ÁLGEBRA LINEAR A TESTE 3 PARA PRATICAR – NOVEMBRO DE 2003

Duração: 50 minutos

a estrutura das perguntas deste teste para praticar não coincide com a do teste real

Instruções

- Não abra este caderno de teste antes de ser anunciado o início da prova.
- Preencha os seus dados na parte de baixo desta folha.
- O problema (1) vale 5 pontos, cada uma das alíneas do problema (2) vale 2.5 pontos e cada uma das alíneas do problema (3) vale 1 ponto.
- Apresente e justifique todos os cálculos.
- Não é permitida a utilização de quaisquer elementos de consulta nem de máquinas calculadoras. É permitida a utilização de papel de rascunho.
- A revisão de provas é na 5ª feira, 4 de Dezembro, 16h-17h, na sala de dúvidas.
- Boa sorte!

Para a correcção

pergunta	classificação
(1)	
(2)(a)	
(2)(b)	
(2)(c)	
(2)(d)	
(3)(a)	
(3)(b)	
(3)(c)	
(3)(d)	
(3)(e)	
total	

Nº:	

Curso:

Nome:

(1) Calcule o determinante da matriz

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 3 & 3 & 3 & 0 \\ 0 & 4 & 0 & 4 & 0 \\ 2 & 2 & 2 & 0 & 0 \end{bmatrix} .$$

(2) Considere a função real definida em pares de vectores u e v de \mathbb{R}^3 por

$$\langle u,v \rangle = u^t G v \quad \text{ onde } \quad G = egin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \ .$$

(a) Mostre que $\langle\cdot,\cdot\rangle$ define um produto interno em $\mathbb{R}^3.$

(b) Seja L o subespaço gerado por $\begin{bmatrix} 2\\-1\\3 \end{bmatrix}$. Determine o complemento ortogonal L^\perp relativamente ao produto interno $\langle\cdot,\cdot\rangle$.

(c) Determine, pelo processo de Gram-Schmidt, uma base ortonormal para L e uma para L^\perp (relativamente ao produto interno $\langle\cdot,\cdot\rangle$).

(d) Determine a distância do ponto (0,1,0) a L^{\perp} (relativamente a $\langle\cdot,\cdot\rangle$).

- (3) Indique, justificadamente (com breves argumentos ou contra-exemplos), se cada uma das seguintes afirmações é verdadeira ou falsa. *Não é atribuída qualquer cotação ao simples assinalar do correcto valor lógico da afirmação.*
 - (a) Se uma matriz A é simétrica e se a matriz S é ortogonal, então a matriz $S^{-1}AS$ é simétrica.

Verdadeira		Falsa	
------------	--	-------	--

(b) Se x_1, x_2, \ldots, x_n são números reais quaisquer, então verifica-se a desigualdade

$$\left(\sum_{k=1}^n x_k\right)^2 \le n \sum_{k=1}^n x_k^2 .$$

Verdadeira		Falsa	
------------	--	-------	--

(c)	Se todas as entradas da diagonal de uma matriz quadrada A são núm ímpares e se todas as outras entradas são números inteiros pares, e que ser invertível.	
	Verdadeira	Falsa
(d)	Se uma matriz A é invertível e tanto A como A^{-1} têm todas as entra então $\det A = \pm 1$.	adas inteiras,
	Verdadeira	Falsa
(e)	Se 1 é o único valor próprio de uma matriz A , então A tem que ser identidade Id .	uma matriz
	Verdadeira	Falsa