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Analysis Geometry

Index theory Riemann surfaces Homological algebra

Fredholm operators  Gauss — Bonnet Complexes




Fredholm operators

o[/, ' Banach spaces.

oA c L(F,F) Fredholm if A has kernel and
cokernel.

oA c L(F,F) Fredholm if and only if A is invertible modulo

compact operators:

TA=1+K, AT =1+ K.

oF (E,F)isopenin L (E,F).
eind A = dimker A — dim cokerA € Z (index of A) is a homotopy

invariant.




Examples

1) If F/, F finite dimensional, ind (A) = dim F — dim F'.

2) If E = F = L7°(]0,1]) (Fourier series with Fourier coefficients
an,n > 0), f(z) smooth S; — C*, with S; ~ R/Z.

Ap = P=Yf.

Then Ay is Fredholm, and
ind (Ay) = —rotation number of f.

The index has been expressed in topological terms.

(work out the example f (z) = 2*...)




Then Ay is Fredholm, and

ind (Af) = —rotation number of f.

The index has been expressed in topological terms.

(work out the example f (z) = 2*...)

Question (Gelfand): given an elliptic pseudodifferential operator A
on M compact manifold, find a formula for ind A.

Answer: Atiyah-Singer index theorem.




The formula of Gauss-Bonnet

eLet S be a compact connected oriented surface.

eThe fundamental topological invariant of .S is its genus g € N=

number of holes.
eg =0, S is a sphere.
og =1, S is a torus....




The formula of Gauss-Bonnet

eLet S be a compact connected oriented surface.

eThe fundamental topological invariant of .S is its genus g € N=
number of holes.

og =0, S is a sphere.

og =1, S is a torus....

o7 (5) first homotopy group generated by ai,b1,...a,4,b, with the

relation [[{ [ai, 0] =1 ([z,y] = zyz~ty™1).

e H, (S,Z) = abelianization of 7 (S), Z-module with 2g generators
ai, bl ce e
eH! (S, R) first real cohomology group, dim H! (X, R) = 2g.




ebuler characteristic x (5) = 2?21 (—1)"dim H* (S,R) = 2 — 2g.
Geometric interpretation of x (.5)
o\ (S)=5NS8in S x S (self-intersection of the diagonal).

oY vector field on S with isolated nondegenerate zeroes.
Poincaré-Hopf: X (S) =D s of v (—1)md®),
( )-




olf S embedded in R?, the degree of the Gauss map
re S —n(x)e€ S, is exactly 1 — g (direct computation, or use an
affine Morse function f and its gradient field X).




olf S embedded in R?, the degree of the Gauss map
r e S —n(x) €S, is exactly 1 — g (direct computation, or use an
affine Morse function f and its gradient field X).

e(Gauss-Bonnet: If S embedded surface in R?, K scalar curvature

( )

K
Mﬁ:/Zm.
g T

eThe previous equality remains valid for any Riemannian metric on

S (Gauss).




Gauss-Bonnet and Poincaré-Hopt
oY a generic section of T'S.
oSet

ap = 1 exp (—t Y |? /2) (%dm + tw (VTSY, VTSY)) :

2T
).
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Gauss-Bonnet and Poincaré-Hopt
oY a generic section of T'S.
oSet

ap = 1 exp (—t Y |? /2) (%dm + tw (VTSY, VTSY)) :

27
(w ).

eThe a; are closed (!) cohomologous 2-forms [3] (Mathai-Quillen).

K L ind(x)
*Qp = de’ Atoo = Zzeroes of Y (_1) 535




The Koszul complex

o[/ is a two dimensional real vector space.

o /" dual of E, generic element & € E™.
eCreation &A, annihilation ix act on A" (E*),

[f/\,iX] — <€7X> :

eKoszul complex

0 A°E* =R 5 AYE* S8 A2E* 0

is for € #0 (take X € F, (£, X) =1).
olf ' equipped with scalar product, one can take X = &*, and use

[Enie-] = €],




The de Rham complex
e ({2 (5),d) de Rham complex

0— 085 02 (S) — 0.

od = dxa% + dya%, o (d) = i€N (o (d)= principal symbol).
od? =0, (U (S),d) elliptic complex, cohomology (ker d/Im d)
~ H (S, R).




The de Rham complex
e ({2 (5),d) de Rham complex
0—Q%(S) S Q2 (9) — 0.

od = dxa% + dya%, o (d) = i€N (o (d)= principal symbol).

od? =0, (U (S),d) elliptic complex, cohomology (ker d/Imd)
~ H (S, R).

eHodge theory. ¢7° a metric on T'S. Scalar product on € (S),

od* adjoint of d.

O =dd" +d*d = (d + d*)

is the Laplacian: elliptic operator of order 2.
Theorem (Hodge) ker (] = ker (d + d*) ~ H (S, R).




od + d* Qeven (S) and Q044 (9).

o (d+ d*) |even is Fredholm, and ind (d + d*) |even = X (5)
(elementary. . .)

eFor any t > 0, by McKean-Singer [4],

X (S) = Trg [exp (—tO)] = /STI'S [P (z,x)]dx.

(Trg supertrace, use theory. . .)




od + d* Qeven (S) and Q°dd (9).

o (d+ d*) |even is Fredholm, and ind (d + d*) |even = X (5)
(elementary. . . )

eFor any t > 0, by McKean-Singer [4],

X (S) = Trg [exp (—tO)] = /STI'S [P (z,x)]dx.

(Trg supertrace, use theory. . .)

e Weitzenbock formula;:
K

K
O=-A+—N— —
+ 2Q,

N number operator, ) = 1 on 2 forms.

eAst — 0, Trs [P (z,2)] ~ & Trg [e K @N/ATK@)Q/2]

oTr, [e—tK(x)N/ll—l—tK(a:)Q/Q] —1— 2€—tK/4 4 615K'/2 ~ tK.
eWe get x (5) = J L dz (Gauss-Bonnet, cancellations in local
index theory [1]).




Can one hear the shape of a surface?
¢S compact surface, g7° Riemannian metric on T'S, A, the scalar
Laplacian on S, is a self-adjoint elliptic operator.

o)y =0 < A\ < Xy <...the spectrum of —A.

op; (x,y) the heat kernel associated to e®.

oTr [e'?] = [ pi (z,2) da.




Can one hear the shape of a surface?

¢S compact surface, ¢g7° Riemannian metric on TS, A, the scalar
Laplacian on S, is a self-adjoint elliptic operator.

o)y =0 < A\ < Xy <...the spectrum of —A.

op; (x,y) the heat kernel associated to e®.

oTr [e'?] = [ pi (z,2) da.
eAst — 0,

tK (x)

D o, (t2)>.

Tr [e"?] = 4%5 (Vol (S) + /S Kd:z:) ,

~ Vol (5) N
- A4t

equivalent to

Tr [em]




Conclusion

eOne can hear the volume of S.

eOne can hear the genus g of S.

eSpecial role played by the constant terms in the asymptotic
expansion.

eNote that By = % is the first Bernouilli number.

eTodd series Td (z) = —2— =1+ 2 + BLla? 4 ..




Heat kernel and the loop space

. / /
eHeat semigroup e(IH)A _ ptA /A,

octA L etA/n,

e Another expression for the trace

Ir [etA} — / Pt/n (370,331)--.pt/n (xn—lax()) dxg . ..

n /
-

cyclic expression for the trace.




Heat kernel and the loop space

eHeat semigroup e(IF)A _ otA ' A

.etA — etAV o etA/n.

e Another expression for the trace

n /
-

Ir [etA} — / Pt/n (370,331)--.pt/n (xn—lax()) dxg . ..

cyclic expression for the trace.
eCompare to

Tr [A ] — Ainii Aiiig - A4 10 -

eThe above sum is a sum on discrete closed loops.

eAs n — 400, the integral ‘converges’ to an integral on...the loop
space of X.

e This measure is the Wiener measure on L.X, it is invariant par

rotations.




The Migdal invariant of a surface
¢S5 a compact oriented surface of genus g.
e K a triangulation of S, with a edges.

oA, > 0 the area of the simplex o.

eSU (2) ~ S5 the group of special unitary transformations of C2,
pt (g) the heat kernel on G.




The Migdal invariant of a surface

¢S5 a compact oriented surface of genus g.
e K a triangulation of S, with a edges.
oA, > 0 the area of the simplex o.

eSU (2) ~ S5 the group of special unitary transformations of C?2,
p¢ (g) the heat kernel on G.

oTo cach oriented edge of K, we associate an element g € SU (2).

eEach simplex ¢ has a holonomy H, € SU (2) (ordered product of
the group elements of the edges), well defined up to conjugation.
op4_ (Hy,) > 0 is well-defined.

oSet




Theorem. (Migdal) The integral I only depends on the total area

A on S, and does not depend on the triangulation.

Proof. Use subdivision of the triangulation.




Theorem. (Migdal) The integral I only depends on the total area

A on S, and does not depend on the triangulation.

Proof. Use subdivision of the triangulation. []

eNote that the measures on (SU (2))” are compatible to each other.

They can be viewed as
e(Question What is 4, what is limy_.g /47
Idea: Make the triangulation very small or very big.
: Standard description of surface by gluing the edges of a
polygon in R? 2 by 2...leads to explicit computation of I4.
: The mesh goes to 0, so that each A, — 0.




efor B € su(2),|B| small, as t — 0,

exp (— B /475)
(47Tt)3/2 |

olf each simplex has area t/n,

I, ~ Ct/exp (—nz B, | /4t> .




efor B € su(2),|B| small, as t — 0,

exp (— B /475)
(47Tt)3/2 |

olf each simplex has area t/n,

I, ~ C’t/exp (—nz B, | /4t> .

olf A is a connection and F4 its curvature, the holonomy of a path

bounding a domain D of small area a is ~ exp (aF A).
oIf B, ~ LF4, then

Al
nZ\Ba|2/4t:fS ’415 | .

... Yang-Mills functional.




eWe find that

_ Js [P
I, = /Aexp (— yr dA,

=partition function for the Yang-Mills model.

eAs t — 0, the integral localizes on the space of flat connections.




eWe find that

_ Js |74
I; = /Aexp (— yr dA,

=partition function for the Yang-Mills model.

eAs t — 0, the integral localizes on the space of flat connections.
Theorem. (Witten [5])

lim I; = symplectic volume of moduli space of flat connections.

t—




A proof of Witten result [2]
of : G?9 — @ the map

g

(w1, v1,...,uq,04) — H [ug, ;] -
i=1

oG acts on G?9 and G by conjugation.

of is a G equivariant map

flgx)=g.f(x).

: What is the image of the measure dg; ...dga, by f7
: Change of variable formula.




(1) flgx)=g.f(x).

eDifferentiate (1) in the variable g at g = 1, when f (x) = 1. If
A € su(2),

(2) (df (x),A.x) =0.

eWe have the finite dimensional complex,

(3) 0 — su(2) 9 su (2)%9 9 su (2) — 0.

eThe Euler characteristic of this complex is 3 (2 — 2g). ..




Explanation
eThe set {z € G*, f () = 1} is the set of representations of
71 (S) — Q.

eThe complex

0 — su(2) -5 su(2) L su(2) — 0

is a complex whose cohomology is the cohomology of
the flat adjoint bundle on S.

eOne can now use the change of variables formula. . ..




References

[1] M. Atiyah, R. Bott, and V. K. Patodi. On the heat equation
and the index theorem. Invent. Math., 19:279-330, 1973.

J.-M. Bismut and F. Labourie. Symplectic geometry and the
Verlinde formulas. In Surveys in differential geometry:
differential geometry inspired by string theory, pages 97-311.
Int. Press, Boston, MA, 1999.

V. Mathai and D. Quillen. Superconnections, Thom classes,
and equivariant differential forms. Topology, 25(1):85-110, 1986.

H. P. McKean, Jr. and I. M. Singer. Curvature and the
eigenvalues of the Laplacian. J. Differential Geometry,
1(1):43-69, 1967.

5] E. Witten. On quantum gauge theories in two dimensions.
Comm. Math. Phys., 141:153-209, 1991.




