ÁLGEBRA LINEAR A

FICHA 3 - ESPAÇOS VECTORIAIS E BASES

Espaços e Subespaços

- (1) Determine quais dos seguintes conjuntos, munidos das operações habituais de adição e multiplicação por escalares, formam espaços vectoriais.
 - (a) O eixo dos yy no plano euclideano: $\{(x,y) \in \mathbb{R}^2 : x=0\}$.
 - (b) A recta horizontal de equação x = 1: $\{(x, y) \in \mathbb{R}^2 : x = 1\}$.
 - (c) A recta bissectriz dos quadrantes pares em \mathbb{R}^2 : $\{(x,y) \in \mathbb{R}^2 : x+y=0\}$.
 - (d) A circunferência de raio 1 centrada na origem em \mathbb{R}^2 .
 - (e) $\{(x,y) \in \mathbb{R}^2 : x \in \mathbb{N}\}.$
 - (f) $\{(x,y) \in \mathbb{R}^2 : xy \ge 0\}.$
 - (g) $\{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}.$
 - (h) $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$
 - (i) O núcleo de uma aplicação linear.
 - (i) A imagem de uma aplicação linear.
 - (k) O semi-plano superior em \mathbb{R}^2 : $\{(x,y) \in \mathbb{R}^2 : y \geq 0\}$.
 - (I) A união dos eixos coordenados em \mathbb{R}^n .
 - (m) O conjunto dos polinómios p tais que p(1) = 0.
 - (n) O conjunto dos polinómios p de coeficientes inteiros.
 - (o) O conjunto dos polinómios p de grau igual a três.
 - (p) O conjunto das funções reais de variável real pares.
 - (q) O conjunto das funções que satisfazem a equação diferencial f'-f=0 (como a exponencial).
 - (r) O conjunto das funções que satisfazem a equação diferencial f''+f=0 (como o seno e o co-seno).
 - (s) O conjunto das sucessões convergentes.
 - (t) O conjunto das sucessões convergentes para 1.
 - (u) O conjunto das sucessões convergentes para 0.
 - (v) O conjunto das matrizes 3×3 invertíveis.
 - (w) O conjunto das matrizes 3×3 triangulares superiores.
 - (x) O conjunto das matrizes 3×3 cujo núcleo contém o vector (1,2,3).
 - (y) O conjunto das matrizes 3×3 diagonais.
 - (z) O conjunto das matrizes 2×2 que comutam com $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- (2) Mostre que, se U e V são subespaços vectoriais de \mathbb{R}^n , então:
 - (a) $U \cap V$ é subespaço vectorial;
 - (b) $U + V := \{u + v : u \in U, v \in V\}$ é subespaço vectorial;
 - (c) U+V é o menor subespaço vectorial que contém U e V;
 - (d) $U \cup V$ em geral não é subespaço vectorial.
- (3) O que é que são os subespaços de dimensão 0, 1, 2 e 3 em \mathbb{R} , \mathbb{R}^2 e \mathbb{R}^3 ?

2

Expansão Linear e Independência Linear

- (4) Quais dos seguintes conjuntos geram \mathbb{R}^2 ?
 - (a) $\{(1,2),(2,3)\}$
 - (b) $\{(1,2),(2,4),(3,6)\}$
 - (c) $\{(x,0): x \in \mathbb{R}\}$
 - (d) $\{(x,1): x \in \mathbb{R}\}$
- (5) Quais dos seguintes conjuntos geram \mathbb{R}^3 ?
 - (a) $\{(1,0,1),(1,2,3)\}$
 - (b) $\{(1,1,2),(2,2,1),(1,0,0)\}$
 - (c) $\{(1,1,2),(2,2,1),(0,0,1)\}$
 - (d) $\{(1,1,2),(2,2,1),(3,3,0),(1,1,1)\}$
- (6) Quais dos seguintes conjuntos de vectores são linearmente independentes?
 - (a) $\{(1,0),(0,1)\}$
 - (b) $\{(1,y):y\in\mathbb{R}\}$
 - (c) $\{(1,1,1),(0,1,1),(0,0,1)\}$
 - (d) $\{(1,1,1,1,1),(1,-1,1,-1,1),(2,1,2,1,2)\}$
 - $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$
 - (f) O conjunto de funções $\{\sin^2 x, \cos^2 x\}$
 - (g) O conjunto de funções $\{1, x^2, x^4, x^6, \dots, x^{2n}, \dots\}$ (onde 1 representa a função constante igual a 1).
 - (h) O conjunto de polinómios $\{x^2-x+1, x-1, x^2-x+3\}$.
- (7) Será que a função $\cos(2x)$ pertence a $\mathcal{L}(\sin x, \cos x)$? E a $\mathcal{L}(\sin^2 x, \cos^2 x)$?

Bases e Dimensão

- (8) Determine uma base para cada um dos seguintes espaços vectoriais.
 - (a) $\mathcal{L}(\{(1,1,1,1,),(1,1,-1,-1),(3,3,1,1)\})$
 - (b) $\mathcal{L}(\{(1,1,2),(2,2,3),(3,3,4)\})$
 - (c) $\mathcal{L}(\{(x, x, x + 1) \in \mathbb{R}^3 : x \in \mathbb{R}\})$ (Sugestão: ver a alínea anterior.)
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : x = y = z\}$
 - (e) $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 = x_3 x_4\}$

 - (f) $\{(x, y, z) \in \mathbb{R}^3 : x = 2y z \land x 2z = y\}$ (g) $\mathcal{L}\left(\left\{\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}\right\}\right)$
 - (h) Conjunto das matrizes 2×2 simétricas: $\{A \in \mathcal{M}_{2\times 2} : A = A^t\}$
 - (i) Conjunto das matrizes 2×2 que comutam com
 - (j) Conjunto dos polinómios p de grau menor ou igual a 3 que satisfazem p(1) = 0
 - (k) Conjunto dos polinómios p de grau menor ou igual a 2 que satisfazem p'(x) =2xp(x) (Atenção: o espaço vectorial trivial $\{0\}$ não admite base.)

3

- (9) Complete os seguintes conjuntos até obter uma base de \mathbb{R}^3 :
 - (a) $\{(1,0,0),(0,0,1)\}$
 - (b) $\{(2,1,0)\}$
 - (c) $\{(2,3,1),(1,4,2)\}$
- (10) Complete os seguintes conjuntos até obter uma base de \mathbb{R}^4 :
 - (a) $\{(1,1,1,1),(1,1,1,0)\}$
 - (b) $\{(1,-1,0,0),(1,-1,2,2),(0,0,1,-1)\}$
 - (c) $\{(0,0,1,2),(0,0,2,3)\}$
- (11) Para que escolha(s) do parâmetro k é que os seguintes vectores formam uma base de \mathbb{R}^4 ?

$$\begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\4 \end{bmatrix}, \begin{bmatrix} 2\\3\\4\\k \end{bmatrix}.$$

- (12) Mostre que, se $\dim V = m$, então:
 - (a) podem-se achar no máximo m vectores linearmente independentes em V;
 - (b) é necessário pelo menos m vectores para gerar V;
 - (c) se m vectores são linearmente independentes, então formam uma base de V;
 - (d) se m vectores geram V, então eles formam uma base de V.

Bases para o Núcleo e a Imagem

- (13) Determine uma base para o núcleo e para a imagem de cada uma das matrizes do exercício (10) da ficha 1, e diga qual é a característica e a nulidade em cada um dos casos. (No exercício (18) da ficha 2 já terão sido calculados o núcleo e a imagem de cada uma dessas matrizes.)
- (14) Para cada uma das matrizes do exercício (7) da ficha 2, determine bases para o espaço das colunas, para o espaço das linhas e para o núcleo.
- (15) Use os cálculos do exercício anterior para decidir se as matrizes em causa admitem inversa à direita ou inversa à esquerda.
- (16) Existe alguma matriz 3×4 invertível à direita? E à esquerda?

- 4
- (17) Consegue encontrar uma matriz 2×2 cuja imagem coincida com o núcleo? E uma matriz 3×3 ?
- (18) Considere a matriz $n \times n$

$$A = \left[\begin{array}{ccc} | & & | \\ v_1 & \dots & v_n \\ | & & | \end{array} \right] .$$

Justifique a equivalência das seguintes afirmações.

- (a) A matriz A é invertível.
- (b) A equação linear Av = b tem uma única solução v para cada $b \in \mathbb{R}^n$.
- (c) A forma escalonada de A é a identidade.
- (d) A característica de $A \in n$.
- (e) A imagem de $A \in \mathbb{R}^n$.
- (f) O núcleo de $A \in \{0\}$.
- (g) Os vectores v_1, \ldots, v_n formam uma base de \mathbb{R}^n .
- (h) Os vectores v_1, \ldots, v_n geram \mathbb{R}^n .
- (i) Os vectores v_1, \ldots, v_n são linearmente independentes.
- (19) Determine o valor lógico das seguintes proposições.
 - (a) A característica de uma matriz é a dimensão do seu espaço das colunas.
 - (b) A característica de uma matriz é a dimensão do seu espaço das linhas.
 - (c) A característica de uma matriz é igual ao seu número de colunas menos a nulidade.
 - (d) A característica de uma matriz é igual ao seu número de linhas menos a nulidade.
 - (e) Uma matriz é invertível à direita se e só se a sua característica é igual ao número de linhas
 - (f) Uma matriz é invertível à esquerda se e só se a sua característica é igual ao número de colunas.
- (20) Sejam A e B duas matrizes para as quais faz sentido o produto AB. Determine o valor lógico das seguintes proposições acerca da característica (car) de matrizes.
 - (a) car(AB) = min(car(A), car(B)).
 - (b) $car(AB) \leq min(car(A), car(B))$.
 - (c) Se A é invertível à esquerda, então car(AB) = car(B).
 - (d) Se B é invertível à esquerda, então car(AB) = min(car(A), car(B)).
 - (e) Se B é invertível à direita, então car(AB) = car(A)