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Incompressible Navier-Stokes equations
Model for a viscous fluid with constant density
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Motivation and examples

Incompressible Navier-Stokes equations in a moving domain

Model for a viscous fluid with constant density in a domain that changes
shape in time
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Motivation and examples

Incompressible Navier-Stokes equations in a moving domain

Model for a viscous fluid with constant density in a domain that changes
shape in time

Examples:
@ Static domain: flow in a channel
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Incompressible Navier-Stokes equations in a moving domain
Model for a viscous fluid with constant density in a domain that changes
shape in time

Examples:

@ Fluid-fluid: bubbles of air in water
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Motivation and examples

Incompressible Navier-Stokes equations in a moving domain
Model for a viscous fluid with constant density in a domain that changes
shape in time
Examples:

@ Fluid-structure: hemodynamics, bridges, sail design

Gongalo Pena (CMUC) 16 de Julho de 2010 3/17



Differential model

Navier-Stokes equations (Eulerian coordinate system)

?9 —vAuU+pu-Viu+Vp = f inQ, x(0,7) (1)
V-u = 0, inQ, x(0,7T) 2)
B(u,p) = g, onodQ, x[0,T] (3)

Model for viscous fluid
@ u is the velocity field, p is the pressure field
@ v is the viscosity constant, p is the density
@ Momentum conservation: (1)
@ Mass conservation: (2)
@ 5(u,p) is an operator with boundary conditions
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Differential model

Coordinate systems:
@ Eulerian coordinate system
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Differential model

Coordinate systems:
o Eirlor .

@ Lagrangian coordinate system
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Differential model

Coordinate systems:
o Eirlor .
o : .

@ Arbitrary lagrangian-eulerian (ALE) coordinate system
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ALE approach

Navier-Stokes equations in ALE coordinates

ou .
—| +[(u—w)-Vju+Vp—rvAu = f inQ,
at |y
V.u = 0,inQ,
i Q7
ap Q0 ap 0P o
U Q7

@ ALE map: homeomorfism A; : 2, — €,
@ Domain’s deformation velocity w = 24t o A;™!
® ALE time derivative: 24|,
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Differential model

Weak formulation
Foru,v,8 € V(Q,) and p,q € Q(£,), let

(u,v)Qt :/Q u-vdr a(u,v)qg zl//Q Vxu: Vyvdr

t

bvpla, = [ diw)pds  cluviBlo =p [ 8-Vu v

t t

Problem
Fort € I, find u(t) € V(£,), with u(to) = up in ,, and p(t) € Q(£2,), such that
ou
p (— ,v> +c(u,viu—w), +
oly /g !

a(u, V)Qt +b(v,p)q

- (£v)g,, weve) @
b (ll, Q)Q

07 Vq € Q(Qt)

t

t

V(Q)={v:QxI—R, v=vodA ', veH,(Q,)}
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Numerical method

Family of numerical methods
@ Get a weak formulation of the problem
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Numerical method

Family of numerical methods
@ Get a weak formulation of the problem
@ Discretization in space

Finite/spectral element method
Construction of the ALE map
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Numerical method

Family of numerical methods
@ Get a weak formulation of the problem
@ Discretization in space

Finite/spectral element method
Construction of the ALE map

@ Discretization in time

Finite differences/Runge-Kutta
Linearization of the convective term/Newton
Discretization of the domain’s deformation velocity
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Numerical method

Family of numerical methods
@ Get a weak formulation of the problem
@ Discretization in space
Finite/spectral element method
Construction of the ALE map
@ Discretization in time

Finite differences/Runge-Kutta
Linearization of the convective term/Newton
Discretization of the domain’s deformation velocity

@ Strategy to solve algebraic system of equations

Direct method
GMRES with preconditioner
Algebraic factorization methods
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Numerical method

Build basis for the space
Fn(To) = {v €C°@): v, €Pn(Q,), ¥Q, € Th}

Plan: reference element approach

@ Construct a basis in Py (Q)

Lagrange polynomials
Fekete/Gauss-Lobatto-Legendre points

@ Use geometrical transformation + glue similar functions (continuity)
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Numerical method

How to build the discrete spaces?
Define spaces in the reference configuration and use the ALE map:

Vi(@5) = {vi Qs x T — R v=v0 Al v €Hbo(R,)N (Fn(Tus)'}

Qs(@p) = {a: Qs x I =R, g=d0 A}, € Fu(Tino)}

How to build the ALE map?
@ Usual approach: use finite elements and harmonic extension
@ Less usual approach: use spectral elements (Stokes or Laplace)

Representation of the boundary with curved elements
Keep inner elements with straight edges
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Numerical method

Steps in the construction of A. 5
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Steps in the construction of A. 5

@ Generate a straight edge mesh
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Steps in the construction of A. 5

@ Generate a straight edge mesh

@ Given the description of the boundary 99,, calculate the discrete
harmonic extension, A},
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Steps in the construction of A. 5

@ Generate a straight edge mesh

@ Given the description of the boundary 99,, calculate the discrete
harmonic extension, A},

@ Project A} in the space Py, AN
h h
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Steps in the construction of A. ;

@ Generate a straight edge mesh

@ Given the description of the boundary 99,, calculate the discrete
harmonic extension, A},

@ Project A} in the space Py, AN
h h

@ Change the values of the degrees of freedom of A to fit the boundary,
A s
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Numerical method

Weak formulation (discrete problem)

Foreachn > ¢ — 1, find (uj
,, 5, Such that

ytY) € Vs(Qy,,,6) X Qs(Q

(@ :
wan,0)s With ug = g5 in

n+1
oS ()
1 1y
a(u?Jr ,V)Qt 6—|—b(v pg”r )Qt 5+
n+1> n+1» 5
c(ug“rl’v;u(; wghLl)Q — (fgLleyv) 0 Vv € V5(Qtn+1y5
tnt1,8 Qtn+1,6
Al _
b (uz »q)QMM = 0, Vg€ Qs(R,,,5)
onde
fn+l o

q—1 5
n—+1 ] ..n—
£ 4 pz o
=0
Assembling the matrices, we obtain

%5 )=
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Application to hemodynamics

Fluid-structure interaction (FSI) problem in hemodynamics
An interaction exists between the blood flow and the arterial wall J

%, TIv

S

@ O, represents the domain occupied by the blood
@ >, represents the arterial wall

@ I'} is the interface between Q, and %,

@ S; are S, ficticious boundaries of the blood vessel
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FSI problem

0 .
pa—‘; + p((u—w) - Vy)u — 2vD(u) + Vp £, inQ,tel
Y
divye(u) 0, inQ,tel
2n 0%n Eh 7 o3 .
—kGhZ L — ®,. in(0,L),tel
5‘t2 82+ — 12 R2 o020t 1‘ (7 )7 S
u (now,')es, InTY
o, = —(Tn-es)oup,
16 de Julho de 2010 14/17



Application to hemodynamics

FSI problem
Ju .
P ot +p(u—w) - Vyu—2vD(u)+Vp = £, inQ, tel
Y

divx(u) = 0, INQ,tel

2n 0%n Eh 7 93n .

a 9 52 = (b’l' 7L ) I
6‘t2 k:Gha 2 T 1,2 R o525 in (0,L),t €
u = (joyp,')ey, inly

®, = —(Tn-ex)oq,

Numerical method for the FSI problem

@ Modular approach: structure algorithm + fluid algorithm + interface
operators

@ Non-modular approach
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Application to hemodynamics

A carregar...

magnified five times.

Figura: Pressure wave propagating through the blood vessel. The displacement is

o F = = A
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FSI_compliant_tube_magnified.avi
Media File (video/avi)


Application to hemodynamics

Thank you
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Application to hemodynamics

t =0ms

Figura: Pressure wave propagating through the blood vessel. The displacement is
magnified five times.
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Application to hemodynamics

t=2ms
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Figura: Pressure wave propagating through the blood vessel. The displacement is
magpnified five times.
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Application to hemodynamics

t =4ms
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Figura: Pressure wave propagating through the blood vessel. The displacement is
magpnified five times.
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Application to hemodynamics

t = 6ms
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Figura: Pressure wave propagating through the blood vessel. The displacement is
magpnified five times.
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Application to hemodynamics

t = 8ms
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Figura: Pressure wave propagating through the blood vessel. The displacement is
magnified five times.
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Application to hemodynamics

t = 10ms

-

Figura: Pressure wave propagating through the blood vessel. The displacement is
magnified five times.
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