Fully-Compressed Suffix Trees

Luís M. S. Russo

CITI (FCT/UNL)
Isr@di.fct.unl.pt

O Gosto pela Matemática - Uma Década de Talentos

Outline

- Motivation
 - Exact Matching
- Suffix Tree Representation
 - Classical Representation
 - Modern Representations
- Conclusions
 - Summary

Pattern Matching Problem

Problem (Exact Matching)

Find pattern P in text T.

Example

- $T = acctgcgctagct, n = 13, \sigma = 4$

29 min

Pattern Matching Problem

Problem (Exact Matching)

Find pattern P in text T.

Example

- **1** $T = acctgcgctagct, n = 13, \sigma = 4$
- 2 acctgcgctagct, P = c, m = 1, acc = 5

29 min

Pattern Matching Problem

Problem (Exact Matching)

Find pattern P in text T.

Example

- **1** $T = acctgcgctagct, n = 13, \sigma = 4$
- 2 acctgcgctagct, P = c, m = 1, occ = 5
- 3 acctgcgctagct, P = cct, m = 3, occ = 1

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

- Scanning 3Gb DNA sequences takes too long.

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

Example (On-line scan)

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.

27 min

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

Example (On-line scan)

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.

27 min

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- \bullet P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

Example (On-line scan)

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.

27 min

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m+n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- \bullet P-cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

Problem (On-line Limitations)

On-line solutions are not viable for large text databases, O(m + n).

- Scanning 3Gb DNA sequences takes too long.
- T = acctgcgctagct
- We need indexes that have O(m + occ) time.
- P = cct

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree

```
Example (Suffix Tree for atttat)
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree

```
Example (Suffix Tree for atttat)

atttat$
tttat$
ttat$
tat$
at$
at$
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

```
Example (Suffix Tree for atttat)

atttat$
tttat$
ttat$
tat$
at$
at$
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

```
Example (Suffix Tree for atttat)
   atttat$
```

26 min

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree ?
- Gather the suffixes & build a tree.

```
Example (Suffix Tree for atttat)

atttat$
tttat$
ttat$
tat$
at$
at$
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

```
Example (Suffix Tree for atttat)

atttat$
tttat$
ttat$
tat$
at$
at$
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

```
Example (Suffix Tree for atttat)

atttat$
tttat$
ttat$
at$
at$
$
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

```
Example (Suffix Tree for atttat)

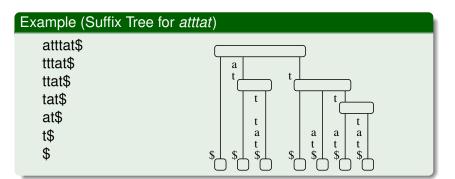
atttat$
tttat$
tat$
at$
tat$
at$
```

- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.

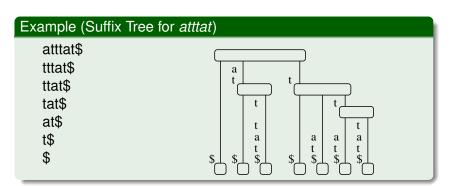
```
Example (Suffix Tree for atttat)

atttat$
tttat$
ttat$
tat$
at$
at$
$
```

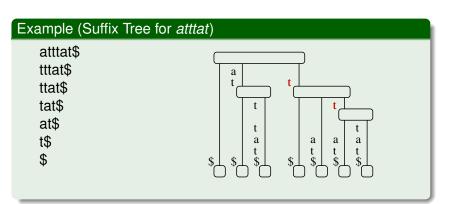
- Suffix trees have optimal O(m + occ) performance.
- What is a suffix tree?
- Gather the suffixes & build a tree.



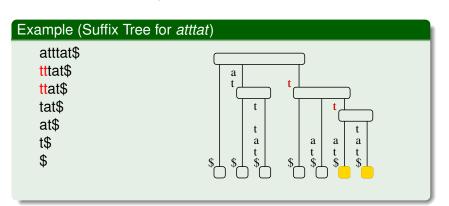
- Searching means descending from the ROOT & reporting leaves bellow.
- Suffix trees have problems.



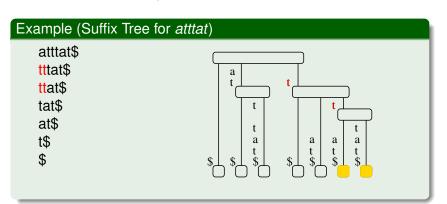
- Searching means descending from the ROOT & reporting leaves bellow
- Suffix trees have problems.



- Searching means descending from the ROOT & reporting leaves bellow.
- Suffix trees have problems.



- Searching means descending from the ROOT & reporting leaves bellow.
- Suffix trees have problems.



- Naive construction takes O(n²) space & time
- Efficient algorithms using pointers and amortized analysis

- Naive construction takes O(n²) space & time
- Efficient algorithms using pointers and amortized analysis

- Naive construction takes O(n²) space & time
- Efficient algorithms using pointers and amortized analysis

- Naive construction takes O(n²) space & time

Example (Suffix Tree for atttat)				
atttat\$	7	n + 1		
tttat\$	+6	+ <i>n</i>		
ttat\$	+5	+(n-1)		
tat\$	+4	+(n-2)		
at\$	+3			
t\$	+2			
\$	+1	+1		
	= 28	=(n+2)(n+1)/2		
		$=O(n^2)$		

- Naive construction takes O(n²) space & time

Example (Suffix Tree for atttat)				
atttat\$	7	n + 1		
tttat\$	+6	+ <i>n</i>		
ttat\$	+5	+(n-1)		
tat\$	+4	+(n-2)		
at\$	+3			
t\$	+2			
\$	+1	+1		
	= 28	=(n+2)(n+1)/2		
		$= O(n^2)$		

- Naive construction takes O(n²) space & time

Example (Suffix Tree for atttat)				
atttat\$	7	n + 1		
tttat\$	+6	+ <i>n</i>		
ttat\$	+5	+(n-1)		
tat\$	+4	+(n-2)		
at\$	+3			
t\$	+2			
\$	+1	+1		
	= 28	=(n+2)(n+1)/2		
		$=O(n^2)$		

- Naive construction takes O(n²) space & time

Example (Suffix Tree for atttat)				
atttat\$	7	n + 1		
tttat\$	+6	+ <i>n</i>		
ttat\$	+5	+(n-1)		
tat\$	+4	+(n-2)		
at\$	+3			
t\$	+2			
\$	+1	+1		
	= 28	=(n+2)(n+1)/2		
		$=O(n^2)$		

- Naive construction takes O(n²) space & time

Example (Suffix Tree for atttat)				
atttat\$	7	n + 1		
tttat\$	+6	+ <i>n</i>		
ttat\$	+5	+(n-1)		
tat\$	+4	+(n-2)		
at\$	+3			
t\$ \$	+2			
\$	+1	+1		
	= 28	=(n+2)(n+1)/2		
		$=O(n^2)$		

- Naive construction takes O(n²) space & time
- Efficient algorithms using pointers and amortized analysis

Example (Suffix Tree for atttat) atttat\$ n+1tttat\$ +6+n+5ttat\$ +(n-1)+(n-2)tat\$ +4at\$ +3t\$ +2

Suffix Tree Representation

- Naive construction takes O(n²) space & time
- Efficient algorithms using pointers and amortized analysis

Example (Suffix Tree for atttat) atttat\$ n+1tttat\$ +6+n+5ttat\$ +(n-1)+(n-2)tat\$ +4at\$ +3t\$ +2\$ +1+1

- Naive construction takes $O(n^2)$ space & time
- Efficient algorithms using pointers and amortized analysis

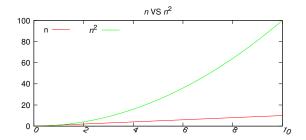
Example (Suffix Tree for atttat) atttat\$ n+1tttat\$ +6+n+5ttat\$ +(n-1)+(n-2)tat\$ +4at\$ +3t\$ +2\$ +1+1= 28=(n+2)(n+1)/2 $= O(n^2)$

- Naive construction takes $O(n^2)$ space & time
- Efficient algorithms using pointers and amortized analysis take O(n) space & time.

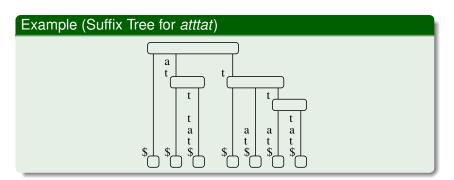
Example (Suffix Tree for atttat) atttat\$ n+1tttat\$ +6+n+5ttat\$ +(n-1)+(n-2)tat\$ +4at\$ +3t\$ +2\$ +1+1= 28=(n+2)(n+1)/2 $= O(n^2)$

What is the difference?

There is no way to index 3Gb DNA with an $O(n^2)$ algorithm

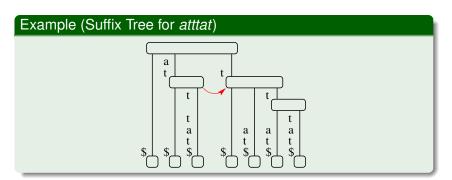


- Not going to explain Ukkonen's algorithm
- Key concept SLINK, always exists



Suffix Link

- Not going to explain Ukkonen's algorithm
- Key concept SLINK, always exists



Representation Problems

Problem (Suffix Trees need too much space)

Representation Problems

Problem (Suffix Trees need too much space)

- This is much larger than the indexed string, $n \log \sigma$ bits.

Problem (Suffix Trees need too much space)

- This is much larger than the indexed string, $n \log \sigma$ bits.
- State of the art implementations require $[8, 10] \times 8n$ bits.

Representation Problems

Problem (Suffix Trees need too much space)

- This is much larger than the indexed string, $n \log \sigma$ bits.
- State of the art implementations require $[8, 10] \times 8n$ bits.
- This is 48 Gb for 3 Gb of DNA, i.e. for the human genome.

Problem (Suffix Trees need too much space)

- This is much larger than the indexed string, $n \log \sigma$ bits.
- State of the art implementations require $[8, 10] \times 8n$ bits.
- This is 48 Gb for 3 Gb of DNA, i.e. for the human genome.
- Modern representations use data compression techniques.

Representation Problems

Problem (Suffix Trees need too much space)

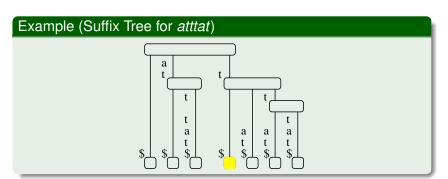
- This is much larger than the indexed string, $n \log \sigma$ bits.
- State of the art implementations require $[8, 10] \times 8n$ bits.
- This is 48 Gb for 3 Gb of DNA, i.e. for the human genome.
- Modern representations use data compression techniques.
- Compressing the tree requires finding regularities.

Lowest Common Ancestors

- The LCA operation.
- can be computed in O(1) time, O(n) space.
- No dark magic, just good algorithms:-)

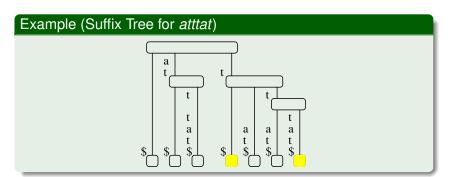
Lowest Common Ancestors

- The LCA operation.
- can be computed in O(1) time, O(n) space.
- No dark magic, just good algorithms ;-)

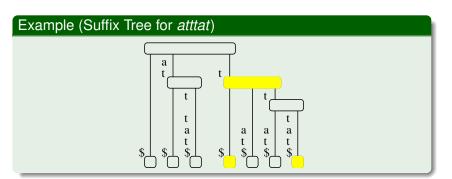


The LCA operation.

- can be computed in O(1) time, O(n) space.
- No dark magic, just good algorithms ;-)

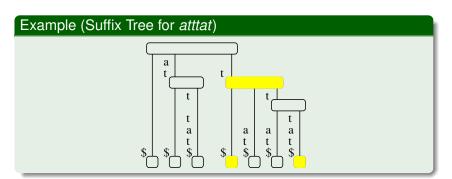


- The LCA operation.
- can be computed in O(1) time, O(n) space.
- No dark magic, just good algorithms ;-)

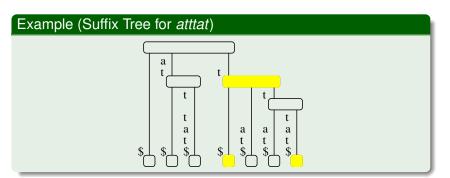


Lowest Common Ancestors

- The LCA operation.
- can be computed in O(1) time, O(n) space.
- No dark magic, just good algorithms ;-)



- The LCA operation.
- can be computed in O(1) time, O(n) space.
- No dark magic, just good algorithms ;-)

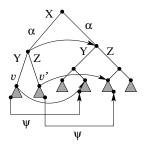


LCA and SLINK

Lemma

When LCA(v, v') \neq ROOT we have that:

SLINK(LCA(v, v')) = LCA(SLINK(v), SLINK(v'))

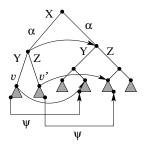


LCA and SLINK

Lemma

When LCA(v, v') \neq ROOT we have that:

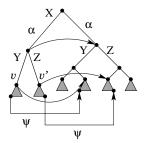
SLINK(LCA(v, v')) = LCA(SLINK(v), SLINK(v'))



Lemma

When LCA(v, v') \neq ROOT we have that:

$$SLINK(LCA(v, v')) = LCA(SLINK(v), SLINK(v'))$$



Using this lemma we do not need to store all the nodes, only some sampled ones.

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) =
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) =
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

Proof.

SDep(LCA(v, v'))

$$= i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))$$

$$\geq i + SDEP(LCSA(SLINK^{i}(v), SLINK^{i}(v'))$$

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v'))?
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK^{i}(LCA(v, v')))
```

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v'))?
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK^{i}(LCA(v, v')))
    = i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))
```

10 min

Lemma

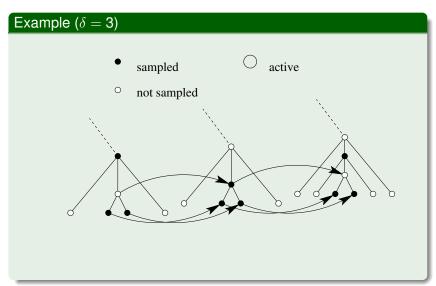
```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) >
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

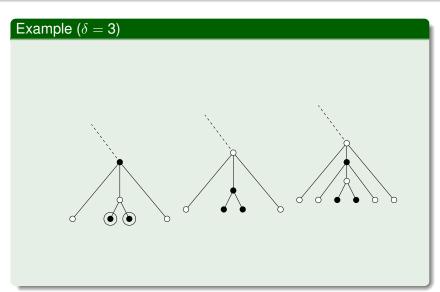
```
SDep(LCA(v, v'))
    = i + SDEP(SLINK^{i}(LCA(v, v')))
    = i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))
    > i + SDEP(LCSA(SLINK^{i}(v), SLINK^{i}(v')))
```

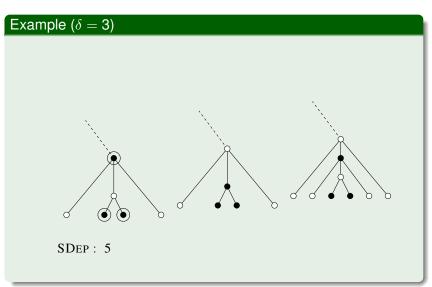
Lemma

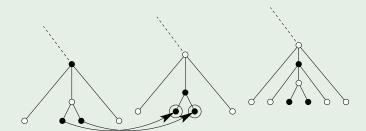
```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) =
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK'(LCA(v, v')))
    = i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))
    > i + SDEP(LCSA(SLINK^{i}(v), SLINK^{i}(v')))
The last inequality is an equality for some i < d.
```

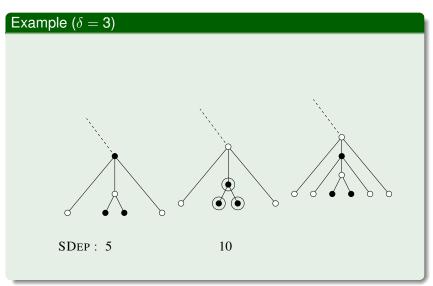



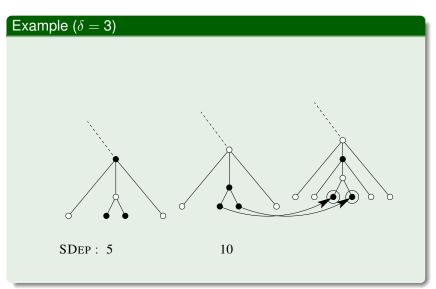


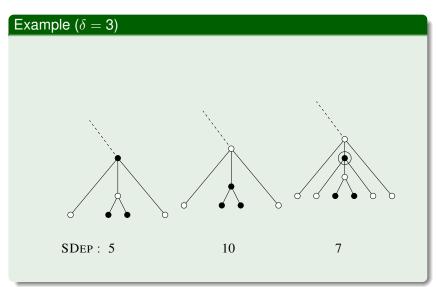


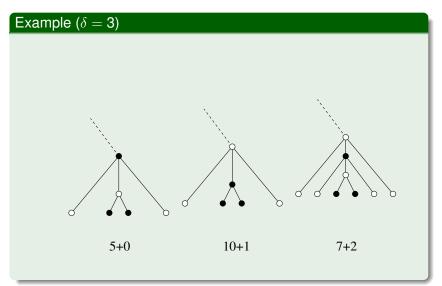


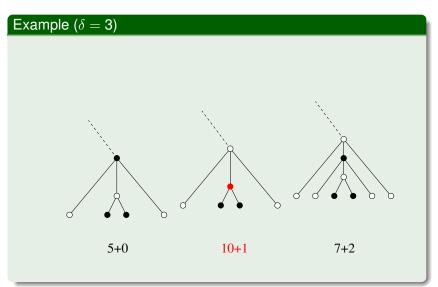
SDEP: 5







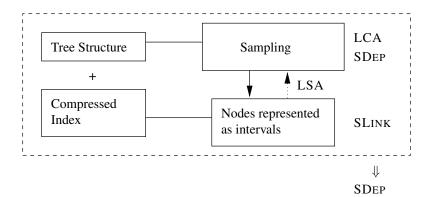




Entangled Operations

6 min

Why is the lemma important?



Experimental Results

Space in MBs	File	FCST	FFCST	LSA	LSAF	CST
Pitches	53	44	134	43	50	214
Proteins	63	50	121	48	56	204
DNA	100	57	142	54	69	287
XML	100	55	198	52	67	316

CHILD Operation	Pitches	Proteins	DNA	XML
FCST	1.3E-2	3.4E-3	1.6E-3	8.7E-3
FFCST	9.4E-3	5.7E-3	7.2E-1	1.9E-2
LSA	7.6E-3	2.7E-3	2.E-3	9.7E-3
LSAF	1.3E-2	3.5E-3	1.6E-3	8.9E-3
CST	5.4E-4	4.2E-4	1.2E-4	6.4E-4

Experimental Results

Space in MBs	File	FCST	FFCST	LSA	LSAF	CST
Pitches	53	44	134	43	50	214
Proteins	63	50	121	48	56	204
DNA	100	57	142	54	69	287
XML	100	55	198	52	67	316

CHILD Operation	Pitches	Proteins	DNA	XML
FCST	1.3E-2	3.4E-3	1.6E-3	8.7E-3
FFCST	9.4E-3	5.7E-3	7.2E-1	1.9E-2
LSA	7.6E-3	2.7E-3	2.E-3	9.7E-3
LSAF	1.3E-2	3.5E-3	1.6E-3	8.9E-3
CST	5.4E-4	4.2E-4	1.2E-4	6.4E-4

- occupies $n \log \sigma + o(u \log \sigma)$ bits.
- in fact it is even better $nH_k + o(u \log \sigma)$ bits.
- supports usual operations in a reasonable time.
- current prototypes show that this performance holds in practice.

- occupies $n \log \sigma + o(u \log \sigma)$ bits.
- in fact it is even better $nH_k + o(u \log \sigma)$ bits.

- occupies $n \log \sigma + o(u \log \sigma)$ bits.
- in fact it is even better $nH_k + o(u \log \sigma)$ bits.
- supports usual operations in a reasonable time.

- occupies $n \log \sigma + o(u \log \sigma)$ bits.
- in fact it is even better $nH_k + o(u \log \sigma)$ bits.
- supports usual operations in a reasonable time.
- current prototypes show that this performance holds in practice.