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Motivations:

• Modeling physical phenomena

• Describe future asymptotic behavior

Given a map f and x consider the orbit of x as the set

O+(x) = {x , f (x), f 2(x), f 3(x), . . . }



Motivations:

• Modeling physical phenomena

• Describe future asymptotic behavior

Given a map f and x consider the orbit of x as the set

O+(x) = {x , f (x), f 2(x), f 3(x), . . . }

Example 1:
f (x) = ax(1 − x) describes population size in a time instant



Example 2:
The position of a person in a giant wheel at constant velocity can
be modelled by

Rα : S1 → S1

e2πiθ 7→ e2πi(θ+α)

where S1 = {z ∈ C : z = e2πiθ with θ ∈ R}.
Position of a person at time n seconds = Rn

α(x) = e2πi(θ+αn)

Order! Not chaos!



Example 3: Description of the position of a ball in a billiard table
without holes
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What happens if one consider different trajectories?
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Example 3: Description of the position of a ball in a billiard table
without holes

Sensitivity to initial conditions!



Example 4: Lorenz equations for weather forecast
a = 10, r = 28, b = 8/3







.
x = a(y − x)
.
y = rx − y − xz
.
z = xy − bz

Sensitivity to initial conditions!



Chaotic dynamical systems
Sensitivity to initial conditions (topological sense)

∃ε > 0 so that if x 6= y there exists n ∈ N s.t. d(f n(x), f n(y)) > ε



Chaotic dynamical systems
Sensitivity to initial conditions (topological sense)

∃ε > 0 so that if x 6= y there exists n ∈ N s.t. d(f n(x), f n(y)) > ε

Positive Lyapunov exponents (measure theoretical sense)

λ(f , x) := lim
n→+∞

1

n
log |(f n)′(x)| (Lyapunov exponent at x if exists)



Order in chaotic dynamical systems

Going back to the original questions:

Question 1: Do chaotic dynamical systems have some
“good”topological/geometrical structure?

Question 2: Do chaotic dynamical systems have invariant
probability distributions? Among those do equilibrium states exist?



Very simple model

Since |f ′(x)| > 1 at “every”point then f is chaotic in both

senses (exercise!)
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Very simple model

x ∈ [13 , 2
3 ] ⇒ f n(x) → −∞ as n tends to infinity.



Very simple model

In fact: x /∈ [0, 1
3 ] ∪ [13 , 2

3 ] ⇒ f n(x) → −∞ as n tends to infinity



Very simple model

Study of f | ([0, 1
3 ] ∪ [23 , 1])



Very simple model

“Hole”
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So. the points that do not fall in the “hole”form ...
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Very simple model

So. the points that do not fall in the “hole”form ...

.... a Cantor set.



Simple Model

Answer 1: YES, this chaotic dynamical system has a good
geometrical invariant set, a fractal set as relevant part of the
dynamics! (self-similar Cantor set)



Simple Model

Answer 1: YES, this chaotic dynamical system has a good
geometrical invariant set, a fractal set as relevant part of the
dynamics! (self-similar Cantor set)

Answer 2: YES, there exists a unique equilibrium state for smooth
potentials! (selection of invariant probability measures)

↓

Inspired by statistical mechanics



Crash course in measure theory:



Crash course in measure theory:

• Probability measure

µ : A ⊂ P(X ) → [0, 1]
A 7→ µ(A)

Example:



Crash course in measure theory:

• Probability measure
• Invariant probability measure

µ(f −1(A)) = µ(A) for all A ∈ A

Example: f (x) = 2x( mod 1), µ = length



Motivation from statistical mechanics:

External action of a potential φ
Discretization ; simplification



Motivation from statistical mechanics:

External action of a potential φ
Discretization ; simplification

1 dim lattice

Configurations = elements in {0, 1}N

Question: Is the gas “distributed”according to some probability?



Reduction to symbolic space

K Cantor set

x ∈ K ; ι(x) = (a0, a1, a2, a3, a4, . . . ) ∈ {0, 1}N itinerary



Reduction to symbolic space

K Cantor set

x ∈ K ; ι(x) = (a0, a1, a2, a3, a4, . . . ) ∈ {0, 1}N itinerary

ai = 0 ↔ f j(x) ∈ I0
Moreover,

ι(f (x)) = (a1, a2, a3, a4, . . . )

Shift: σ(a0, a1, a2, a3, a4, . . . ) = (a1, a2, a3, a4, . . . )



Equilibrium probability distribution for shifts

Probability measures on {0, 1}: (p, 1 − p)
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Probability measures on {0, 1}: (p, 1 − p)

Bernoulli probability measures on {0, 1}N:

νp([a0, a1, . . . , an]) = p#{0′s}(1 − p)#{1′s}

These are σ-invariant probability measures (easy exercise!)



Equilibrium probability distribution for shifts

Probability measures on {0, 1}: (p, 1 − p)

Bernoulli probability measures on {0, 1}N:

νp([a0, a1, . . . , an]) = p#{0′s}(1 − p)#{1′s}

These are σ-invariant probability measures (easy exercise!)

Classical result: Given a regular potential φ is there a unique
probability νp maximizing the pressure

P(φ) = sup
(p0,p1)

p0+p1=1

{
∑

i

−pi log pi

︸ ︷︷ ︸

entropy

+
1

β

∑

i

piφi

︸ ︷︷ ︸

potential energy

}



Reformulation of Question 2

f : K → K dynamical system on the Cantor set K

φ : M → R (regular) potential
Set the topological pressure of f with respect to φ as

P(f , φ) = sup
µ

{

hµ(f ) +

∫

φ dµ

}

Question 2: Does there exist (unique) invariant probabilities that
realize the topological complexity of the dynamics?



Some recent results

• (Pinheiro, V. 2010) The description of invariant measures in
the chaotic region of a dynamical system is equivalent to the
one for a shift σ : SN → SN with S countable; moreover
equilibrium states do exist

• (V., Viana 2009) There are many examples where the chaotic
region is more relevant for computing the topological pressure



Further questions and open problems

A LOT!!



Many thanks to Fundação Calouste Gulbenkian for the excellent program!
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Hope to attend:

New and “not so new”Talents in Mathematics 2020


