ÁLGEBRA LINEAR A TESTE 4 – 9 DE DEZEMBRO DE 2003 – 11:10-12H

Instruções

- Não abra este caderno de teste antes de ser anunciado o início da prova.
- Preencha os seus dados na parte de baixo desta folha.
- Cada um dos quatro problemas vale 5 pontos, sendo a cotação igualmente repartida pelas alíneas de cada problema.
- Apresente e justifique todos os cálculos.
- Não é permitida a utilização de quaisquer elementos de consulta nem de máquinas calculadoras. É permitida a utilização de papel de rascunho.
- A revisão de provas é na 3ª feira, 16 de Dezembro, 16h-17h, na sala de dúvidas.
- Boa sorte!

Para	a	correcçad)
------	---	-----------	---

pergunta	classificação
(1)(a)	
(1)(b)	
(2)(a)	
(2)(b)	
(3)(a)	
(3)(b)	
(4)(a)	
(4)(b)	
(4)(c)	
(4)(d)	
(4)(e)	
total	

Nº:				
Curs	so:			

(1) Considere a matriz

$$A = \left[\begin{array}{cc} -1 & 1 \\ -1 & -1 \end{array} \right] \ .$$

(a) Calcule os valores e os vectores próprios (eventualmente complexos) de A.

(b) Decida se A é diagonalizável (eventualmente sobre $\mathbb C$) e em caso afirmativo escreva uma diagonalização, i.e., escreva A na forma SDS^{-1} onde D é uma matriz diagonal e S é uma matriz de mudança de base.

(2) Considere a matriz

$$B = \left[\begin{array}{cc} -1 & -2 \\ 8 & 7 \end{array} \right] \ .$$

(a) Calcule os valores e os vectores próprios (eventualmente complexos) de ${\cal B}.$

(b) Escreva uma decomposição de Jordan para B (eventualmente sobre $\mathbb C$), i.e., escreva B na forma SJS^{-1} onde J é uma forma canónica de Jordan e S é uma matriz de mudança de base.

(3) Para um parâmetro $k \in \mathbb{R}$ arbitrário, considere a matriz

$$C = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & k \\ 2 & 3 & 0 \end{bmatrix} .$$

(a) Calcule os valores próprios (eventualmente complexos) de C em função de k.

(b) Para que valores de k é que a matriz C é diagonalizável (sobre \mathbb{C})?

Falsa

Indique, justificadamente (com breves argumentos ou contra-exemplos), se cada u das seguintes afirmações é verdadeira ou falsa. <i>Não é atribuída qualquer cotação</i> simples assinalar do correcto valor lógico da afirmação.	
(a) Se uma matriz 11×11 tem os valores próprios $1,2,3,4,5,6,7,8,9,10$ e então essa matriz é diagonalizável.	11,
Verdadeira Falsa	
(b) Se v é um vector próprio de duas matrizes $n\times n$, A e B , com A invert então v é um vector próprio de $3A^{-1}+AB$.	ível,

Verdadeira

(c)	Se o determinante de uma matriz real 2×2 A é negativo, então valores próprios reais distintos.	A tem of	siot
	Verdadeira	Falsa	
		<u> </u>	
(d)	Duas matrizes A e B diagonalizáveis, $n\times n$ e com os mesmos valotêm que ser matrizes semelhantes.	ores próp	rios
	Verdadeira	Falsa	
(e)	Para quaisquer matrizes $n \times n$, A e B , as matrizes produto AB e mesmos valores próprios.	BA têm	ı os
	Verdadeira	Falsa	