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Algebraic Geometry

Algebraic geometry is concerned with the study of algebraic
varieties: geometric incarnations of solutions of systems of
polynomial equations.

It is a wide area of mathematics that combines tools from many
different disciplines as Abstract Commutative Algebra, Number
Theory, Complex Analysis, Differential and Complex Geometry,
Algebraic Topology, Category Theory, Homological Algebra,
Algebraic Combinatorics and Representation Theory to study
problems arising from Geometry.
Even if it is a very classical area of mathematics it is one of the
most actives as well, with many surprising interactions with other
areas of Mathematics and with Physics.
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Projective varieties

Projective varieties are algebraic varieties that can be embedded in
projective space.
The n-dimensional projective space is a compactification of the
affine space Cn by “adding points at the infinity”:

Pn := Cn+1/C∗

where λ(x0, . . . , xn) = (λx0, . . . , λxn).
To define algebraic varieties inside the projective space one must
consider homogeneous polynomials: if f ∈ C[x0, . . . , xn] is
homogeneous of degree d,
f(λx0, . . . , λxn) = 0⇔ λdf(x0, . . . , xn) = 0.
The geometry of projective space is very rich and has many
interesting features:
e.g. two distinct curves in P2 of degrees d and e, respectively, meet
in exactly d.e points (counted with multiplicity!).
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Moduli problems in algebraic geometry

Many problems in algebraic geometry are concerned with
classifying certain types of varieties: moduli problems.
Often the set of parameters for objects of certain geometric type
(moduli space) is again itself an algebraic variety (scheme,
stack).

{Hyperplanes of Pn} ∼= Pn;

Mg := { Smooth projective curves of given genus g }/∼=
g = 0 : (rational curves) M0 = {[P1]};
g = 1 : (elliptic curves) M1

∼= A1;
g ≥ 2 :

Theorem (Riemann’1857)

The space of non-isomorphic complex structures definable over a
compact, connected, topological surface of genus g ≥ 2 has complex
dimension 3g − 3.
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Compactifying the moduli space of curves

Mg is not compact!
Families of curves over non complete bases may degenerate to
non-smooth curves.

In 1969 Deligne and Mumford solved this problem by building a
remarkable compactification of Mg, denoted by Mg.
It has the important property of being modular, i.e., its points
parametrize again geometric objects of certain type.

{Mg} ↔ { Stable curves of genus g}.

Definition

A stable curve X is a projective connected nodal curve such that
∀E ⊆ X such that E ∼= P1, ]{E ∩X \ E} ≥ 3.
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Moduli space of curves with marked points

It is often useful to work with moduli spaces parametrizing pairs of
curves together with a set of marked points on it.

Mg,n = {(X; p1, . . . , pn), pi ∈ X distinct points}

The existence of this kind of moduli space has important
consequences for instance in enumerative geometry.
It also allowed the development of Gromov-Witten theory leading
to surprising connections between algebraic geometry and
mathematical physics (string theory.)
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Moduli space of curves with marked points: compactified

Again, Mg,n is not compact.

A (modular) compactification of Mg,n was constructed by Knudsen
in the 80’s:
Mg,n = {n-pointed stable curves of genus g.}

Definition

An n-pointed stable curve is a projective connected nodal curve of
genus g, X, together with n-disctinct smooth points p1, . . . , pn of
X such that
∀E ⊆ X with E ∼= P1,

]{marked points on E}+ ]{E ∩X \ E} ≥ 3.
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Picard varieties of smooth curves

C smooth curve

Pic(C) := {line bundles on C}/∼=

Since C is a curve we can write
Picd(C) = {

∑
aipi, pi ∈ C, ai ∈ Z and

∑
ai = d}/∼.

Pic(C) =
∐

d∈Z Picd(C).

Picd(C) is a projective variety;

For d = 0, Pic0(C) is endowed with a natural group structure
given by tensor products of line bundles.

Pic0(C) is an abelian variety of dimension g.
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Picard varieties of singular curves

Let X be a nodal, possibly reducible, curve. Then, in general, the
Picard variety of X, PicX, is not compact.

The problem of compactifying the Picard variety of singular curves
has been widely studied in the last decades. It goes back to the
work of Igusa and Mayer and Mumford on the 50’s and since then
several solutions were found.
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For a singular curve: Igusa ’56, D’Souza ’79 (irreducible),
Oda-Seshadri ’79 (reducible);

for families of curves: Altman-Kleimann ’80, Simpson ’79,
Esteves ’97;

over Mg: Caporaso ’93, Pandharipande ’94, Schmitt ’04.

These constructions differ from one another in aspects like the
modular description of the boundary points or the functorial
properties. Given a nodal curve X, complete PicX by either:

allowing more general sheaves than line bundles

allowing “some” semistable curves and line bundles over these.

Study and compare the different approaches!
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The object we want to compactify

Picd,g,n: universal Picard stack over Mg,n.

parametrizing triples (C; p1, . . . , pn;L)
where

C is a smooth curve of genus g;

p1, . . . , pn are n distinct points of C;

L is a line bundle of degree d over C.

Picd,g,n has a natural map onto Mg,n and it is not complete.
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Our Problem

Compactify Picd,g,n over Mg,n!

Construct an algebraic stack Pd,g,n and a morphism
Ψd,g,n : Pd,g,n →Mg,n such that:

1 Pd,g,n and Ψd,g,n fit in the diagram;

Picd,g,n

��

� � // Pd,g,n

Ψd,g,n

��
Mg,n

� � //Mg,n

(1)

2 fibers of Ψd,g,n are compact;

3 Pd,g,n has a geometrically meaningful modular description.
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Our strategy

Use induction in the number of marked points n.

n = 0: give a stack theoretical modular interpretation of
Caporaso’s compactification;

n > 0: Proceed as Knudsen did in the construction of Mg,n:
give a modular description of the universal family Zd,g,n

over Pd,g,n and construct Ψd,g,n.

Zd,g,n
c //

��

Pd,g,n+1

Ψd,g,n+1

��
Pd,g,n

Ψd,g,n

��

Mg,n+1

zzuuuuuuuuu

Mg,n
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Main Theorem

There exists a smooth and irreducible algebraic (Artin) stack
Pd,g,n of dimension 4g − 3 + n endowed with a universally closed
map Ψd,g,n onto Mg,n.
Pd,g,n parametrizes triples {(X; p1, . . . , pn;L)} where:

(X; p1 . . . , pn) is an “n-pointed quasistable” curve of genus
g;

L “balanced” line bundle of degree d.
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Example

Example of a 12-pointed quasistable curve X with assigned
balanced multidegree in rational tails and rational bridges.

Let L be a balanced line bundle on X.
If deg(L) = 0, then (degC L,degD L) = (0, 1);
If deg(L) = g − 1, then
(degC L,degD L) = (gC + 2, gD) or (gC + 1, gD + 1).
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Plans for future work

Generalize the construction for higher rank bundles and
‘allowing the polarizations to vary”;

Study intersection theory on Pd,g,n and its applications to
enumerative geometry (e.g. Hurwitz numbers);
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Thank you!
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