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Fredholm operators
•E,F Banach spaces.
•A ∈ L (E,F ) Fredholm if A has finite dimensional kernel and
cokernel.
•A ∈ L (E,F ) Fredholm if and only if A is invertible modulo
compact operators:

TA = 1 + K, AT = 1 + K ′.

•F (E,F ) is open in L (E,F ).
•ind A = dim kerA− dim cokerA ∈ Z (index of A) is a homotopy
invariant.
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Examples
1) If E,F finite dimensional, ind (A) = dim E − dim F .
2) If E = F = L≥0

2 ([0, 1]) (Fourier series with Fourier coefficients
an, n ≥ 0), f (z) smooth S1 → C∗, with S1 ' R/Z.

Af = P≥0f.

Then Af is Fredholm, and

ind (Af ) = −rotation number of f.

The index has been expressed in topological terms.
(work out the example f (z) = zk. . . )
Question (Gelfand): given an elliptic pseudodifferential operator A

on M compact manifold, find a formula for ind A.
Answer: Atiyah-Singer index theorem.
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The formula of Gauss-Bonnet
•Let S be a compact connected oriented surface.
•The fundamental topological invariant of S is its genus g ∈ N=
number of holes.
•g = 0, S is a sphere.
•g = 1, S is a torus. . . .
•π1 (S) first homotopy group generated by a1, b1, . . . ag, bg with the
relation

∏g
1 [ai, bi] = 1 ([x, y] = xyx−1y−1).

•H1 (S,Z) = abelianization of π1 (S) , Z-module with 2g generators
a1, b1 . . ..
•H1 (S,R) first real cohomology group, dim H1 (X,R) = 2g.
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•Euler characteristic χ (S) =
∑2

i=1 (−1)i dim Hi (S,R) = 2− 2g.
Geometric interpretation of χ (S)
•χ (S) = S ∩ S in S × S (self-intersection of the diagonal).
•Y vector field on S with isolated nondegenerate zeroes.
Poincaré-Hopf: χ (S) =

∑
zeroes of Y (−1)ind(x).

(follows from the above).
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•If S embedded in R3, the degree of the Gauss map
x ∈ S → n (x) ∈ S2 is exactly 1− g (direct computation, or use an
affine Morse function f and its gradient field X). •Gauss-Bonnet:
If S embedded surface in R3, K scalar curvature (= 2 for the
sphere S2!),

χ (S) =
∫

S

K

4π
dx.

Use the fact that
∫

S
K
2 dx = deg (n) Vol (S2).

•The previous equality remains valid for any Riemannian metric on
S (Gauss).
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Gauss-Bonnet and Poincaré-Hopf
•Y a generic section of TS.
•Set

αt =
1
2π

exp
(
−t |Y |2 /2

)(K

2
dx + tω

(
∇TSY,∇TSY

))
.

(ω Kähler form).
•The αt are closed (!) cohomologous 2-forms (Mathai-Quillen [3]).
•α0 = K

4π dx, α+∞ =
∑

zeroes of Y (−1)ind(x)
δx.

•We have given another proof of Poincaré-Hopf.
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The Koszul complex
•E is a two dimensional real vector space.
•E∗ dual of E, generic element ξ ∈ E∗.
•Creation ξ∧, annihilation iX act on Λ· (E∗),

[ξ∧, iX ] = 〈ξ, X〉 .

•Koszul complex

0 → Λ0E∗ = R
ξ∧−→ Λ1E∗ ξ∧−→ Λ2E∗ → 0

is acyclic for ξ 6= 0 (take X ∈ E, 〈ξ, X〉 = 1).
•If E equipped with scalar product, one can take X = ξ∗, and use
[ξ∧, iξ∗ ] = |ξ|2.
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The de Rham complex
• (Ω· (S) , d) de Rham complex

0 → Ω0 (S) d→ Ω1 (S) d→ Ω2 (S) → 0.

•d = dx ∂
∂x + dy ∂

∂y , σ (d) = iξ∧ (σ (d)= principal symbol).
•d2 = 0, (Ω· (S) , d) elliptic complex, cohomology (ker d/Im d)
' H · (S,R).
•Hodge theory. gTS a metric on TS. Scalar product on Ω· (S),

〈s, s′〉 =
∫

M

〈s, s′〉 dx.

•d∗ adjoint of d.

� = dd∗ + d∗d = (d + d∗)2

is the Laplacian: elliptic operator of order 2.
Theorem (Hodge) ker � = ker (d + d∗) ' H · (S,R).
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•d + d∗ exchanges Ωeven (S) and Ωodd (S).
• (d + d∗) |even is Fredholm, and ind (d + d∗) |even = χ (S)
(elementary. . . )
•For any t > 0, by McKean-Singer [4],

χ (S) = Trs [exp (−t�)] =
∫

S

Trs [Pt (x, x)] dx.

(Trs supertrace, use spectral theory. . . )
•Weitzenböck formula:

� = −∆ +
K

4
N − K

2
Q,

N number operator, Q = 1 on 2 forms.
•As t → 0, Trs [Pt (x, x)] ' 1

4πtTrs
[
e−tK(x)N/4+K(x)Q/2

]
.

•Trs
[
e−tK(x)N/4+tK(x)Q/2

]
= 1− 2e−tK/4 + etK/2 ' tK.

•We get χ (S) =
∫

S
K
4π dx (Gauss-Bonnet, cancellations in local

index theory [1]).

16



•d + d∗ exchanges Ωeven (S) and Ωodd (S).
• (d + d∗) |even is Fredholm, and ind (d + d∗) |even = χ (S)
(elementary. . . )
•For any t > 0, by McKean-Singer [4],

χ (S) = Trs [exp (−t�)] =
∫

S

Trs [Pt (x, x)] dx.

(Trs supertrace, use spectral theory. . . )
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Can one hear the shape of a surface?
•S compact surface, gTS Riemannian metric on TS, ∆, the scalar
Laplacian on S, is a self-adjoint elliptic operator.
•λ0 = 0 < λ1 ≤ λ2 ≤ . . . the spectrum of −∆.
•pt (x, y) the heat kernel associated to et∆.
•Tr

[
et∆
]

=
∫

S
pt (x, x) dx. •As t → 0,

pt (x, x) =
1

4πt

(
1 +

tK (x)
6

+Ox

(
t2
))

.

•As t → 0,

Tr
[
et∆
]

=
1

4πt

(
Vol (S) +

t

6

∫
S

Kdx

)
,

equivalent to

Tr
[
et∆
]

=
Vol (S)

4πt

χ (S)
6

+ . . .
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Conclusion
•One can hear the volume of S.
•One can hear the genus g of S.
•Special role played by the constant terms in the asymptotic
expansion.
•Note that B1 = 1

6 is the first Bernouilli number.
•Todd series Td (x) = x

1−e−x = 1 + x
2 + B1

2 x2 + . . .
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Heat kernel and the loop space
•Heat semigroup e(t+t′)∆ = et∆et′∆.
•et∆ = et∆/n . . . et∆/n.
•Another expression for the trace

Tr
[
et∆
]

=
∫

Xn

pt/n (x0, x1) . . . pt/n (xn−1, x0)︸ ︷︷ ︸ dx0 . . . dxn−1.

cyclic expression for the trace.
•Compare to

Tr [An] =
∑

ai0i1ai1i2 . . . ain−1i0 .

•The above sum is a sum on discrete closed loops.
•As n → +∞, the integral ‘converges’ to an integral on. . . the loop
space of X.
•This measure is the Wiener measure on LX, it is invariant par
rotations.
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The Migdal invariant of a surface
•S a compact oriented surface of genus g.
•K a triangulation of S, with a edges.
•Aσ > 0 the area of the simplex σ.
•SU (2) ' S3 the group of special unitary transformations of C2,
pt (g) the heat kernel on G.
•To each oriented edge of K, we associate an element g ∈ SU (2).
•Each simplex σ has a holonomy Hσ ∈ SU (2) (ordered product of
the group elements of the edges), well defined up to conjugation.
•pAσ

(Hσ) > 0 is well-defined.
•Set

I =
∫

Ga

∏
pAσ

(Hσ) dg1 . . . dga.
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Theorem. (Migdal) The integral I only depends on the total area
A on S, and does not depend on the triangulation.

Proof. Use subdivision of the triangulation.

•Note that the measures on (SU (2))a are compatible to each other.
They can be viewed as discrete random SU (2) ‘connections’.
•Question What is IA, what is limA→0 IA?
Idea: Make the triangulation very small or very big.
Very small: Standard description of surface by gluing the edges of a
polygon in R2 2 by 2. . . leads to explicit computation of IA.
Very big: The mesh goes to 0, so that each Aσ → 0.
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•For B ∈ su (2) , |B| small, as t → 0,

pt

(
eB
)
'

exp
(
− |B|2 /4t

)
(4πt)3/2

.

•If each simplex has area t/n,

It ' Ct

∫
exp

(
−n
∑

|Bσ|2 /4t

)
.

•If A is a connection and FA its curvature, the holonomy of a path
bounding a domain D of small area a is ' exp

(
aFA

)
.

•If Bσ ' t
nFA, then

n
∑

|Bσ|2 /4t '
∫

S

∣∣FA
∣∣2

4t
.

. . . Yang-Mills functional.
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•We find that

It =
∫
A

exp

(
−
∫

S

∣∣FA
∣∣2

4t

)
dA,

=partition function for the Yang-Mills model.
•As t → 0, the integral localizes on the space of flat connections.

Theorem. (Witten [5])

lim
t→0

It = symplectic volume of moduli space of flat connections.
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A proof of Witten result [2]
•f : G2g → G the map

(u1, v1, . . . , ug, vg) →
g∏

i=1

[ui, vi] .

•G acts on G2g and G by conjugation.
•f is a G equivariant map

f (g.x) = g.f (x) .

Question: What is the image of the measure dg1 . . . dg2g by f?
Answer: Change of variable formula.
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(1) f (g.x) = g.f (x) .

•Differentiate (1) in the variable g at g = 1, when f (x) = 1. If
A ∈ su (2),

(2) 〈df (x) , A.x〉 = 0.

•We have the finite dimensional complex,

(3) 0 → su (2) ∂−→ su (2)2g ∂−→ su (2) → 0.

•The Euler characteristic of this complex is 3 (2− 2g). . .
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Explanation
•The set

{
x ∈ G2g, f (x) = 1

}
is the set of representations of

π1 (S) → G.
•The complex

0 → su (2) ∂−→ su (2)2g ∂−→ su (2) → 0

is a combinatorial complex whose cohomology is the cohomology of
the flat adjoint bundle on S.
•One can now use the standard change of variables formula. . . .
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