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I want to tell you the story of a rather mysterious geometric inequality. The
story begins a few years ago, when a colleague who loves mathematical puzzles
asked me this one:

How many moves does a rook need to visit every square of a chess board?

Instead of solving this rather easy problem, I did what mathematicians often do
when in doubt: generalized. I argued as follows.

Γ

γ

Figure 0.1

The path of the rook is a curve γ (possibly, self-intersecting) inside an 8 × 8-
square. The length of γ should be at least 64 since all squares are visited. Next, I
assumed that the rook turned each time by 90 degrees (and never 180). Then the
total turn of γ is nπ/2, where n is the number of moves. Thus I traded the original
problem for the following one:

What is the smallest total turn of a curve of given
length inside a given convex domain in the plane?

Consider a smooth closed convex plane curve Γ and a smooth, possibly self-
intersecting (the technical term is “immersed”) closed curve γ inside it, see Fig.0.1.
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For obvious reasons, I will call Γ the cell and γ the DNA.
Define the total curvature of a closed curve as the integral of the absolute value

of the curvature with respect to the arc length parameter along the whole curve.
The total curvature is what I called “total turn” above (unlike the integral of the
curvature, which can be positive or negative, the total curvature is not necessarily
a multiple of 2π). The average curvature of a curve is the total curvature divided
by its length.

My reflections on the rook on the chess board problem lead me to the following
statement, which I call the DNA geometric inequality.

Theorem 0.1. (i) The average curvature of the cell is not greater than that
of the DNA. (ii) The equality holds if and only if the DNA coincides with the cell,
possibly traversed more than once.

Although I call this a theorem, it was only a conjecture: hard as I tried, I
could neither prove nor disprove the DNA inequality. Then it occurred to me that
I had come across a similar result a long time ago. In 1973, the year I graduated
from high school, I took part in the Moscow Mathematical Olympiad, where the
following problem was given:

A lion runs inside the round arena of a circus. The radius of the circle is 10 meters.
Moving along a polygonal line, the lion covers the total distance of 30 kilometers.
Prove that the total angle of turn of the lion is not less than 2998 radians.

This is a particular case of the DNA inequality: the one in which the curve Γ
(the arena) is a circle (albeit the fact that the curve γ here is not closed). In fact,
for Γ a circle, the DNA inequality was proved by I. Fáry 1 about 50 years ago, see
[4].

Anxious to prove Theorem 0.1 in full generality and unable to do it myself,
I started to ask around. Finally, in 1994, J. Lagarias and T. Richardson found a
proof of statement (i) (see [7]). This proof is quite involved, and one cannot help
but hope that the “proof from the Book” will be shorter and more transparent.
Another problem with the Lagarias–Richardson approach is that it does not prove
statement (ii) of Theorem 0.1, which remains a conjecture.

My goal here is to give four proofs of the Fáry theorem, that is, Theorem 0.1
with Γ a circle; these proofs make use of very different ideas. I will also discuss
multidimensional generalizations of the DNA inequality.

Without loss of generality, assume that Γ is the unit circle. Denote the total
curvature by c and the length by l. Since c(Γ) = 2π = l(Γ), the inequality to
establish reads:

c(γ) ≥ l(γ),

1Another result of his, the Fáry-Milnor theorem, is better known: the total curvature of a
nontrivial knot in 3-space is not less than 4π, see [5, 8].
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the equality holding if and only if γ is a multiple of the unit circle, i.e., the unit
circle traversed once or several times.

Sometimes it is convenient to consider γ as a smooth curve, and sometimes,
as a polygonal line (the total curvature c of the latter is the sum of its external
angles); I will freely go from one set-up to the other.

1. Proof by Rolling

Assume that γ is a polygonal line with sides ei of length li. Starting with i = 1,
rotate the side ei+1 about its common end-point vi with ei so that ei+1 becomes the
extension of ei. The rotation angle is equal to the exterior angle αi of the polygonal
line γ at the vertex vi, see Fig.1.1. In this way one straightens the polygonal line
into a segment. In other words, one rolls all of γ along a straight line.
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Figure 1.1

Let the plane containing γ roll along with γ. The total displacement of the
center O of the unit circle Γ is a horizontal segment of length

∑
li = l(γ). The

trajectory of the point O consists of arcs of circles of radii not greater than 1
(supporting the angles αi); the length of such an arc does not exceed αi. Clearly
the length of the trajectory of O is not less than its total displacement, that is,

c(γ) =
∑

αi ≥ l(γ),

as claimed.

This proof is the “official solution” of the lion on the circus arena problem from
the Moscow Mathematical Olympiad as given in [6].
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2. Proof by the Triangle Inequality

We continue to assume that γ is a polygonal line; as before, αi is the exterior
angle at vertex vi and li is the length of the side ei = vi−1vi. One wants to show
that

∑
αi ≥

∑
li.
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Figure 2.1

Denote the intersection point of the (oriented) side ei with the circle Γ by ui−1,
and let fi = |viui−1|, see Fig.2.1. Denote the length of the arc ui−1ui by ci. Then,
by the triangle inequality for the “triangle” ui−1viui, we have

fi+1 + li+1 ≤ fi + ci.

If we sum over i, the f -terms will cancel, and we obtain:

∑
li ≤

∑
ci.

Now change the orientation of γ to the opposite one, and let c′i be the length of the
corresponding arc of the circle Γ. As before,

∑
li ≤

∑
c′i.

By elementary geometry of the circle, ci + c′i = 2αi. Adding the two previous
inequalities, we get:
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∑
li ≤

∑
αi,

as required.

The same argument involving the triangle inequality proves Theorem 0.1 in the
case when γ does not have inflection points, that is, has a nonvanishing curvature.

3. Proof by Calculus

In this proof, γ(t) is a smooth curve parameterized by arc length. Choose the
origin at the center of the cell Γ. Then |γ ′(t)| = 1, and |γ′′(t)| = |k(t)| is the
absolute curvature of γ. In addition, |γ(t)| ≤ 1 for all t. We have:

l =

∫ l

0

γ′ · γ′ dt = −
∫ l

0

γ · γ′′ dt ≤
∫ l

0

|γ| |γ′′| dt ≤
∫ l

0

|k(t)| dt,

where · is the scalar product of vectors; the second equality is integration by parts).
This is the desired result.

This proof is due to G. Chakerian, see [3].

4. Proof by Integral Geometry

An oriented line r in the plane is uniquely determined by its direction α and
its signed distance p from the origin (which is again chosen to be the center of the
circle Γ); we write r(p, α), see Fig.4.1.

The set of lines that intersect Γ is described by the inequalities

0 ≤ α ≤ 2π, −1 ≤ p ≤ 1.

Consider the measure dp dα on the set of lines (this is, up to a factor, the
unique motion-invariant measure on this set). Given an oriented closed immersed
curve γ, define a locally constant function n(p, α) on the set of lines as the number
of intersection points of γ with the line r(p, α). The Crofton formula of integral
geometry reads:

l(γ) =
1

4

∫ ∫
n(p, α) dp dα,

see [9].
Define another locally constant function k(α) to be the number of oriented

tangent lines to γ in the direction α. Then one has the following integral formula
for the total curvature:

c(γ) =

∫ 2π

0

k(α) dα.



6 S.TABACHNIKOV

p>0

p’<0

α
r(p, α)

r(p’,

α ’

α ’)

Figure 4.1

The crucial observation is that

n(p, α) ≤ k(α) + k(α+ π)

for all p, α. Indeed, between two consecutive intersections of γ with the line r(p, α),
the tangent line to γ has the direction α or α+ π at least once (essentially, this is
Rolle’s theorem).

It remains to integrate this inequality, keeping in mind that we have n(p, α) = 0
for |p| > 1:

l(γ) =
1

4

∫ 2π

0

∫ 1

−1

n(p, α) dp dα ≤ 1

2

∫ 2π

0

(k(α) + k(α+ π)) dα

=

∫ 2π

0

k(α) dα = c(γ),

as claimed.

This argument, essentially due to Fáry, can be found in [9]. The integral geom-
etry approach is the most conceptual of all four; it also yields the DNA inequality
in the case when the cell Γ is a curve of constant width.
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5. Generalizations

One may change the Euclidean metric to a Riemannian one and ask whether
the DNA inequality still holds. The first case to investigate is that of the metric
of constant curvature, that is, the spherical or hyperbolic one. To the best of my
knowledge, this problem is open, even the constant curvature version of the Fáry
theorem is not available in the literature.

Another generalization concerns the dimensions involved: one may consider
a convex n-dimensional “cell” Γ and an immersed m-dimensional “DNA” γ (the
“physical” case being n = 3,m = 1). Note that all the above four proofs of the
Fáry inequality extend to the case when γ is a curve inside the n-dimensional unit
ball (curiously, what Fáry proved in the multidimensional case [4] was a weaker
inequality 4c(γ) ≥ πl(γ); the multidimensional inequality c(γ) ≥ l(γ) appeared in
[2]).

A generalization to two-dimensional DNA is contained in [4]: if Γ is the unit
sphere in 3-space and γ a closed immersed surface, then πA(γ) ≤ 4K(γ), where A
is the area and K the total (absolute) Gauss curvature. Still another generalization
is found in [1]: if Γ is the unit sphere in n-space and γ an closed immersed m-
dimensional submanifold, then

mV (γ) ≤
∫

γ

|H | dv,

where V is the m-dimensional volume and H is the mean curvature vector (the
proof is not much different from the one by calculus above).

All these multidimensional results go along Fáry’s lines: the outer surface is
the sphere. What about a more general case, say, a closed curve inside an ovaloid?
It is not even clear what the hypothetical lower bound for the average curvature of
such a curve should be...

And, before I finish, what is the answer to the rook on the chess board puzzle?
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