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Introduction and preliminaries

Riemann Surface
A Riemann surface is a complex manifold of dimension one, that is a set
that around each point is locally homeomorphic to C.

Definition - Holomorphic map
A holomorphic map between Riemann surfaces F : X → Y is one which is
holomorphic when viewed as a map between regions in the complex plane.

Definition
Let F : X −→ Y be a non-constant holomorphic map defined at p ∈ X .
The multiplicity of F at p, denoted multp(F ), is the unique integer m
such that there are local coordinates near p and F (p) with F having the
form z → zm. If m > 1 we call p a ramification point and F (p) a branch
point



Affine plane curves

Definition
An affine plane curve is the locus of zeros in C2 of a polynomial f (x , y).
A polynomial f (x , y) is nonsingular at a root p if either partial derivative
∂f
∂x or ∂f

∂y is non zero at p. The affine plane curve X of roots of f is
nonsingular at p if f is nonsingualar at p. The curve X is nonsingular, or
smooth, if it is non singular at each of its points.

Theorem
If f ∈ C[x , y ] is an irreducible polynomial then its locus of roots, X , is
connected. Hence if f is a nonsingular and irreducible, X is a Riemann
surface.

Lemma
Let X be a smooth afine plane curve defined by f (x , y) = 0, where f is a
polynomial. Define π : X −→ C by π(x , y) = x , then π is ramified at
p ∈ X if and only if ∂f∂y (p) = 0.



Riemann-Hurwitz formula

Proposition
Let F : X −→ Y be a non-constant holomorphic map between compact
Riemann surfaces. For each y ∈ Y , define

dy (F ) =
∑

p∈F−1(y)

multp(F )

Then dy (F ) is constant, independently of y ∈ Y .
We call this constant the degree of F and we denote it by deg(F ).

Riemann-Hurwitz Formula
Let X ,Y be two compact Riemann surfaces and F : X −→ Y be a
non-constant holomorphic map. Then

2g(X )− 2 = deg(F )(2g(Y )− 2) +
∑
p∈X

[multp(F )− 1],

where g(X ), g(Y ) denote de genus of the surfaces X and Y, respectively.



Hyperelliptic Riemann surfaces

Let h(x) be a polynomial of degree 2n + 1 + ε,ε ∈ {0, 1} with distinct
roots.
Then the affine plane curve X defined by y2 = h(x) is smooth.
Let k(z) = z2n+2h(1/z) (k is also a polynomial with distinct roots).
Form the smooth affine plane curve Y defined by the equation w2 = k(z).
Let U = {(x , y) ∈ X : x 6= 0} and V = {(z ,w) ∈ Y : z 6= 0}. (Note that
U and V are open sets in X and Y , respectively). Define an isomophism

φ :U −→ V

φ(x , y) = (z ,w) = (1/x , y/xn+1)

Form the compact Riemann surface Z obtained by glueing X and Y
along U and V via φ.

π :Z −→ C∞
(x , y) 7→ x



Hyperelliptic Riemann surfaces

π has degree 2 and the branch points of π are the roots of h (and the
point ∞ if h has odd degree). Therefore the inverse image of any point
under π is either two points with multiplicity one, or one point with
multiplicity two.
By the Riemann-Hurwitz formula we have

2g(Z )− 2 = 2(0− 2) + 2n + 2 =⇒ g(Z ) = n



k-gonal curves

Theorem
Let p(x) be a polynomial of degree k(n + 1)− 1 + ε (ε ∈ {0, 1}) with
distinct roots. Let X be the affine plane curve defined by
X = F−1(0) ⊂ C2 with

F (x , y) := yk − p(x).

Then X admits a compactification Z = X ∪ {∞1, · · · ,∞k} with k points
at infinity (z = 0), with Z being a Riemann surface of genus
g = 1

2 (k2(n + 1)− k(n + 3)) + 1.
Moreover the genus of Z coincides with the number of points with
integer coordinates in the triangle of vertices (0, 0), (kn + k, 0), (0, k).



Newton Polygon

Definition
Given a Laurent polynomial

f (x , y) =
b∑

j=a

d∑
k=c

aj.k x
jyk

consider the polygon defined as the convex hull of the points (j , k) ∈ R2

such that aj,k 6= 0. To this polygon we call the Newton polygon
associated to f and we denote it by ∆(f )

Definition
Let f ∈ C[x , y , x−1, y−1] be a Laurent polynomial we define the
translated polynomial Tk,l [f ](x , y) = xky l f (x , y) for k , l ∈ Z and the
reflected polynomial R[f ](x , y) = f ( 1

x ,
1
y )



Toric compactification

Definition
Let f ∈ C[x , y , x−1, y−1] be a Laurent polynomial, we define Xf as

Xf = f −1({0})

and Uf = Xf ∩ (C∗ × C∗).

Toric compactification
. Let f (x , y) ∈ C[x±1, y±1]. Write f in the following form:

f (x , y) =
b∑

j=a

d∑
k=c

cj.k x
jyk

Assume ca,c , cb,d 6= 0. Define the polynomials F (x , y) = x−ay−c f (x , y)
and G (z ,w) = zbwd f (1/z , 1/w). Suppose that F and G are
nonsingular. Consider the isomorphism

φ :UF −→ UG

φ(x , y) = (z ,w) = (1/x , 1/y)



Toric compactification

Toric compactification
Let Xt(f ) be the compact Riemann surface obtained by glueing XF and
XG along UF and UG via φ. To the type of glueing we call toric glueing
and to Xt(f ) we call the toric compactification of the affine plane curve
XF .

Remark
When we perform this type of compactification one naturally asks how
many points are we adding to XF , that is how many ∞’s are we adding
to XF . Using the same notation as above the answer to this question is
the number of distinct solutions to the equations G (0,w) = 0 and
G (z , 0) = 0 .



Khovanskii’s Theorem

Theorem
Let f ∈ C[x±1, y±1] be a Laurent polynomial, such that we can perform
the toric compactification Xt(f ). Then we can also perform the toric
compactifications on R[f ] and Tk,l [f ], for any k , l ∈ Z. And

Xt(f ) ∼= Xt(R[f ]) ∼= Xt(Tk,l [f ])

Khovanskii’s Theorem
Let f ∈ C[x , y , x−1, y−1] be a Laurent polynomial, such that we can
perform the toric compactification Xt(f ), then we have the following
equality

g(Xt(f )) = #
(
int(∆(f )) ∩ Z2)

Where Xt(f ) is as above and ∆(f ) is the Newton polygon of f .



Khovanskii’s Theorem - Example

The rectangle
Let k, l ∈ N, and f (x , y) = λ+ xk + y l + xky l = 0 with λ ∈ C \ {0, 1}.

y l = −xk + λ

xk + 1

To see that f is nonsingular in Xf we verify that the system{
∂f
∂x (x , y) = 0
∂f
∂y (x , y) = 0

is impossible. As before we consider new variables z = 1/x , w = 1/y and
define g(z ,w) = zkw l f (1/z , 1/w). g is also nonsingular in Xg . Now
form the compact Riemann surface Xt(f ). Consider the holomorphic map

π :Xt(f ) −→ C∞
π(x , y) = x



Khovanskii’s Theorem - Example

This map has degree l (deg(π) = l) and using the Lemma we see that it
has 2k ramification points with multiplicity l . Hence by the
Riemann-Hurwitz formula we have

g(Xt(f )) = (l − 1)(k − 1)

And the number of interior lattice points of the rectangle with vertices
(0, 0), (k, 0), (0, l), (k, l)



Isomorphic Riemann Surfaces and affine transformations

Definition
A Z-affine transformation is a map

ψ :R2 −→ R2

x 7→ Ax + b

Where A ∈ GL2(Z) and b ∈ Z2.

Definition
Let ψ : R2 −→ R2, (i , j) 7→ (k(i , j), l(i , j)) be a Z-affine transformation

and f (x , y) =
b∑

j=a

d∑
j=c

ci,jx
iy j ∈ C[x , y , x−1, y−1] a Laurent polynomial

we define ψ[f ] as

ψ[f ](x , y) =
b∑

j=−a

d∑
j=−c

ci,jx
k(i,j)y l(i,j)



Isomorphic Riemann Surfaces and affine transformations

Theorem
Let f ∈ C[x , y , x−1, y−1] be a nonsingular Laurent polynomial such that
and ψ be an Z-affine transformation and let ψ[f ] be as before, then

Xψ[f ] ∼= Xf

Proof (idea)
We need only to verify the result for translations and the Z-affine
transformations associated to the matrices

A =

(
1 0
0 −1

)
, B =

(
1 1
0 1

)
and C =

(
0 1
1 0

)
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