1º TESTE DE ÁLGEBRA LINEAR CURSOS: LMAC, LEFT, LEBM

16 de Novembro de 2002 Duração: 1h 30m

Considere a matriz real A e o vector coluna b dependente do parâmetro real β dados por

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 2 & 2 & 3 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ \beta \end{bmatrix}.$$

- a) Discuta a natureza do sistema $A.\mathbf{x} = \mathbf{b}$, construindo a sua solução geral sempre que seja possível. Nesses casos identifique claramente uma solução particular do sistema não -homogéneo e a solução geral do sistema homogéneo.
- b) Determine o núcleo de A (sug.: baseie-se na alínea anterior). Forneça uma base para $\mathcal{N}(\mathcal{A})$ e indique qual a sua dimensão. Diga, justificando, qual a dimensão do espaço das colunas de A e forneça uma sua base.

Considere, no espaço linear $\mathcal{P}_3(\mathbb{R})$, o subconjunto $S = \{t + 1, t^2 + 2t + 1, t^3 + 3t^2 + t + 1, t^3 + 4t^2 + 6t + 3\}.$

- a) Construa uma base de L(S), espaço gerado por S, e indique a respectiva dimensão.
- b) Determine se $p(t) = 1 + t + t^2 + t^3 \in L(S)$. Em caso afirmativo, determine as coordenadas de p na base construída na alínea anterior.

Considere a matriz
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
.

Calcule, através de determinantes, os valores de $\lambda \in \mathbb{R}$ para os quais a matriz $A - \lambda I$ é singular. Para cada um desses valores determine uma base e a dimensão de $\mathcal{N}(A - \lambda I)$.

Uma matriz quadrada $A_{n\times n}$ diz-se um quadrado mágico de ordem n se a soma dos elementos ao longo de qualquer linha, qualquer coluna e de ambas as diagonais (principal e secundária) for constante. Designe, no que se segue, o conjunto dos quadrados mágicos de ordem n por Q_n .

- a) Mostre que Q_n , munido das operações usuais de soma e multiplicação por escalar, forma um espaço vectorial real.
- b) Determine uma base e a dimensão de Q_2 .