
1

Fredholm operators

- E, F Banach spaces.
- $A \in \mathcal{L}(E, F)$ Fredholm if A has finite dimensional kernel and cokernel.
- $A \in \mathcal{L}(E, F)$ Fredholm if and only if A is invertible modulo compact operators:

$$
T A=1+K, \quad A T=1+K^{\prime}
$$

- $\mathcal{F}(E, F)$ is open in $\mathcal{L}(E, F)$.
\bullet - ind $A=\operatorname{dim} \operatorname{ker} A-\operatorname{dim} \operatorname{coker} A \in \mathbf{Z}(\operatorname{index}$ of $A)$ is a homotopy invariant.

Examples

1) If E, F finite dimensional, ind $(A)=\operatorname{dim} E-\operatorname{dim} F$.
2) If $E=F=L_{2}^{\geq 0}([0,1])$ (Fourier series with Fourier coefficients $\left.a_{n}, n \geq 0\right), f(z)$ smooth $S_{1} \rightarrow \mathbf{C}^{*}$, with $S_{1} \simeq \mathbf{R} / \mathbf{Z}$.

$$
A_{f}=P^{\geq 0} f
$$

Then A_{f} is Fredholm, and

$$
\text { ind }\left(A_{f}\right)=- \text { rotation number of } f \text {. }
$$

The index has been expressed in topological terms. (work out the example $f(z)=z^{k} \ldots$)

Then A_{f} is Fredholm, and

$$
\operatorname{ind}\left(A_{f}\right)=-\operatorname{rotation} \text { number of } f
$$

The index has been expressed in topological terms.
(work out the example $f(z)=z^{k} \ldots$.)
Question (Gelfand): given an elliptic pseudodifferential operator A on M compact manifold, find a formula for ind A.
Answer: Atiyah-Singer index theorem.

The formula of Gauss-Bonnet
-Let S be a compact connected oriented surface.
-The fundamental topological invariant of S is its genus $g \in \mathbf{N}=$ number of holes.
$\bullet g=0, S$ is a sphere.
$\bullet g=1, S$ is a torus....

The formula of Gauss-Bonnet
-Let S be a compact connected oriented surface.
-The fundamental topological invariant of S is its genus $g \in \mathbf{N}=$ number of holes.

- $g=0, S$ is a sphere.
$\bullet g=1, S$ is a torus....
$\bullet \pi_{1}(S)$ first homotopy group generated by $a_{1}, b_{1}, \ldots a_{g}, b_{g}$ with the relation $\prod_{1}^{g}\left[a_{i}, b_{i}\right]=1\left([x, y]=x y x^{-1} y^{-1}\right)$.
- $H_{1}(S, \mathbf{Z})=$ abelianization of $\pi_{1}(S)$, Z-module with $2 g$ generators $a_{1}, b_{1} \ldots$
- $H^{1}(S, \mathbf{R})$ first real cohomology group, $\operatorname{dim} H^{1}(X, \mathbf{R})=2 g$.
- Euler characteristic $\chi(S)=\sum_{i=1}^{2}(-1)^{i} \operatorname{dim} H^{i}(S, \mathbf{R})=2-2 g$.

Geometric interpretation of $\chi(S)$

- $\chi(S)=S \cap S$ in $S \times S$ (self-intersection of the diagonal).
- Y vector field on S with isolated nondegenerate zeroes.

Poincaré-Hopf: $\chi(S)=\sum_{\text {zeroes of } Y}(-1)^{\operatorname{ind}(x)}$.
(follows from the above).
\square
9

- If S embedded in \mathbf{R}^{3}, the degree of the Gauss map
$x \in S \rightarrow n(x) \in S_{2}$ is exactly $1-g$ (direct computation, or use an affine Morse function f and its gradient field X).
- Gauss-Bonnet: If S embedded surface in \mathbf{R}^{3}, K scalar curvature
($=2$ for the sphere $S_{2}!$),

$$
\chi(S)=\int_{S} \frac{K}{4 \pi} d x
$$

Use the fact that $\int_{S} \frac{K}{2} d x=\operatorname{deg}(n) \operatorname{Vol}\left(S_{2}\right)$.

- The previous equality remains valid for any Riemannian metric on S (Gauss).

Gauss-Bonnet and Poincaré-Hopf
$\bullet Y$ a generic section of $T S$.
- Set

$$
\alpha_{t}=\frac{1}{2 \pi} \exp \left(-t|Y|^{2} / 2\right)\left(\frac{K}{2} d x+t \omega\left(\nabla^{T S} Y, \nabla^{T S} Y\right)\right)
$$

(ω Kähler form).
-The α_{t} are closed (!) cohomologous 2-forms [3] (Mathai-Quillen).

- $\alpha_{0}=\frac{K}{4 \pi} d x, \alpha_{+\infty}=\sum_{\text {zeroes of } Y}(-1)^{\operatorname{ind}(x)} \delta_{x}$.
-We have given another proof of Poincaré-Hopf.

The Koszul complex

- E is a two dimensional real vector space.
- E^{*} dual of E, generic element $\xi \in E^{*}$.
- Creation $\xi \wedge$, annihilation i_{X} act on $\Lambda^{\cdot}\left(E^{*}\right)$,

$$
\left[\xi \wedge, i_{X}\right]=\langle\xi, X\rangle
$$

- Koszul complex

$$
0 \rightarrow \Lambda^{0} E^{*}=\mathbf{R} \xrightarrow{\xi \wedge} \Lambda^{1} E^{*} \xrightarrow{\xi \wedge} \Lambda^{2} E^{*} \rightarrow 0
$$

is acyclic for $\xi \neq 0$ (take $X \in E,\langle\xi, X\rangle=1$).

- If E equipped with scalar product, one can take $X=\xi^{*}$, and use $\left[\xi \wedge, i_{\xi^{*}}\right]=|\xi|^{2}$.

The de Rham complex

- $\left(\Omega^{\cdot}(S), d\right)$ de Rham complex

$$
0 \rightarrow \Omega^{0}(S) \xrightarrow{d} \Omega^{1}(S) \xrightarrow{d} \Omega^{2}(S) \rightarrow 0
$$

$\bullet d=d x \frac{\partial}{\partial x}+d y \frac{\partial}{\partial y}, \sigma(d)=i \xi \wedge(\sigma(d)=$ principal symbol $)$.
$\bullet d^{2}=0,(\Omega \cdot(S), d)$ elliptic complex, cohomology (ker $\left.d / \operatorname{Im} d\right)$
$\simeq H^{\cdot}(S, \mathbf{R})$.

The de Rham complex

- $\left(\Omega^{\cdot}(S), d\right)$ de Rham complex

$$
0 \rightarrow \Omega^{0}(S) \xrightarrow{d} \Omega^{1}(S) \xrightarrow{d} \Omega^{2}(S) \rightarrow 0
$$

$\bullet d=d x \frac{\partial}{\partial x}+d y \frac{\partial}{\partial y}, \sigma(d)=i \xi \wedge(\sigma(d)=$ principal symbol $)$.
$\bullet d^{2}=0,\left(\Omega^{\cdot}(S), d\right)$ elliptic complex, cohomology $(\operatorname{ker} d / \operatorname{Im} d)$
$\simeq H^{\cdot}(S, \mathbf{R})$.

- Hodge theory. $g^{T S}$ a metric on $T S$. Scalar product on $\Omega(S)$,

$$
\left\langle s, s^{\prime}\right\rangle=\int_{M}\left\langle s, s^{\prime}\right\rangle d x
$$

$\bullet d^{*}$ adjoint of d.

$$
\square=d d^{*}+d^{*} d=\left(d+d^{*}\right)^{2}
$$

is the Laplacian: elliptic operator of order 2.
Theorem (Hodge) ker $\square=\operatorname{ker}\left(d+d^{*}\right) \simeq H^{\cdot}(S, \mathbf{R})$.
$\bullet d+d^{*}$ exchanges $\Omega^{\text {even }}(S)$ and $\Omega^{\text {odd }}(S)$.
$\left.\bullet\left(d+d^{*}\right)\right|_{\text {even }}$ is Fredholm, and ind $\left.\left(d+d^{*}\right)\right|_{\text {even }}=\chi(S)$
(elementary...)

- For any $t>0$, by McKean-Singer [4],

$$
\chi(S)=\operatorname{Tr}_{\mathrm{s}}[\exp (-t \square)]=\int_{S} \operatorname{Tr}_{\mathrm{S}}\left[P_{t}(x, x)\right] d x
$$

($\operatorname{Tr}_{\mathrm{s}}$ supertrace, use spectral theory...)
$\bullet d+d^{*}$ exchanges $\Omega^{\text {even }}(S)$ and $\Omega^{\text {odd }}(S)$.
$\left.\bullet\left(d+d^{*}\right)\right|_{\text {even }}$ is Fredholm, and ind $\left.\left(d+d^{*}\right)\right|_{\text {even }}=\chi(S)$ (elementary...)
-For any $t>0$, by McKean-Singer [4],

$$
\chi(S)=\operatorname{Tr}_{\mathrm{S}}[\exp (-t \square)]=\int_{S} \operatorname{Tr}_{\mathrm{S}}\left[P_{t}(x, x)\right] d x
$$

($\operatorname{Tr}_{\text {s }}$ supertrace, use spectral theory...)
-Weitzenböck formula:

$$
\square=-\Delta+\frac{K}{4} N-\frac{K}{2} Q
$$

N number operator, $Q=1$ on 2 forms.

- As $t \rightarrow 0, \operatorname{Tr}_{\mathrm{s}}\left[P_{t}(x, x)\right] \simeq \frac{1}{4 \pi t} \operatorname{Tr}_{\mathrm{s}}\left[e^{-t K(x) N / 4+K(x) Q / 2}\right]$.
- $\operatorname{Tr}_{\mathrm{s}}\left[e^{-t K(x) N / 4+t K(x) Q / 2}\right]=1-2 e^{-t K / 4}+e^{t K / 2} \simeq t K$.
-We get $\chi(S)=\int_{S} \frac{K}{4 \pi} d x$ (Gauss-Bonnet, cancellations in local index theory [1]).

Can one hear the shape of a surface?

- S compact surface, $g^{T S}$ Riemannian metric on $T S, \Delta$, the scalar Laplacian on S, is a self-adjoint elliptic operator.
$\bullet \lambda_{0}=0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ the spectrum of $-\Delta$.
- $p_{t}(x, y)$ the heat kernel associated to $e^{t \Delta}$.
$\bullet \operatorname{Tr}\left[e^{t \Delta}\right]=\int_{S} p_{t}(x, x) d x$.

Can one hear the shape of a surface?

- S compact surface, $g^{T S}$ Riemannian metric on $T S, \Delta$, the scalar Laplacian on S, is a self-adjoint elliptic operator.
- $\lambda_{0}=0<\lambda_{1} \leq \lambda_{2} \leq \ldots$ the spectrum of $-\Delta$.
- $p_{t}(x, y)$ the heat kernel associated to $e^{t \Delta}$.
- $\operatorname{Tr}\left[e^{t \Delta}\right]=\int_{S} p_{t}(x, x) d x$.
- As $t \rightarrow 0$,

$$
p_{t}(x, x)=\frac{1}{4 \pi t}\left(1+\frac{t K(x)}{6}+\mathcal{O}_{x}\left(t^{2}\right)\right) .
$$

- As $t \rightarrow 0$,

$$
\operatorname{Tr}\left[e^{t \Delta}\right]=\frac{1}{4 \pi t}\left(\operatorname{Vol}(S)+\frac{t}{6} \int_{S} K d x\right)
$$

equivalent to

$$
\operatorname{Tr}\left[e^{t \Delta}\right]=\frac{\operatorname{Vol}(S)}{4 \pi t}+\frac{\chi(S)}{6}+\ldots
$$

Conclusion

- One can hear the volume of S.
- One can hear the genus g of S.
- Special role played by the constant terms in the asymptotic
expansion.
- Note that $B_{1}=\frac{1}{6}$ is the first Bernouilli number.
- Todd series $\operatorname{Td}(x)=\frac{x}{1-e^{-x}}=1+\frac{x}{2}+\frac{B_{1}}{2} x^{2}+\ldots$
\square
Heat kernel and the loop space
- Heat semigroup $e^{\left(t+t^{\prime}\right) \Delta}=e^{t \Delta} e^{t^{\prime} \Delta}$.
$\bullet e^{t \Delta}=e^{t \Delta / n} \ldots e^{t \Delta / n}$.
- Another expression for the trace
$\operatorname{Tr}\left[e^{t \Delta}\right]=\int_{X^{n}} \underbrace{p_{t / n}\left(x_{0}, x_{1}\right) \ldots p_{t / n}\left(x_{n-1}, x_{0}\right)} d x_{0} \ldots d x_{n-1}$.
cyclic expression for the trace.

Heat kernel and the loop space

- Heat semigroup $e^{\left(t+t^{\prime}\right) \Delta}=e^{t \Delta} e^{t^{\prime}} \Delta$.
$\bullet e^{t \Delta}=e^{t \Delta \nabla} \ldots e^{t \Delta / n}$.
- Another expression for the trace

$$
\operatorname{Tr}\left[e^{t \Delta}\right]=\int_{X^{n}} \underbrace{p_{t / n}\left(x_{0}, x_{1}\right) \ldots p_{t / n}\left(x_{n-1}, x_{0}\right)} d x_{0} \ldots d x_{n-1}
$$

cyclic expression for the trace.

- Compare to

$$
\operatorname{Tr}\left[A^{n}\right]=\sum a_{i_{0} i_{1}} a_{i_{1} i_{2}} \ldots a_{i_{n-1} i_{0}}
$$

-The above sum is a sum on discrete closed loops.

- As $n \rightarrow+\infty$, the integral 'converges' to an integral on. . . the loop space of X.
- This measure is the Wiener measure on $L X$, it is invariant par rotations.
\square
The Migdal invariant of a surface
$\bullet S$ a compact oriented surface of genus g.
- K a triangulation of S, with a edges.
- $A_{\sigma}>0$ the area of the simplex σ.
- $\mathrm{SU}(2) \simeq S_{3}$ the group of special unitary transformations of \mathbf{C}^{2}, $p_{t}(g)$ the heat kernel on G.

The Migdal invariant of a surface

- S a compact oriented surface of genus g.
- K a triangulation of S, with a edges.
- $A_{\sigma}>0$ the area of the simplex σ.
- $\mathrm{SU}(2) \simeq S_{3}$ the group of special unitary transformations of \mathbf{C}^{2}, $p_{t}(g)$ the heat kernel on G.
- To each oriented edge of K, we associate an element $g \in \mathrm{SU}(2)$.
\bullet Each simplex σ has a holonomy $H_{\sigma} \in \mathrm{SU}(2)$ (ordered product of the group elements of the edges), well defined up to conjugation.
- $p_{A_{\sigma}}\left(H_{\sigma}\right)>0$ is well-defined.
- Set

$$
I=\int_{G^{a}} \prod p_{A_{\sigma}}\left(H_{\sigma}\right) d g_{1} \ldots d g_{a}
$$

Theorem. (Migdal) The integral I only depends on the total area
A on S, and does not depend on the triangulation.
Proof. Use subdivision of the triangulation.

Theorem. (Migdal) The integral I only depends on the total area A on S, and does not depend on the triangulation.

Proof. Use subdivision of the triangulation.

- Note that the measures on $(\mathrm{SU}(2))^{a}$ are compatible to each other.

They can be viewed as discrete random SU (2) 'connections'.
\bullet Question What is I_{A}, what is $\lim _{A \rightarrow 0} I_{A}$?
Idea: Make the triangulation very small or very big.
Very small: Standard description of surface by gluing the edges of a
polygon in $\mathbf{R}^{2} 2$ by $2 \ldots$ leads to explicit computation of I_{A}.
Very big: The mesh goes to 0 , so that each $A_{\sigma} \rightarrow 0$.

- For $B \in \operatorname{su}(2),|B|$ small, as $t \rightarrow 0$,

$$
p_{t}\left(e^{B}\right) \simeq \frac{\exp \left(-|B|^{2} / 4 t\right)}{(4 \pi t)^{3 / 2}}
$$

- If each simplex has area t / n,

$$
I_{t} \simeq C_{t} \int \exp \left(-n \sum\left|B_{\sigma}\right|^{2} / 4 t\right)
$$

- For $B \in \operatorname{su}(2),|B|$ small, as $t \rightarrow 0$,

$$
p_{t}\left(e^{B}\right) \simeq \frac{\exp \left(-|B|^{2} / 4 t\right)}{(4 \pi t)^{3 / 2}}
$$

- If each simplex has area t / n,

$$
I_{t} \simeq C_{t} \int \exp \left(-n \sum\left|B_{\sigma}\right|^{2} / 4 t\right)
$$

- If A is a connection and F^{A} its curvature, the holonomy of a path bounding a domain D of small area a is $\simeq \exp \left(a F^{A}\right)$.
-If $B_{\sigma} \simeq \frac{t}{n} F^{A}$, then

$$
n \sum\left|B_{\sigma}\right|^{2} / 4 t \simeq \frac{\int_{S}\left|F^{A}\right|^{2}}{4 t}
$$

... Yang-Mills functional.
-We find that

$$
I_{t}=\int_{\mathcal{A}} \exp \left(-\frac{\int_{S}\left|F^{A}\right|^{2}}{4 t}\right) d \mathcal{A}
$$

$=$ partition function for the Yang-Mills model.

- As $t \rightarrow 0$, the integral localizes on the space of flat connections.
-We find that

$$
I_{t}=\int_{\mathcal{A}} \exp \left(-\frac{\int_{S}\left|F^{A}\right|^{2}}{4 t}\right) d \mathcal{A}
$$

$=$ partition function for the Yang-Mills model.

- As $t \rightarrow 0$, the integral localizes on the space of flat connections.

Theorem. (Witten [5])
$\lim _{t \rightarrow 0} I_{t}=$ symplectic volume of moduli space of flat connections.

A proof of Witten result [2]

- $f: G^{2 g} \rightarrow G$ the map

$$
\left(u_{1}, v_{1}, \ldots, u_{g}, v_{g}\right) \rightarrow \prod_{i=1}^{g}\left[u_{i}, v_{i}\right]
$$

- G acts on $G^{2 g}$ and G by conjugation.
- f is a G equivariant map

$$
f(g \cdot x)=g \cdot f(x) .
$$

Question: What is the image of the measure $d g_{1} \ldots d g_{2 g}$ by f ?
Answer: Change of variable formula.

$$
f(g \cdot x)=g \cdot f(x) .
$$

-Differentiate (1) in the variable g at $g=1$, when $f(x)=1$. If $A \in s u(2)$,
(2)

$$
\langle d f(x), A \cdot x\rangle=0 .
$$

-We have the finite dimensional complex,
(3)

$$
0 \rightarrow s u(2) \xrightarrow{\partial} s u(2)^{2 g} \xrightarrow{\partial} s u(2) \rightarrow 0 .
$$

-The Euler characteristic of this complex is $3(2-2 g) \ldots$

Explanation
-The set $\left\{x \in G^{2 g}, f(x)=1\right\}$ is the set of representations of $\pi_{1}(S) \rightarrow G$.
-The complex

$$
0 \rightarrow s u(2) \xrightarrow{\partial} s u(2)^{2 g} \xrightarrow{\partial} s u(2) \rightarrow 0
$$

is a combinatorial complex whose cohomology is the cohomology of the flat adjoint bundle on S.

- One can now use the standard change of variables formula....

References

[1] M. Atiyah, R. Bott, and V. K. Patodi. On the heat equation and the index theorem. Invent. Math., 19:279-330, 1973.
[2] J.-M. Bismut and F. Labourie. Symplectic geometry and the Verlinde formulas. In Surveys in differential geometry: differential geometry inspired by string theory, pages 97-311. Int. Press, Boston, MA, 1999.
[3] V. Mathai and D. Quillen. Superconnections, Thom classes, and equivariant differential forms. Topology, 25(1):85-110, 1986.
[4] H. P. McKean, Jr. and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geometry, 1(1):43-69, 1967.
[5] E. Witten. On quantum gauge theories in two dimensions. Comm. Math. Phys., 141:153-209, 1991.

