polygons and curve gonalities, J. of Algebraic Combinatorics, 35 (2012) 345-366 .
- Khovanskii, A.G., Newton Polyhedra and Toroidal Varieties, Functional Analysis and Its Applications, 11, (1977) 289-298

