
Resumo

O pressuposto da normalidade é uma conveniência matemática. Em muitos casos, a

distribuição de caracteŕısticas quantitativas não é normal, apresentando caudas pesadas

que por seu turno fazem com que observações regulares aparentem ser outliers. En-

tretanto, é também sabido que os métodos clássicos que se baseiam na verosimilhança

da distribuição normal têm um fraco desempenho aquando da violação deste pressu-

posto. Tal é igualmente o caso do teste F da ANOVA cuja potência fica comprometida

nestas circunstâncias. Os métodos robustos por seu lado, são desenhados por forma a

serem fiáveis quando não se verificam alguns dos pressupostos subjacentes aos métodos

clássicos, por exemplo a violação da condição da normalidade dos erros num modelo de

regressão. Neste sentido, pretendemos comparar a abordagem clássica com duas alterna-

tivas não paramétricas e a regressão-M no contexto dos estudos de associação genética de

caracteŕısticas quantitativas em que temos marcadores genéticos como variáveis explica-

tivas e se usam os modelos de regressão para aferir posśıveis associações. Os resultados

mostrarão a vantagem da metodologia robusta proposta bem como os perigos que podem

advir da utilização da abordagem clássica. Adicionalmente, proporemos um coeficiente

de determinação robusto para aproximar a proporção de variabilidade fenot́ıpica que é

explicada pela componente genética do modelo e apresentaremos uma proposta robusta

para detecção de outliers onde são avaliadas várias medidas de correcção para testes de

multiplicidade.
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Abstract

Data normality is just a mathematical convenience. For many real-life data sets, the

distribution of continuous variables is not normal, often showing heavy tails, which in turn

tend to make regular observations look like outliers. In such scenarios, the classical ap-

proach, whose likelihood-based inference leans on the normality assumption and is known

to be non-robust to small model deviations, may be inappropriate. Also, contrary to some

statements in the literature, the ANOVA F-test is not robust against non-normality often

seeing its power seriously compromised. Robust statistical methods are designed to be

resistant to influent factors such as outlying observations, non-normality and other model

misspecifications, allowing for reliable results. We analyze the case of statistical tests to

detect associations between genomic individual variations and quantitative traits when

deviations from the normality assumption are observed. We consider the classical ANOVA

tests for the parameters of the appropriate linear model and a robust version of those tests

based on M-regression. We compare both approaches with two non-parametric alterna-

tives, in terms of empirical power and level using simulated data with several degrees of

contamination. Results will show that the robust methodology can be more powerful and

thus more adequate for association studies than the classical approach. Additionally, we

will propose a robust coefficient of determination to approximate the phenotypic variation

that is explained by the models’ genetic component and a robust outlier test where several

multiple correction measures are evaluated.

Keywords: non-normality; M-regression; genetic association studies; single nucleotide

polymorphism (SNP); heritability; outliers; outlier tests; multiple testing procedures

(MTPs); false discovery rate (FDR); coefficient of determination.
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The greater our knowledge increases the more our ignorance unfolds.

John F. Kennedy

1
Introduction

Man has been interested in genetics since FOREVER! Whether concerned with animal

breeding, farming or even his own ancestry, questions like “Why do progeny resemble their

parents?” or “Why sometimes they do not?” occupied the mind of men since the beginning

of men-hood, giving rise to the most various theories. Early stock breeders and farmers

knew from experience that offsprings inherited characteristics from their parents using

that empirical knowledge to their advantage. Also, and from experience alone, they knew

that sometimes variation within breeding groups occurred and although they could not

answer the question “Why?”, still the struggle with the laws of inheritance continued.

It was not until the 19th century, with the discovery of the gene, that those questions

started being answered. Gregor-Mendel (1822 − 1884), an Austrian Augustinian monk,

while breeding different cultivars of peas, faced himself with those questions and set up to

find some answers. He was the first known person to have experimented with the purpose

of understanding variation.

By that time, science was worrying and discussing the theory of evolution and hence

was not prepared to embrace Mendel’s amazing results. Its importance was only recog-

nized at the beginning of the 20th century, many years after his death. Mendel’s work was

rediscovered by three botanic scientists, namely, Hugo de Vries, Erich Von Tschermak

1
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and Karl Correns. These men tripped on Mendel’s work by chance when searching the

scientific libraries for possible precursors on their own work. They promptly announced

Gregor Mendel’s work to the world and science finally saw the light!

Nonetheless, in due time another headache soon began: how to appropriately address

and conduct genetic association studies and how could statistics fit in helping to uncover

patterns, relationships and variability in the data? At this point we must refer to the

works of Fisher (1930), Wright (1931) and Haldane (1932) who, among others not less

important, brought together evolutionary biology and genetics into a whole that could be

quantitatively modeled.

1.1 Robust statistics

In the last 40/50 years there has been a major effort in developing statistical procedures

that are resistant to small model’s assumptions deviations. Namely, procedures that are

robust to outliers and stable with respect to deviations from the normality assumption, in

the case of the classic parametric model (see Tukey, 1960; Huber, 1964 and 1972; Hampel,

1968; Huber and Ronchetti, 1981; Rousseeuw and Leroy, 1987, for the foundations of

robust statistics and Maronna et al., 2006; Ronchetti, 2006; Dell’Aquila and Ronchetti,

2006, for an overview). This interest is motivated, among others, by the fact that the

removal of outlying observations is, first of all, not an easy task and secondly it may not

be the best way to proceed because

i. true outliers are not always visible due to masking and swamping effects;

ii. gross outliers are easily identifiable but that is not usually the case of mild outliers,

which sometimes cannot be differentiated from regular data;

iii. outliers may contain relevant information for the analysis;

iv. removing outliers reduces sample size, may affect the distribution theory and vari-

ances may be underestimated from the cleaned data.

Also, data transformation may not always be sufficient to solve all the problems caused

by non-normality frequently raising interpretation issues (Pires and Rodrigues, 2007).

Robust methods are designed to accommodate for certain data deficiencies, allowing

for reliable results under various conditions. They ought to be resistant to influent factors

such as outlying observations, non-normality and other model misspecifications (Huber

et al., 1972; Hampel et al., 1986; Rousseeuw and Leroy, 1987; Maronna et al., 2006;
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Daszykowski et al., 2007). Moreover, if the model verifies the classical assumptions, the

robust methods provide results close to the classical ones. Therefore, the use of robust

methods has been advocated for inference in the linear model setup (Copt and Feser,

2006; Pires and Rodrigues, 2007; Daszykowski et al., 2007).

For many real-life data sets, the distribution of continuous variables is not normal often

showing heavy tails, which in turn tend to make regular observations look like outliers.

This is mainly the reason why non-normality and outlier presence are usually associated.

In such scenarios, the classical approach, whose likelihood-based inference leans on the

normality assumption and is known to be non-robust to small model deviations (Tuckey,

1960; Huber, 1964/1967), may be inappropriate, having low statistical efficiency if the

tails are symmetric and large bias if the tails are asymmetric. After all, the ordinary least

squares (OLS) estimator is known to be quite sensitive to outliers (Jajo and Hussain,

1989; Jajo, 1993) and long-tailed distributions having poor efficiency relative to many

robust estimators when the errors are not normally distributed.

This evidently leads to tests with unreliable level and low power and to confidence

intervals with also unreliable level and large expected interval length. We emphasize the

fact that, contrary to some statements in the literature dating back to Box (1953), the

ANOVA F-test is not robust against non-normality (Schrader and Hettmansperger, 1980;

Tan, 1982; Hampel et al., 1986; Ronchetti, 1987; Zimmerman, 1994; de Haan et al., 2009)

and consequently efforts have been made in order to enhance its performance (Ronchetti,

1982; Copt and Heritier, 2007).

So, we have seen that data transformation comes with interpretation problems and

should therefore, if possible, be avoided. Outlier removal, as well, comes at the cost of

losing potential important information and should thus not be an alternative to the use of

methodologies that are able to accommodate for them. However, outlier identification is of

the utmost importance to the understanding of the underlying mechanisms of the system

described by the data because they are not always a result of measurement error. In fact,

they sometimes follow from intrinsic characteristics of the individual being measured. As

an example, in the context of environmental sciences, an outlier could very well represent

an unusual event that took place (Daszykowski et al., 2007) and whose comprehension

could be helpful for the study. And this happens not only in environmental sciences but

in many other areas of research like e.g, in genetic association studies (Tzeng et al., 2003).
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It is not therefore surprising the amount of literature dedicated to outlier detection,

especially with application to multivariate and high dimensional data, where the search

for more effective outlier methods/tests that are not subject to masking comprehends

the search for measures of location and scale that are not themselves affected by outliers

(Wilcox, 2010). We mention only the three more cited books on the subject and a more

recent publication: the books of Barnett and Lewis (1978); Hawkins (1980); Rousseeuw

and Leroy (1987) and Hettmansperger and McKean (2001). And also the papers of

Chatterjee and Hadi (1986); Boente et al. (2002); Oh and Gao (2009).

Another very important point is the effect of outliers in the coefficient of determination

in linear regression models. The coefficient of determination should reflect the suitability

of the explanatory variables in predicting the response variable, i.e, the amount of vari-

ation of the response variable that is explained by the variation among the explanatory

variables. In the classical setting however, it can become misleading in the presence of

a single outlier. There are many alternatives to the least squares coefficient of determi-

nation in the literature, amongst which some robust proposals (Huber, 1981; Rousseeuw,

1984; Rousseeuw and Yohai, 1984; Greene, 1997; Croux and Dehon, 2003; Maronna et al.,

2006; Heritier et al., 2009; Renaud and Feser, 2010). A recent comparative study of the

most familiar measures of R2 can be found in Yarmohammadi and Mahmoudvand (2010).

For an overview of robust statistics in all its dimensions, the literature already men-

tioned, plus the one that will be mentioned throughout this work, is more than enough

for an “outsider” to be acquainted with this particular area of statistics that has been

around since the sixties, and which finds in our time, with the advent of technology, a

new breakthrough. For those who prefer Portuguese, we have Pires and Branco (2007).

1.2 Genetic association studies of quantitative traits

Genetic association studies aim to identify genetic polymorphisms that cause pheno-

typic variation for a trait of interest, or that are in linkage disequilibrium (LD) with

the causative genetic variant. If association is present, a particular allele, genotype or

haplotype of a polymorphism or polymorphism(s) will be seen more often than expected

by chance in an individual carrying the trait. For example, an individual carrying one or

two copies of a high-risk variant is at increased risk of developing the associated disease

or having the associated trait.

A quantitative trait is a measurable trait that shows continuous variation through a
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population, such as height, weight or other. Association studies of quantitative traits

can be performed using an unrelated population sample or family trios in which the

quantitative trait is measured in the offspring. However, in population-based studies,

associations found are valid population wide and not only for the group of individuals

analyzed, which is often the case in family based-studies. Some other advantages of

population-based studies over family-based are, now in the context of plant genetics: (i)

the use of natural populations circumvents the need to raise large controlled crosses; (ii)

the costs associated to finding natural populations as opposed to generating sourcing

pedigrees are low.

In population-based genetic association studies of quantitative traits, the unit of anal-

ysis is the single nucleotide polymorphism (SNP). The strategy behind these studies is to

explore linkage disequilibrium (LD) between SNPs in natural populations that have been

mating for generations. The idea is that recombinations that occur through generations

of random mating break down every possible association of phenotype with all but the

most tightly linked SNPs. This LD can be statistically detected and has been widely

applied to map and eventually clone a number of genes underlying complex genetic traits

in humans (Abdurakhmonov and Abdukarimov, 2008).

In particular, we are interested in using a number of genotyped SNPs in a gene,

or region, to detect the genetic factors underlying a quantitative trait of interest that

does not follow simple Mendelian patterns of inheritance. The most straightforward

and still more favoured approach in association studies, though raising multiple testing

problems (Nyholt, 2004), is to perform a single SNP test for every genotyped SNP via

regression or ANOVA methods: Tao and Boulding (2003), used a linear model to test the

association between SNPs in 8 candidate genes and age-specific growth rate in the Artic

charr; Mart́ınez et al. (2007), used mixed linear models to test for association between

57 SNPs from 20 candidate genes and some wood properties in Pinus taeda; Weber et al.

(2007; 2008), used a mixed random effects linear model to test for the association between

a collection of SNPs, from a set of candidate genes, and several Teosinte traits of interest;

Moe et al. (2009) used a linear model to test for association between 151 SNPs from 57

candidate genes and several traits of boar related to taint and reproduction; Jiang et al.

(2010) used a mixed linear model to test for association between 39163 SNPs and five

milk production traits in chinese holstein population. Many more examples can be easily

found in the literature.

Though this approach may be considered if we are looking for a single causal variant,
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it is not very efficient when the SNPs have limited LD with that causal variant, meaning

smaller power. Plus, a single-SNP analysis may neglect information in the SNPs joint

distribution, situation that may be of little consequence if SNPs are widely spaced in the

genome as to have little or no LD between them or when we have all SNPs genotyped

so that the causal variant is likely to be among them (Balding, 2006). Unfortunately, or

not, most studies have SNP densities lying in between these two situations.

When it comes to quantitative traits, we know that they are usually controlled by

several and sometimes many genes. Thus, a joint analysis of SNPs may be more adequate,

being much more informative than single-SNP analysis (Jannot et al., 2003). However,

it also may loose power due to the usually large number of degrees of freedom involved.

Ideally, one should make use of the information provided by multiple SNPs, capturing as

much of the genetic variance as possible, without raising the degrees of freedom too much

(Bureau et al., 2005; Wang and Elston, 2006; Chapman and Whittaker, 2008; Xiang et

al., 2008/2009; Kwee et al., 2008; Li et al., 2009) and thus not compromising power. Note

that the joint analysis of SNPs (multiple-SNP approach) can only be applied to situations

where the number of explanatory variables is much smaller than the number of individuals,

therefore implying that in a genome-wide association study context a preliminary step of

dimension reduction is necessary.

Two major problems that can arise when testing for association between a quantitative

trait and a set of candidate SNPs in a population-based study, and for which there is

extensive literature, are: LD, i.e, there may be SNPs whose alleles are in moderate to

strong LD which may produce, due to the induced correlation among SNPs, misleading

results in standard multiple regression analysis that do not account for this problem;

population structure/stratification (PS; Pritchard et al., 2000a and 2000b; Bacanu et al.,

2002; Cardon and Palmer, 2003; Freedman et al., 2004; Yu et al., 2006) and within-

population kinship among individuals, inflating the number of false positives and failing

to detect true associations, due to a confounding effect on the tests.

Several methods have also been proposed in literature to accommodate for LD and

also to correct, and therefore reduce, the impact of PS on population-based association

studies: Ridge regression (Malo et al., 2008), tagSNP selection (Zhang et al., 2002; Eskin

et al., 2003; Cousin et al., 2003; Carlson et al., 2004; Takeuchi et al., 2005) structured

association (SA) (Pritchard et al., 2000a and 2000b; Li et al., 2008), genomic control (GC)

(Devlin and Roeder, 1999/2001; Bacanu et al., 2000; Zheng et al., 2006) and principal

component analysis (PCA) (Price et al., 2006; Wang and Abbot, 2008). The three latter
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methodologies are compared in Zhang et al. (2008).

Recently, Yu et al. (2006) introduced a unified mixed model approach to account for

multiple levels of relatedness, where population structure is modeled simultaneously as a

fixed effect, through a Q matrix (derived using STRUCTURE: Pritchard et al., 2000a;

Falush al, 2003), and as a random effect, using a matrix K of pairwise kinship coefficients.

Price et al. (2006) suggest that Q can be replaced by a matrix derived from PCA, due to

STRUCTURE demanding algorithm, and Zhao et al. (2007) show that both approaches

perform similarly.

Another frequent data problem, which may have the same sort of undesirable effects,

is non-normality and/or presence of outliers in the phenotypic data. This problem is far

less studied than LD or PS. For instance, the review paper by Balding (2006) treats non-

normality in one sentence where the only mentioned remedy is a transformation of the

original trait values. Also, in the literature, data transformation seems to be the tip of

the day: Tao and Boulding (2003) used a cubic root transformation; Weber et al. (2008)

a square root transformation; Kardia et al. (2008) a logarithmic transformation; Smith

et al. (2009) a natural logarithmic transformation; ... and so forth.

Some alternatives have been proposed in the literature to be used as a way of cir-

cumventing violations of model assumptions. E.g: non-parametric methods (Conover and

Iman, 1981; Wang and Huang, 2002; Hicks et al., 2004; McKean, 2009; Beasley and Er-

ickson, 2009; Gerhard and Hothorn, 2010; Wilcox, 2010); Bayesian methods (Rosa et al.,

2003; Pereira et al., 2007); semi-parametric methods (Li et al., 2008); et cetera. At this

point we must mention that the semi-parametric model proposed by Li et al. (2008), with

the aim of dealing with error distribution non-normality, was compared in their work with

the classical approach where a log-transformation of the data was made. They concluded

that their proposed method performed better than the classical plus data transformation

approach.

Also, we already see some applications of the robust methodology in genetic association

studies (Xu et al., 2010; Tan et al., 2010; Gudbjartsson et al., 2010) which show increasing

concern with the violation of model assumptions and growing interest in using methods

that are capable of coping with them.

In the classical analysis, when the residuals’ distribution fails normality tests (i.e, if

normality tests are performed, which they usually are not) or looks non-normal, instead of
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transforming the data, we frequently encounter in the literature another approach to the

problem: identification and removal of outlying observations from the study. By doing

this, the investigator usually gets the residuals’ distribution to be approximately normal

and thus the opportunity of performing the analysis via the classical approach without

“fear”. One can easily find in the literature examples of genetic association studies where

outlying observations were eliminated from the bulk of the data after some rule of thumb:

Pachou et al. (2008); Arshadi et al. (2009); Inouye et al. (2010). However we do not

agree with this approach and our reluctance with it will be fully justified by the results

observed in Chapter 5.

An important population parameter in genetic association studies of quantitative traits

is heritability, which corresponds to the total phenotypic variation that is explained by

genetic factors. The estimation of this parameter is of the utmost importance since re-

sponse to artificial and natural selection and the degree of resemblance between relatives

are functions of it. Knowledge of heritability is therefore very useful for e.g, choosing

an efficient breeding scheme, estimating the gain to be expected under mass selection

and constructing a selection index (Kempthorne and Tandon, 1953). In a plant genetic

context for example, good knowledge of heritability in different yield parameters is a pre-

requisite for effective plant improvement (Waqar-Ul-Haq et al., 2008). A good review on

heritability estimation for plant breeding can be found in Holland and Martinez (2003).

Usual approaches to the estimation of heritability involve moment and likelihood estima-

tors that are used in variance components analysis (Devlin and Roeder, 1997; Thomas,

2005; Visscher et al., 2006). Ritland (2000) proposes a linear regression marker-based

method for estimating heritability of quantitative traits in natural populations.

In genetic association studies of quantitative traits, where we know that the quan-

titative trait is controlled by several to many genes/SNPs, at the candidate gene level

our genotyped SNP data usually comprehend only a portion of those SNPs. The model

used for those studies should therefore reflect as accurately as possible that proportion of

heritability that is explained by the genotypic data. Additionally, should we have an idea

in advance of the heritability of the trait in hand, from previous within family studies or

other, that model information would be valuable for the search of the un-genotyped SNP

markers responsible for the remaining unexplained heritability.

To end this brief incursion in genetic association studies of quantitative traits, we must

refer to another very important aspect of the analysis, which is data quality control (do

not mistake it with genomic control - Devlin and Roeder, 1999/2001). We will not go
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through this point here but we find it mandatory reading for anyone engaging in these

studies and therefore leave some starting useful literature: Gomes et al. (1999); Balding

(2006); Sebastiani et al. (2009).

Much more is to say on the subject of genetic association studies of quantitative

traits, so if the reader feels the need to learn more about it we strongly advise the books

of Lynch and Walsh (1997), Balding et al. (2003) and of Wu, Ma and Casella (2007) as

good starting points.

1.3 The multiple testing problem

When we assign for example a probability of α = 0.05 to a type-I error in a set of tests,

it means that virtually one out of every twenty such tests will show a false positive. So,

in a set of 100 tests we expect 5 tests to be declared significant if we use that α threshold

for each test. The problem with this is that we would like to control the false positive

rate not only for one test but for all family of tests comprehending our study. And this

is what is called the multiple testing problem.

Multiple testing, being concerned with testing several hypotheses simultaneously, is a

thorny issue in many areas of research. Citing Westfall and Young (1993), a major draw-

back of multiple testing is the increased probability of declaring statistically significant

associations where none exist. Researchers need therefore to use multiple testing proce-

dures (MTPs) in order to be able to control for false inferences as well as maintaining

power in detecting real effects.

Genetic association studies of quantitative traits, as many other studies in other areas

of research, are prone to the multiple testing problem due to the usual large amount of

hypotheses being simultaneously tested, situation that escalates in genome-wide genetic

association studies, e.g, when tens to hundreds of thousands of SNPs are being tested

for association with a given trait. Balding (2006) even called it the bane of statistical

genetics.

This problem has received a lot of attention from people working in the field of ge-

netics (Westfall et al., 2001; Storey and Tibshirani 2001/2003; Reiner et al., 2003; Oord,

2005; Tabangin et al., 2007; Dudoit and van der Laan, 2008; Edwin, 2008; Zhang et al,

2008; Foulkes, 2009; Lee et al., 2009; Stephens and Balding, 2009) where false discovery

rate (FDR) control is primarily preferred over family wise error rate (FWER) control.
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However, the decision on what multiple testing correction to be used while performing ge-

netic association studies is not consensual: Tao and Boulding (2003) used a permutation

derived threshold; Mart́ınez et al. (2007) a positive FDR (pFDR) at 10% level; Weber

et al. (2007/2008) a FDR at 10% level; Kardia et al. (2008) and Smith et al. (2009) a

FDR at 30% level; Jiang et al. (2010) used Bonferroni correction at 5% level. So it really

depends on how much false positive associations we are willing to tolerate in exchange

for a few more true positive associations. If you want to go conservative then Bonferroni

and Bonferroni-type corrections (Bonferroni, 1935; Sidák, 1968/1971; Holm, 1979; Simes,

1986; Hochberg, 1988; Hommel, 1988; etc.) are the way to go, but if you are willing to

me more permissive, then FDRs (Benjamini and Hochberg, 1995/2000; Benjamini and

Yekutieli, 2001; Storey, 2002; Storey and Tibshriani, 2003; etc.) should be your choice.

The problem of multiple testing extends itself as well, in genetic association studies,

when we need to perform outlier tests on a usually large number of individuals. This

situation represents therefore a good opportunity for integrating robust multiple linear

regression and outlier tests with multiple testing corrections, which we have not seen done

before.

1.4 Thesis goal and outline

We found in the literature a few recent examples of the use of robust regression in

the context of genetic association studies. However, no simulations are yet reported that

assess these methods properties in this area of research.

Since in genetics the traits studied are mainly complex, having non-normal distribu-

tions and often showing heavy tails, our concern that the use of available methods in the

literature should be explored is strongly sustained. Especially the robust methodology

which has given proofs of being resistant to those model misspecifications, giving reliable

results where others fail.

As normality violation comes together with outliers and outliers that are not a result of

mere error measurement may even be the most important observations, methods that are

able to correctly identify them, thus minimizing the swamping effect, and also powerful

enough as to avoid masking, must be made known to researchers working in genetic

association studies. This issue obviously comes together with the multiple testing problem
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and therefore implies that multiple testing corrections that control the FDR are evaluated.

Additionally, we have still another issue to unravel: outlier tests in the context of a

multiple linear regression model, which is the one we advocate for these studies.

Furthermore, regression models that accurately reflect the proportion of phenotypic

variation explained by genotypic variation among individuals are of crucial importance to

prediction. And again, there are several proposals in robust literature that can be handy

when using robust multiple linear regression in genetic association studies of quantitative

traits.

Having said, the outline of this thesis is as follows:

In Chapter 2 we make a small incursion into the basic concepts of genetics to make the

reader acquainted with some important concepts, giving as well an insight on the work of

Gregor-Mendel, the father of genetics.

Chapter 3 takes us through the problematic of multiple testing, where we review some

state of the art methods used whenever facing simultaneous testing of multiple hypotheses.

In Chapter 4 we present in detail both the usual classical approach to genetic associ-

ation studies of quantitative traits and our proposed robust methodology for those same

studies. More precisely, Huber’s M-estimation together with adapted Wald-type tests to

assess SNP/trait associations. We also propose a robust coefficient of determination as an

approximation to the proportion of phenotypic variation that is explained by the genetic

variation among individuals. And additionally review the theory of mixed linear models

proposing the robustification of the correspondent F-test and coefficient of determination

by the appropriate plug-in of robust estimates of scale and location.

The performance of the proposed approach is compared with both the classical and

two other non-parametric methods in terms of type-I error rate and power in a simulation

study under several contamination settings in Chapter 5, after a detailed description

and full specification of a simulation model from the literature. The two non-parametric

methods selected for comparison are rank-transform (RT; Conover and Iman, 1981), which

was recently used in genetics (de Haan et al., 2009) and a Wilcoxon based (WIL; McKean

et al., 2009), used in quantitative trait locus (QTL) analysis (Zou et al., 2003). An

appropriate correction measure from Chapter 3 will be used.
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In Chapter 6 we present a robust outlier test whose performance is assessed via a

simulation study in the context of robust multiple linear regression where several multiple

correction measures are also evaluated. This Chapter comprehends as well a simulation

study that appraises the adequacy of the robust coefficient of determination as an ap-

proximation of the true phenotypic variation that is explained by the models’ genetic

component.

Finally, in Chapter 7 we present a real data example from the literature. Results of

that paper are replicated and compared with the ones obtained from the robust analysis

proposed in Chapter 4. Differences in both results are then discussed.

Chapter 8 being the final discussion, summarizes and pinpoints the most relevant

aspects of the study as well as making some important alert notes. Also, directions for

future work are laid down.

As a final goal, we aim at the publication of the obtained results in a distinguished

scientific journal of the area therefore bringing robust methodologies to the knowledge

of people working in genetic association studies of quantitative traits to whom they can

definitely be a valuable asset.



I have called this principle, by which each slight variation, if useful, is

preserved, by the term of Natural Selection.

Charles Darwin

2
A short insight on the basics of genetics

The principal aim of this chapter is to make the reader acquainted with some genetic

basic notions without going into deep detail. It is therefore intended that the reader

understands the concepts introduced and the subsequent issues related with quantitative

genetics. For further details on genetics, the books of Gonick and Wheelis (1991) and

Robinson (2010) can be quite useful, providing an easy and joyful trip into the underlying

concepts of genetics. For deep detail see Russel (1992) and Lewin (2006). Animations of

some of the processes described below can be found online, e.g, at

http://highered.mcgraw-hill.com/sites/dl/free/0072437316/120060/ravenanimation.html

or at http://vcell.ndsu.nodak.edu/animations and the reader is advised to peep them

throughout the text.

2.1 General concepts

In nature there are two kinds of living organisms: the Prokaryotes and the Eukaryotes.

Each cell of every living eucaryotic organism (e.g, plants and animals) is characterized by

a membrane, a nucleus (DNA housing region) and the cytoplasm and its subcell parts (or-

ganelles) whereas in procaryotes (e.g, bacteria and Cyanophytes), cells are organized into

complex structures enclosed within membranes, being the nucleus the membrane-bound

structure. I.e, basically procaryotes lack a nucleus having DNA floating around in the cell.

13
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From now on we will refer only to the eukaryotes case.

What is DNA?

DNA stands for deoxyribonucleic acid and is a large double stranded molecule1, also known

as double helix (see Figure 2.1), that is packaged in chromosomes, which are nothing more

than an organized structures of super coiled DNA. It actually contains the genes that

direct the production of proteins and therefore, genes are no more than DNA segments

coding for a specific protein. In turn, proteins are molecules that play a critical role in

structure, function and regulation of body cells, tissues and organs.

Figure 2.1: Double Helix. Image from Wikipedia.

At the molecular level, DNA information is stored as a code made up of four chemical

bases (nitrogen bases): adenine (A), guanine (G), cytosine (C), and thymine (T), also called

chemical building blocks. Those bases are placed in a unique order to code for all of the

genes in all living organisms2. In the coding sequences3 (exons), the bases are organized

in groups of three (triplets\codons\words) forming the genetic code4. Each triplet may be

translated into an amino-acid5 of a protein, which is no more than a collection of hundreds

or even thousands of amino-acids. The non-coding sequences are known as introns. Table

2.1 lists all the amino-acids one can get with the three letter words. We may see that

not always a base change changes the final amino-acid and this is why there are only 20

1Stable electrically neutral group of at least two atoms in a definite arrangement held together by
very strong chemical bonds;

2Human DNA consists of about 3 billion bases (3× 109), and more than 99 percent of those bases are
the same in all people;

3There are sequences of bases that do not code for proteins, known as junk DNA or introns which are
removed from mRNA, in eucaryotes, only after transcription;

4Triplets of letters make words, words make sentences and sentences make genes;
5There are 20 standard amino-acids which can be placed in many different orders to form a wide

variety of proteins;
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Table 2.1: Codon/amino-acid table. Codon AUG coding for methionine (Met) also serves
as the start codon if it is preceded by a string of alphabets, much longer than a single
codon, called the promoter sequence.

1s
t

p
o
si

ti
o
n

5’

2nd position

3
r
d

p
ositio

n
3’

U C A G

U

UUU Phe UCU Ser UAU Tyr UGU Cys U

UUC Phe UCC Ser UAC Tyr UGC Cys C

UUA Leu UCA Ser UAA Stop UGA Stop A

UUG Leu UCG Ser UAG Stop UGG Trp G

C

CUU Leu CCU Pro CAU His CGU Arg U

CUC Leu CCC Pro CAC His CGC Arg C

CUA Leu CCA Pro CAA Gln CGA Arg A

CUG Leu CCG Pro CAG Gln CGG Arg G

A

AUU Ile ACU Thr AAU Asn AGU Ser U

AUC Ile ACC Thr AAC Asn AGC Ser C

AUA Ile ACA Thr AAA Lys AGA Arg A

AUG Met ACG Thr AAG Lys AGG Arg G

G

GUU Val GCU Ala GAU Asp GGU Gly U

GUC Val GCC Ala GAC Asp GGC Gly C

GUA Val GCA Ala GAA Glu GGA Gly A

GUG Val GCG Ala GAG Glu GGG Gly G

standard amino-acids instead of 43 = 64.

DNA bases pair up with each other, A with T and C with G, to form units called base

pairs.Each base is attached to a sugar molecule and a phosphate molecule. Together, a

base, sugar, and phosphate are called a nucleotide. Nucleotides are arranged, with phos-

phate and sugar molecules alternating, in two long strands that form a spiral and thus

the name double helix. The leading end of each strand is called 5′ end and the tail end 3′

end (Figure 2.2).

One should be aware that variation in a gene, even at a single nucleotide, may cause

a protein’s structure and function to change. That variation can be either insignificant,

having small or null effect on the final protein, or even cause serious disease. It is therefore

important to understand how genes are translated into proteins. This path is known as

the Central Dogma of Molecular Biology and consists of three major steps: DNA replica-

tion, transcription and translation.

So, how is DNA replicated?

DNA has a unique structure that enables the molecule to copy itself during cell divi-

sion. In this way, when a cell prepares to divide, the DNA helix splits down the middle

becoming two separate single strands. These single strands now serve as templates for

building two new, double-stranded DNA molecules - each a exact copy of the original
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Figure 2.2: DNA strand. Image from Wikipedia.

DNA molecule. The process is quite simple: an A base is added wherever there is a T, a

C where there is a G, and so on until all the bases are again paired up (see animation at

http://highered.mcgraw-hill.com/olc/dl/120076/bio23.swf).

And, how are DNA sequences used to make proteins?

The process of going from gene to protein is complex and tightly controlled within each

cell. It consists of two major steps: transcription and translation. Together, transcription

and translation are known as gene expression. During the process of transcription (see ani-

mation at http://vcell.ndsu.nodak.edu/animations/transcription/index.htm), the in-

formation stored in a gene’s DNA is transferred to a similar molecule called RNA6 (ribonu-

cleic acid) in the cell nucleus (this is done by RNA polymerase enzyme). The type of RNA

that contains the information for making a protein is called messenger RNA (mRNA). This

is because it carries the information, or message, from the DNA out of the cell nucleus into

the cytoplasm. After transcription, introns in the sequence are removed by a process called

RNA-splicing (see animation at http://vcell.ndsu.nodak.edu/animations/mrnasplicing/

index.htm).

The second step, translation (see animation at http://vcell.ndsu.nodak.edu/animations/

translation/index.htm), takes place in the cytoplasm. The mRNA interacts with a spe-

cialized complex called ribosome, a protein assembly machinery, which reads the sequence

6Both RNA and DNA are made up of a chain of nucleotide bases, but they have slightly different
chemical properties. For instance, the ribose sugar component of RNA is slightly different chemically than
that of DNA. RNA has a 2’ oxygen atom that is not present in DNA. Another fundamental structural
difference is for example, the fact that uracil takes the place of the thymine nucleotide found in DNA,
and one more is that RNA is, for the most part, a single-stranded molecule.
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of mRNA bases and uses that information to synthesize the exact protein coded for by the

gene. The ribosome identifies the start codon AUG and begins the reading from that point

forward. A type of RNA molecule called transfer RNA (tRNA)7 assembles the protein,

one amino acid at a time. Protein assembly continues until the ribosome encounters a

stop codon: AUG, UAA or UGA. The mRNA product is called an mRNA transcript.

What’s gene regulation?

Gene regulation is the process of turning genes on and off. Each cell expresses only a frac-

tion of its genes and this is what makes cells in particular parts of the organism different

from others in the same organism. E.g., a liver cell and a muscle cell, although having

the same chromosomes, look and act quite differently because they both turn on only the

genes that make them what they are, leaving all the other genes turned off. Gene regu-

lation also allows cells to react to environmental changes. Signals from the environment

or other cells activate proteins that bind to regulatory regions of a gene and increase or

decrease the level of transcription.

One gene - one protein or not exactly?

During the RNA splicing process, where introns are removed, exons may be reconnected,

in a process called alternative splicing, in many different ways resulting in different mR-

NAs and thus translating into different protein isoforms. It is believed that around 60%

of genes are affected by alternative splicing. This means of course that genes may code

for multiple proteins and not just one. But alternative splicing is not the only reason why

genes sometimes code for different proteins. Genetic variations in the DNA sequence of a

gene may also play its part. We call allele to the various forms a gene or DNA sequence

can present.

How many sources of genetic variation are there?

There are several forms of genetic variation. These include chromosome crossing over, mu-

tation and genetic drift, among others. Chromosome crossing-over occurs during Meiosis

(see animation at http://www.sumanasinc.com/webcontent/animations/content/meiosis.html),

which is an essential process of reproduction, when homologous chromosomes, after du-

plicating themselves, sometimes touch each other and exchange genetic material (Figure

2.3).

Mutations on the other hand, are changes in the DNA sequence that can translate in

a large effect on how the organism looks like, i.e, its phenotype, the way it behaves and its

physiology. They can be either neutral, beneficial or harmful and they happen at random.

7Small molecules that translate the genetic code, they attach to and activate specific amino-acids



18 A short insight on the basics of genetics

Figure 2.3: Crossover scheme: 2 homologous chromosomes crossover during meiosis producing
4 distinct gametes. Image from www.bio3400.nicertutor.com.

However, not all mutations matter to a species evolution. Some of them are just somatic

mutations, i.e, they occur in non-reproductive cells and are’nt therefore passed on to

offsprings. The mutations that are passed on are called germ line mutations. Several types

of mutations are illustrated in Figures 2.4 and 2.5. The causes to this phenomena are

Figure 2.4: Mutation types I: deletion (1), duplication (2) and inversion (3). Image from Wikipedia.

Figure 2.5: Mutation types II: insertion (1) and translocation (2). Image from Wikipedia.

DNA failure to copy and/or repair accurately and external influences, like e.g., exposure

to radiation or specific chemical substances. If we analyze a population on a specific DNA

locus, the minor allele is the allele that occurs less often in the population and the major

allele the one that occurs more often. If the minor allele has a frequency larger than 1%
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then the variant is called polymorphism8. This condition helps distinguishing between

inherited variation and spontaneous mutations.

Genetic drift is the fluctuation of allelic frequencies in a population from generation

to generation and plays an important role in the evolutionary process, leading to allelic

frequency changes over time and sometimes causing some gene variants to completely

disappear reducing genetic variability. Its effect is larger in small populations rather than

in large populations.

What are SNPs?

The most abundant source of genetic variation is the single nucleotide polymorphism

(SNP), which is every site on the genome that shows a base-pair (bp) change that is

variable across the general population of a species. The SNP can either be an anonymous

or functional variant with respect to protein coding or gene function. From a statistical

perspective, at the nucleotide level and in the case of bi-allelic SNPs, this unit of analysis

can be regarded as a three-category variable. For instance, a SNP with alleles A (adenine)

and G (guanine) has categories AA, AG and GG.

Figure 2.6: Single Nucleotide Polymorphism (SNP): the same chromosome is genotyped for
several individuals in a population and variation is observed in 3 distinct sites. Image from The

Individualist HapMap.

2.2 Mendel’s experiment, findings and laws

Gregor Mendel, also known as the father of genetics, was an Austrian augustinian monk

who lived between the years of 1822 and 1884. He was a curious amateur gardener

who happened to notice, while walking through the monastery gardens, that his, self-

pollinating, pea plants (Pisum sativum) were different from each other in several ways,

like:

8This cut-off point between a mutation and polymorphism is arbitrary - see
Twyman, R. (2003) on “Mutation or polymorphism?” on the Wellcome Trust website at
http://genome.wellcome.ac.uk/doc wtd020780.html.
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i. seed shape: round & wrinkled;

ii. seed color: yellow & green;

iii. seed coat color: grey & white with correspondent flower color violet & white;

iv. stem flower position: axial & terminal;

v. stem size: tall & short;

vi. pod form: inflated & constricted;

vii. pod color: green & yellow.

In order to understand why pea plant offsprings resembled their parents, Mendel decided

to make some experiments. He started out with tall and short plants observing that

both plants gave rise to also tall and short plants thus maintaining their parents height

characteristic. These plants are known as true-breedings. He then wondered what would

happen if he crossed a tall plant with a short one, referring to the two parental plants

as the parent generation (P generation). How would the hybrids resulting plants, which

were the first filial generation (F1 generation), look like? Medium-height? He soon found

out that the resulting hybrids were always tall plants! This indicated that the tall trait

somehow dominated over the short trait. Hummm?.. Since one trait remained in the next

generation and the other disappeared, Mendel decided to name those traits as dominant

and recessive respectively.

Next, he just let the hybrids self-pollinate. He referred to these offsprings as the second

filial or F2 generation. He was quite surprised to observe that there were short plants

coming up again in that generation. More precisely, the recessive trait reappeared and

in a proportion close 3:1, i.e, for each 3 tall plants there was a short one! Moreover,

taking these hybrids, he observed that the short plants continued to reproduce in short

plants and the tall ones in tall and short plants with the same ratio has before. By

this point Mendel was already convinced that there must be something in plant egg and

pollen that determined plant height. He referred to this abstract entity as factor or unit

of inheritance, later to be called GENE.

Mathematically speaking, Mendel’s reasoning was:

i. each plant egg and pollen grain have one height gene;

ii. the height gene may have two forms, which we now call alleles, e.g, A for tallness

(dominant allele) and a for shortness (recessive allele);
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iii. each plant will therefore have two forms of the height gene, i.e genotype, which may

be AA, Aa or aa. Plants with genotypes AA and aa are said homozygous and the ones

with genotype Aa are heterozygous.

Summing up, for a plant to reproduce, the two pollen gene alleles must separate in two

separate gametes each one having one allele. The same must happen with the egg gene

alleles. This process was Mendel’s first law and is known as the Principle of segregation.

However it was not proved until the meiosis process was discovered. Its modern version

is displayed in the box below.

Principle of segregation. (modern version) The alleles in homologous

chromosomes segregate from each other in the formation of gametes.

Half the gametes carry one allele and the other half carry the other

allele.

Mendel’s experiment showed that plants with AA and Aa were tall plants and the ones

with aa were short, with a phenotypic ratio close 3:1 and a genotypic ratio of 1:2:1,

agreeing with the crossing square in Table 2.2. He also verified these results for the other

traits mentioned and therefore concluded that heredity is controlled by genes. His results

are displayed in Table 2.3 and may be verified by the Pearson’s Chi-square test:

Table 2.2: Crossing between F1 Aa hybrids.

× A a

A AA Aa

a aA aa

Pearson’s Chi-square test. To test the classification of n objects on k distinct

classes we consider the test statistic

χ2 =
k∑
i=1

(Oi − npi)2

npi

where Oi is the number of observed counts for class i and pi is the probability of an

observation belonging to class i. Under the null hypothesis

H0 : the ith class has probability pi, i = 1, ..., k

the test statistic has a chi-square distribution with k − 1 d.f..

In this case we have two classes, the dominant class and the recessive class with

theoretical probabilities of 3/4 and 1/4, respectively for the theoretical ratio of 3:1. Results
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Table 2.3: Mendel’s experiment results in the crosses between plants differing on one of
the seven characters.

Character F1 Ratio
Dominant Recessive

seeds: smooth x wrinkled all smooth 5474 1850 2.96:1
seeds: yellow x green all yellow 6022 2001 3.01:1
seed coats & flower: grey & purple x white & white all grey & purple 705 224 3.15:1
flowers: axial x terminal all axial 651 207 3.14:1
pods: inflated x pinched all inflated 882 299 2.95:1
pods: green x yellow all green 428 152 2.82:1
stem: tall x short all tall 787 277 2.84:1

Table 2.4: Results of the Pearson’s Chi-square test on Mendel’s data.

Experiment χ2 p-value
1 0.26288 0.6081
2 0.01500 0.9025
3 0.39074 0.5319
4 0.34965 0.5543
5 0.06351 0.8010
6 0.63391 0.4259
7 0.60651 0.4361

of the Pearson’s test are displayed in Table 2.4 where we observe evidence to accept H0

in all Mendel’s experiments.

With the purpose of accessing the independency of the traits studied, Mendel continued

his experiments. He now crossed plants differing in two characteristics. E.g, a tall plant

with round seeds (AARR, where R is the allele for roundness) with a short plant with

wrinkled seeds (aarr, where r is the allele for wrinkleness), resulting in hybrids of the

form AaRr tall and round due to the dominance of the traits tallness and roundness.

If the height and smoothness genes sort out independently of each other, then the four

allele combinations AR, Ar, aR and aa for the next hybrid generation will be equally

likely, in which case the crossing scheme can be seen in Table 2.5. It can also be easily

observed (see Table 2.6) a ratio of 9:3:3:1 for, respectively, tall and round (AARR, AARr,

AaRR or AaRr), tall and wrinkled (AArr or Aarr), short and round (aaRR or aaRr) and

short and wrinkled (aarr) plants.

Having the F1 hybrids and letting them self-pollinate Mendel observed close ratios in

his F2 generation thus stating that different traits are inherited independently of each

other, i.e, so that there is no relation between one another. And this is Mendel’s second

law, the Principle of independent assortment, whose modern version is displayed in the
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Table 2.5: Hybrid crossing scheme under the principle of independent assortment

× AR Ar aR ar

AR AARR AARr AaRR AaRr

Ar AArR AArr AarR Aarr

aR aARR aARr aaRR aaRr

ar aArR aArr aarR aarr

Table 2.6: Resulting genotypes and phenotypes from the previous hybrid crossing scheme.

N Genotype Phenotype
1 AARR

2 AARr Tall &
2 AaRR Round
4 AaRr

1 AArr Tall & Wrinkled
2 Aarr

1 aaRR Short & Round
2 aaRr

1 aarr Short & Wrinkled

box below.

Principle of independent assortment. (modern version) Genes ly-

ing on different chromosomes are distributed independently of one an-

other during the production of gametes.

However, this is not always the case, dominant alleles don’t always dominate (we may

have incomplete dominance resulting in blending phenotypes or codominance when alleles

share equally in the expression of their phenotypes) and genes aren’t always inherited

independently. E.g, they may be close of one another on the same chromosome (linked

genes) and be inherited together from generation to generation. Mendel did not know

about chromosomes but still was lucky enough as to have 7 qualitative pea traits, each

one controlled by a single gene, having each gene lying in a different chromosome of

the 7 total pea chromosomes! Coincidence or publication bias?!.. One really has to

wonder and Fisher (1936) even dared say that either Mendel was exceptionally lucky or

he cheated, conveniently throwing away the results he did not understand, the ones that

make inheritance messy like epistasis and linkage, and that did not agree to the laws of

segregation and independent assortment. This controversy between Fisher and Mendel’s

results and who’s right or wrong, has been a topic of discussion in literature (Froggatt

and Levin, 1971; Farrall, 1975; Campbell, 1976; Pilgrim, 1984; Weiling, 1986 and 1989;

Van Valen, 1987; Fairbanks and Rytting, 2001; Novitski, 2004a and 2004b; Pilpel, 2007).

Recently, Franklin et al. (2008) ended this discussion arguing that Mendel was not guilty
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of fraud and that Fisher’s conclusions may be explained without invoking fraud, and Pires

and Branco (2010) presented a statistical model to end this controversy once and for all.

Despite the controversy, Mendel’s work is undoubtedly valuable being the percussor

of modern genetics. Traits following Mendel’s rules are said to be Mendelian traits.

Moreover, the study of how different traits are inherited and expressed is called Mendelian

genetics.

Mendel’s work was first published in 1865 in Verhandlungen des Naturforschenden

Vereines in Brünn and a translation of his work can be found in Mendel (1866).

2.3 Population genetics

Allelic frequencies are important components for genomic analysis in natural populations

and the number of alleles and their distribution are indicators of genetic diversity. Popu-

lation genetics studies the distribution of allele frequency and the way it evolves under the

processes of natural selection, gene flow, genetic drift and mutation. This field of research

was born between the years of 1920 and early 30s by the hands of Fisher (1918;1930),

Haldane (1932) and Wright (1931). These men integrated the principles of Mendelian

genetics with those of the Darwinian natural selection.

In this section we will only focus on a few but important concepts of population

genetics theory. For a deeper insight on the subject, literature is available, e.g, see Lynch

and Walsh (1997).

2.3.1 Hardy-Weinberg equilibrium

The Hardy-Weinberg equilibrium (HWE) denotes the independence of alleles at a single

site between two homologous chromosomes. It was discovered independently in 1908

by Godfrey H. Hardy (1877-1947), an English prominent mathematician, and Wilhem

Weinberg (1862-1937), a German physician, and is one of the simplest and most important

principles in population genetics. It can easily be shown that it actually is a consequence

of Mendel’s law of segregation.

Take a bi-allelic gene with alleles A and a segregating in a diploid population with

relative frequencies of p and q, respectively. If the genotypic frequencies of AA, Aa and

aa observed in the population agree with the square in Table 2.7, i.e, if f(AA) = p2,
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f(Aa) = 2pq and f(aa) = q2, then the population is said to be in HWE and we have

(p+ q)2 = p2 + 2pq + q2 = f(AA) + f(Aa) + f(aa) = 1.

Table 2.7: Punnet square for HWE: shows the allelic frequencies from random mating
with two alleles.

× sperm

A (p) a (q)

eg
gs A (p) AA (p2) Aa (pq)

a (q) aA (pq) aa (q2)

Deviations from HWE may occur and usually indicate evolution of a species. It may

also indicate inbreeding, population stratification, eventual problems in genotyping, or

small population size. Moreover, in case-control studies, in samples of affected individuals

it may also indicate evidence of association.

Hardy-Weinberg equilibrium law. Both allelic and genotypic fre-

quencies in a population remain constant from generation to generation

unless specific disturbance influences (e.g, non-random mating, muta-

tion, natural selection, small population size, genetic drift and gene

flow) are introduced..

It is important to underline that whatever the initial population one-locus genotypic

frequencies are, random-mating will automatically produce an offspring population in

HWE. This means that if generations are non-overlapping, i.e, parents die as soon as

they reproduce, HWE will be achieved in one generation only, whereas if they overlap

more than one generation of random-mating may be needed to achieve HWE. Once it is

achieved, under random-mating, HWE will be maintained generation after generation.

HWE is often used as a quality control measure. As such, deviations from this re-

lationship may indicate quality problems in the genotyping procedure. However, this

may not always be the case since the HWE principle is based in several assumptions and

deviations from it may occur not because of genotyping error but due to selection or

assortative mating. In case control studies for example, it is a usual procedure to test the

control group SNPs for HWE, excluding the ones failing the test from further analysis.

Nevertheless it has been criticized in the literature and due care should be taken before

making a decision. Wittke et al. (2005) have a very nice discussion on this topic that we

strongly advise reading before engaging in case-control genetic association studies. Other
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interesting readings are the works of Nielsen et al. (1998), Gomes et al. (1999), Xu et al.

(2002), Hosking et al. (2004) and Györffy et al. (2004), among others.

The departure of HWE is known as disequilibrium and may be quantified by a coeffi-

cient DA such that: 
f(AA) = p2 +DA

f(Aa) = 2pq − 2DA

f(aa) = q2 +DA

.

Bounds for the disequilibrium coefficient DA are −max(p2, q2) ≤ DA ≤ pq (Weir,

1996). When DA = 0 we have HWE.

Estimating the HWE parameter p. Let’s assume we have two alleles A and a

segregating in a size n diploid population in HWE where p = f(A) is unknown. Take,

Xi, i = 1, 2, 3 to represent the population genotypes AA, Aa and aa counts, respectively.

Then (X1, X2, X3) ∼Multinomial(n, p2, 2p(1− p), (1− p)2). Assuming that we now have

a realization (N1, N2, N3) of (X1, X2, X3), the likelihood function is

L(p,x) =
n!

N1!N2!N3!
pN1

1 pN2
2 pN3

3 =
n!2N2

N1!N2!N3!
p2N1+N2(1− p)N2+2N3

and the maximum likelihood estimate of p, which is UMVUE (uniform minimum variance

unbiased estimate), is given by p̂ =
2N1 +N2

2n
. Also E(Xi) = npi.

Chi-square test for HWE. The usual test to assess HWE is the goodness of fit

chi-square test. Being the null hypothesis

H0 : the population is in HWE,

the test statistic is calculated as

χ2 =
3∑
i=1

(Ni − npi)2

npi

where Ni, i = 1, 2, 3 are the observed genotypic counts and npi, i = 1, 2, 3 the expected

ones. Under the null, the test statistic follows a chi-square distribution with 1 d.f. and

so we reject H0 at the 5% significance level if p-value = P (χ2
(1) > χ2

obs) < 0.05.
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This test however can have inflated type-I error rates and exact tests (e.g, Fisher’s

exact test) may be preferred. This happens for example in many genetic case-control

studies, where the individuals are not randomly sampled from a general population but

rather ascertained by affection status (Li and Li, 2008). To an insight into exact tests

see Emig (1980) and Wigginton et al. (2005). The Wigginton proposed exact test is

available in package SNPassoc via instruction tableHWE() (González et al., 2008). The

usual chi-square test can be performed for example with instruction HWE.chisq() from the

R package genetics or with the instruction HWChisq() from the R package HardyWeiberg,

using continuity correction cc = 0. This package also performs the HWE likelihood ratio

test (LRT) via HWLratio() and the Wigginton exact test via HWExact(). Fisher’s exact

test for HWE is available also in the R package genetics via instruction HWE.exact().

2.3.2 Recombination and linkage desiquilibrium.

In the meiosis process, when homologous chromosomes pair up (maternal and paternal

chromosomes), they often intertwine and exchange sections or fragments of chromosome,

i.e, they crossover. In this way, the gametes produced by this process will present new

combination of genes that differs from the combination supplied by the parents (see Figure

2.3) and thus the name recombination. Gene recombination is thus one way that organisms

have to produce offspring with new combinations of maternal and paternal traits that may

contribute to or enhance survival.

Also, as a result of recombination, alleles previously on the same chromosome may end

up in different gametes, i.e, the further the two alleles are apart in the same chromosome,

the greater the chance that a crossover event may occur between them, possibly separating

the alleles. Conversely, the closer they are of one another, the smaller the chance a

crossover event will occur and therefore they will tend to be inherited together. This

is exactly the exception to Mendel’s principle of independent assortment. The modern

version of Mendel’s 2nd law (Section 2.2) already accounts for this possibility.

The distance between alleles on the same chromosome can be measured either in terms

of recombination events between them or in terms of the number of base pairs in between.

As to the recombination approach, quite simply, the greater the recombination frequency

between alleles, the farther apart they are in the chromosome. The lower the recombi-

nation frequency, the smaller the physical distance between alleles. The percentage of

recombination between alleles is called recombination fraction. It can not exceed 50%, i.e,

the recombination fraction between two alleles is less or equal than 0.5. Moreover, when

it is 0.5, it means that both alleles are on opposite ends of the chromosome.
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Linkage disequilibrium (LD) reflects the non-random association of alleles at two or

more loci (specific sites on the genome) not necessarily on the same chromosome. If two

loci/genes are said to be in linkage disequilibrium, it means that there is lack of histor-

ical recombination events in between. So basically, LD refers to a historically reduced

(non-equilibrium) level of the recombination of specific alleles at different loci control-

ling particular genetic variations in a population. This LD can be detected statistically,

and has been widely applied to map and eventually clone a number of genes underlying

complex genetic traits in humans. However, significant LD does not necessarily indicate

causal associations since it can also be influenced by population history.

One should not mistake LD with linkage, the latter meaning genetic proximity. In

fact, if two loci are tightly linked, i.e, close to one another on the same chromosome, they

are in LD, however, if two loci are in LD it does not necessarily mean that they are linked

because LD may be influenced by many other factors such as mutation rate, random drift

or non-random mating and population structure (Table 2.8). Therefore, LD needs to be

interpreted cautiously.

Factor Effect on LD behaviour

Recombination rate higher rec. lowers LD
Mating system: Selfing species high LD

Mating system: Outcrossing species low LD
Natural and artificial selection locally increases LD

Population size small populations have more LD
Mutation rate high mutation rate decreases overall LD

but LD around newly created mutated
allele remains high until dissipated

by recombination
Bottlenecks inflates LD

Population structure inflates LD

Table 2.8: Factors that condition LD behaviour in a population (Rafalski and Morgante,

2003; Pritchard and Przeworski, 2001).

LD provides a mean of examining genetic polymorphisms in different genetic back-

grounds, taking advantage of generations of recombination. It has a couple of advantages

over QTL analysis (see Liu, 1997 and Wu et al., 2007), namely, the fact that it uses natu-

ral populations instead of breeding schemes, making experimental design straightforward

and thus saving considerable time. Also, traits may be mapped to very small regions

allowing the discovery of the underlying gene(s) and/or application for selection across a

wider range of germplasm9.

9A germplasm is a collection of genetic resources for an organism. For plants, the germplasm may be
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In natural populations we can find LD between loci for which recombination has

not had enough time to dissipate the initial disequilibrium. However, when a natural

population mates at random, disequilibrium reduces progressively in each generation,

being the degree of LD therefore dependent on recombination fraction θ, and time in

generations t, since the origin of a new mutation at time t = 0 and according to the

formula (Falconer and Mackay, 1996):

Dt = (1− θ)tD0, (2.1)

where, D0 is the value of LD at generation 0 and Dt the value of LD at generation t.

Rewriting the above equation, knowing the values of D0 and θ it is possible to deter-

mine the number of generations t needed to achieve a pre-established value Dt:

t =
ln Dt

D0

ln(1− θ)
. (2.2)

However, the time LD takes to decay differs between species. For example, LD is

known to decay faster in outbred species like maize, eucalyptus globulus and humans

than in inbred species like soybean and Arabidopsis Thaliana (see Garcia et al., 2003, in

“Structure of LD in plants” for more detail). In these two latter species it is known to

persist over tens to hundreds of kilobases. In most human populations however, LD is

known to extend for small distances in most genomic regions although it may extend for

larger distances when population sizes are small. Also, LD in humans is highly dependent

on the population in which it is measured (Reich et al., 2001). In some populatins of

maize as well, LD is known to decay rapidly over a few hundred base pairs (Tenaillon et

al., 2001).

There are several measures of LD on literature and a good review can be found in

Weir (1996). The basis of most of those measures is the difference between observed

and expected allelic frequencies under independence and, in this way, if both frequencies

match then the loci are in equilibrium and so there is no LD. The preferred measures of

LD quantify the degree of association between pairs of markers (SNPs or other) and they

differ only in the way in which they depend on the marginal allele frequencies. Amongst

those, the most popular is r2 or ∆2 and will be described below.

Consider two loci A and B on the same chromosome, with alleles A and a and B

stored as a seed collection or, for trees, in a nursery;
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and b respectively, and correspondent allelic frequencies pA, pa, pB and pb. Let the four

haplotype frequencies be pAB, pAb, paB and pab. Then, the squared correlation coefficient

between pairs of bi-allelic markers (Hill and Robertson, 1968) is given by

r2 =
(pAB − pApB)2

pApBpapb
. (2.3)

Estimates of r2 are usually obtained by plugging in sample frequencies p̂A, p̂a, p̂B and p̂b,

p̂AB into equation (2.3).

Different allele frequencies at loci A and B imply r2 < 1 and we have r2 = 1 if and only

if the loci are in complete disequilibrium, in which case loci A and B are fully predictive

of each other.

The study of patterns of LD is crucial in genome-wide association studies making

possible to have carefully selected sets of SNPs that provide information on much larger

sets of unobserved SNPs. Even in the study of complex traits there is evidence that this

approach will often lead to detectable associations which are not in themselves causal but

rather in LD with the causal variant (Abecassis et al., 2005). Knowledge of these patterns

of LD makes even possible to have study designs based only on randomly genotyped SNPs,

implying that the costs associated with those studies may drop significantly. Therefore

SNP subset selection via LD is a hot topic in the literature of genetic association studies

(Byng et al., 2003; Carlson et al., 2004; Morkûnienë and Kuèinskas, 2005; Howie et al.,

2006).

In R there are several genetic packages one may use to calculate, among other things,

pairwise LD. One such package is package genetics where instruction LD() calculates not

only r2 but other common LD measures (namely D and D’ not discussed in this work).

It can either be used to calculate LD between two SNPs or all the pairwise LD for all the

SNPs in the data.

2.4 Quantitative genetics

Quantitative genetics usually refers to the study of continuous traits and their underlying

mechanisms. It can be regarded as an extension of simple Mendelian inheritance where the

combined effect of many genes results in phenotype values with continuous distribution.

However, it is not limited to continuous traits alone, but rather all traits that are controlled

by several genes, the so-called polygenic traits.
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Like the height of an individual, that is a trait of both genetic and environmental in-

fluences, there are many others whose genetic variation we would like to fully understand.

These traits are not Mendelian and do not verify the HWE since they are influenced by

a multitude of genes.

The aim of quantitative genetics is to study the degree of dependence between parental

traits and their offsprings traits. This does not necessarily mean that there is a genetic

basis for this dependence since it is possible that environmental effects also play its part.

The mathematical entity related to the dependence between parent and offspring char-

acteristics is heritability and will be described in more detail just ahead (Section 2.4.2).

However, when we talk about disease then we interpret heritability as familial risk.

A good review on the genetics and analysis of quantitative traits can be seen in Lynch

and Walsh (1997). In this small section we will only describe the one-gene and multiple-

gene models for an F2 population and briefly discuss the definition of the important

notion of heritability of a trait.

2.4.1 Genetic models

In this sub-section we will see how to simulate one or more bi-allelic genes from an F2

population (Section 2.2).

One-gene model. Let us assume we want to simulate one bi-allelic gene A having

alleles A, a for n individuals. Then, the genotypic data is simulated based on the expected

cumulative frequencies presented on Table 2.9.

Gene A pA Cumulative Frequency

AA 0.25 0.25
Aa 0.5 0.75
aa 0.25 1

Table 2.9: Expected frequencies of gene A genotypes for an F2 population

Two-gene model. If we want to simulate not one but two bi-allelic genes A and

B, having alleles A, a and B, b respectively, linked with a certain recombination fraction

r, for n individuals, we may start by simulating gene A as previously. Gene B is then

simulated based on gene A genotypes obtained and the recombination fraction r between

them, according to the expected cumulative frequencies presented on Table 2.10.
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Gene A Gene B p(B|A)
∣∣∣
r

Cumulative Frequency

AA BB (1− r)2 (1− r)2

Bb 2r(1− r) 1− r2

bb r2 1
Aa BB r(1− r) r(1− r)

Bb (1− r)2 + r2 r2 − r + 1
bb r(1− r) 1

aa BB r2 r2

Bb 2r(1− r) −r2 + 2r
bb (1− r)2 1

Table 2.10: Expected frequencies of genotypes for gene B conditional on gene A when the
two are linked with recombination fraction r for an F2 population

Multiple-gene model. If we intend to simulate N genes for n individuals, the usual

approach to do it, which avoids considering all the 3N possible genotypes, is to consider

the simulation of one gene at a time conditional only on the previous simulated gene.

Hence, should we want to simulate for instance another gene C with alleles C and c, we

would consider only the genotypes observed for gene B and the frequencies on Table 2.10.

This procedure can be repeated for the number of genes desired. We must underline that

this scheme assumes no crossover interference is present. When it is, at least three genes

have to be simulated simultaneously.

2.4.2 Heritability

Heritability is the proportion of phenotypic variation in a population that is attributable to

genetic variation among individuals. It therefore quantifies the importance of the genetic

effects to the trait value and is defined as the ratio of the genotypic to the phenotypic

variance

H2 =
σ2
G

σ2
P

=
σ2
G

σ2
G + σ2

e

(2.4)

where σ2
G and σ2

e are the variance components associated with the genetic effects and

the residual error, which may include undetected genetic effects, environmental effects,

genetic-environmental effects and the random effects. Heritability, as defined in Equation

(2.4) is also known as broad sense heritability.

The genetic variance component can still be partitioned into other components arising

from different types of interactions between genes:

σ2
G = σ2

A + σ2
D + σ2

I (2.5)

where σ2
A and σ2

D are the additive and dominance variances respectively, representing the
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genetic variation among individuals that are due to the additive and dominance effects of

genes, and σ2
I , which refers to another source of genetic variation, epistasis that accounts

for the interactions between genes. If we assume no epistatic effects between genes then

equation (2.5) simplifies to

σ2
G = σ2

A + σ2
D. (2.6)

The heritability of a trait can range from 0 to 1. Having H2 = 1 suggests that all the

phenotypic variance is genetically based whereas having H2 = 0.5 means that 50% of the

phenotypic variation is attributable to genetic differences among individuals. Note that

if H2 = 0 then no phenotypic variation is due to genetic variation among individuals.

However one must be extra careful when interpreting heritability. As Russel (1992) op-

portunely points out, heritability does not indicate the extent to which a trait is genetic.

E.g, we can have a genetic trait but still a population genetic variance of zero leading to

H2 = 0, and this fact does not indicate what proportion of an individual’s phenotype is

genetic since it is a population characteristic and not an individual’s characteristic and is

not fixed for a given trait but rather depends upon the genetic makeup and the specific

environment of the population.

The estimation of H and thus of σ2
A and σ2

D is based upon the expected proportion of

genes shared between different types of relatives (Fisher, 1918). However, nowadays, in

the context of the genome-wide era, it is also possible to estimate such parameters within

families using the identity-by-descent sharing degree between individuals (Ritland, 2000;

Thomas, 2005; Vissecher et al., 2006).





Repeated confirmation is an essential element. Otherwise, a very specific

association may be a reflection of the multiple comparison problem; If

enough contrasts are created by fractionation of a single data set, some

apparent significant result is likely to appear.

Mantel and Haenszel (1959)

3
Multiple hypothesis testing

Multiple testing is a challenging issue in many areas of research where there is need for

the simultaneous testing of many hypotheses. In particular, in genetic association studies

where there are usually a large number of genotyped SNP markers, many of which in LD.

Failure to adjust for this problem may produce excessive false positive associations as well

as overlook true positive associations.

The usual approach to the multiplicity problem accounts for the control of the experi-

ment-wise or family-wise error rate (FWER). Another state of the art approach accounts

for controlling the expected proportion of falsely rejected hypotheses, i.e, the false discov-

ery rate (FDR). It should be highlighted that when all hypotheses are true this error rate

is equivalent to the FWER. Should not this be the case, then it is known to be smaller

than the FWER. FDR is thus potentially more powerful.

There are situations however, where FWER control is required (e.g, when rejecting

the hypothesis necessarily implies an action like, for example, the approval of a drug, or

when a conclusion from the various individual inferences is likely to be erroneous when at

least one of them is) and others where FDR control is sufficient (e.g, the analysis of gene

expression where the goal is to extract genes that are potential candidates for further

studies).

35
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Either way, multiple testing procedures aim to achieve a balance between type-I and

type-II errors. The usual principle is, once type-I errors are controlled at a pre-specified

level, it is preferable to make more type-I errors than type-II errors.

In the next two sections we will present and discuss some of the usual methods available

in literature for each of these approaches. Additional information on multiple testing

issues, aside from the ones provided throughout the text, can be found in Westfall and

Young (1993), Pollard and Van der Laan (2003) and Dudoit and Van der Laan (2008).

3.1 Controlling the family wise error rate

In large-scale association studies where a large number of SNPs are tested for associa-

tion with a given trait, any true association result will be masked in the lot of spurious

associations that will be falsely declared.

A widely used approach to deal with this problem is multiple testing correction. Mul-

tiple testing corrections adjust p-values derived from multiple statistical tests to correct

for the occurrence of false positives, i.e, wrong rejections of the null hypothesis (type-I

error). That adjustment keeps the overall FWER below a pre-specified p-value cutoff.

Another approach for the control of the type-I error is the re-sampling permutation

test. Permutation based tests do not use individual association scores based on family-wise

corrections, they estimate statistical significance directly from the data being analyzed

instead, i.e, they draw the threshold directly from the experimental data. For this reason

they have become widely accepted and recommended in studies that involve multiple

statistical testing (e.g, Belmonte and Yurgelun, 2001; Dudoit et al., 2003; Nakagawa,

2004; Kimmel et al., 2007) especially when the tests are correlated and despite of being

sometimes computationally time consuming.

In this section we will make a review on procedures designed to control the FWER.

More detail on this subject can be found in Hochberg and Tamahne (1987) and Westfall

and Young (1993). Also, in Dudoit et al. (2003), procedures for the control of the

FWER and other error rates with application to genomics and DNA microarray data are

reviewed and compared. Another review with application to microarray data is the work

of Sebastiani et al. (2003).

The methods discussed below can be categorized as one-step (or single-step), step-
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down and step-up methods (or stepwise)1:

One-step methods means that all the p-values will be compared to a single value

calculated from the desired FWER threshold α and from the number of tests m and

therefore each null hypothesis is tested “independently” from the outcome of the

others, i.e, equivalent adjustments are performed for all hypotheses.

Step-down methods have the p-values examined from the smallest to the largest.

At each step, the p-value is compared to its correspondent threshold, which depends

on the p-value’s rank. If smaller, then the correspondent hypothesis is rejected.

Once a p-value is greater than its cut-off, the correspondent hypothesis and all

others referring to higher p-values are not rejected.

Step-up are similar to step-downs. The p-values are now examined from the largest

to the smallest. At each step, the p-value is compared to its correspondent thresh-

old, which depends on the p-value’s rank. If greater than its cut-off then the cor-

respondent hypothesis is not rejected. Once a p-value is smaller than its cut-off,

the correspondent hypothesis is rejected and so are the remaining hypotheses with

smaller p-values.

As examples of one-step procedures we have those of Bonferroni (Algorithm 1) and

Sidák (Algorithm 2). Holms’ method (Algorithm 3) is an example of a step-down method

and Hochbergs’ (Algorithm 7) is an example of a step-up method. Both step-down and

step-up methods are said to be multi-step or stepwise procedures since the tests are made

in sequential order depending on the outcome of the previous tests. Stepwise procedures

for controlling FWER are usually less conservative and more powerful than single-step

methods.

In this section we will present some criteria for the rejection of an overall test H0 :

H1, ..., Hm where the hypotheses may or may not be independent. When, by any of

the methods discussed, H0 is rejected, the question to which individual Hi’s should be

rejected sometimes remains unclear. Moreover, as multiple testing corrections depend on

the amount of hypotheses being tested, the larger the list of tests is, the more conservative

the correction will be (Bonferroni is quite a good example of this).

One solution to solving the multiplicity issue is to make each individual test more

conservative, i.e, more difficult to reject each individual hypothesis Hi, i = 1, ...,m. Such

1See Westfall and Young (1993) for a general method for constructing step-down methods from one-
step methods.
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methodology is often called a Simultaneous Test Procedure (STP) and STPs are com-

monly used to control the FWER. Bonferroni procedure is an example of an STP and is

the most stringent amongst those.

Bonferroni-type corrections are the usual approaches for controlling the FWER at level

α, by specifying the individual tests’ α′ values (comparison-wise error rate - CWER).

Suppose we want to test for association between a trait and m independent SNPs, i.e,

we want to perform m independent tests, each with a pre-specified common type-I error

α′. In this case, the experiment-wise error rate is:

FWER = P (at least one test causes rejection | H0 true)

= 1− P (all test do not cause rejection | H0 true)

= 1− P (one test does not cause rejection | H0 true)m (because of independence)

= 1− (1− α′)m ' mα′.

Definition 3.1 If one wishes to control the FWER at a pre-specified level α, the adjusted

p-value for hypothesis Hi is given by

p∗i = inf
{
α ∈ [0, 1] : Hi is rejected at nominal level FWER = α

}
. (3.1)

Adjusted p-values are a way of better comparing different procedures allowing direct

interpretation against a pre-specified α-value since they already take into account that

multiple tests are being conducted (see Wright, 1992, for a discussion on the topic).

Moreover, they are a way of reporting the result of a single test using p-values, with

the advantage that the level of the test does not have to be determined in advance. We

illustrate this with a simple example: let’s assume we have an adjusted ordered p-value

of p∗(i) = 0.0111 obtained from any FWER controlling procedure. If we meant to control

the FWER at level 0.01 then in this case the hypothesis H(i) would be accepted. On the

other hand, if we relaxed a bit the significance level, e.g., to α = 0.015, H(i) would be

rejected.

One FWER controlling procedure is (see Bonferroni (1935, 1936) and Dunn (1961)):
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Algorithm 1 - Bonferroni (1935) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test sta-

tistics T1, ..., Tm of the hypotheses H1, ..., Hm.

ii. Should there be a pi ≤ α
m

for some i = 1, ...,m, then the null hypothesis,

H0 : H1, ..., Hm, is rejected. In particular, each specific hypothesis Hi

is rejected if pi ≤ α
m
.

The adjusted p-values are p∗i = min(mpi, 1) (follows directly from (3.1)).

Definition 3.2 One procedure is said to control FWER in:

1. the weak sense, if it controls the FWER under the complete null, i.e, when all null

hypotheses are actually true.

2. the strong sense, if it controls the FWER under any combination of true and false

hypotheses, i.e, under any H
′
0 where H

′
0 is a subset of H0 of m′ ≤ m individual

hypotheses.

In general, weak control of the FWER without other safeguards is unsatisfactory. This is

because the complete null is in general not realistic (Dudoit et al., 2003).

It is easy to see that strong control of the FWER implies weak control. When weak

control is all we have, one hopes that the error rate under the true distribution is bounded

by the error rate under the complete null (Farcomeni, 2008).

The Bonferroni inequality

P
( m⋃
i=1

(Pi ≤
α

m
)
)
≤ α, (0 ≤ α ≤ 1) (3.2)

ensures that the probability of rejecting at least one hypothesis when all are true is no

greater than α, i.e, FWER ≤ α, and so Bonferroni STP is said to control de FWER in

the weak sense. Hocheberg (1988) shows that it also controls the FWER in the strong

sense. If the number of true hypothesis m0 were known, then the Bonferroni procedure

with cut-off value α/m0 would also control the FWER in the strong sense. This procedure

is known in the literature as the oracle Bonferroni. Should we use this adjustment having

m0 much, much smaller than m, the level of α/m0 would be higher than α/m and we

would thus have more power.
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Although being a simple procedure to use, requiring no distributional assumptions and

enabling individual alternative hypotheses to be identified, it lacks power if several tests

are highly correlated (e.g, when there are several or many SNPs in LD2). Moreover, it offers

the most conservative approach to control for false positives, especially with increasing

number of tests, and when allowing possible unacceptable levels of type-II errors it may

contribute to publication bias and the exclusion of potentially relevant hypotheses (e.g,

significant SNP-phenotype associations).

This method however, when combined with strategies to reduce the number of tests

can sometimes be a useful approach. For example, if the number of independent tests

among the m tests can be correctly inferred (Cheverud (2001), Nyholt (2004, 2005), Li

and Ji (2005), Salyakina et al. (2005), Gao et al. (2008)), we can still use the standard

Bonferroni to rapidly adjust for multiple testing.

Although Bonferroni correction is the most common method for type-I error correction,

less conservative methods exist. One example is the Dunn-Sidák method. This method,

comes from the independence assumption and the equality

α = 1− (1− α′)m.

Solving for α′ we obtain α′ = 1− (1− α)1/m. We thus have,

Algorithm 2 - Sidák (1968/1971) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test sta-

tistics T1, ..., Tm of the hypotheses H1, ..., Hm.

ii. Should there be a pi ≤ 1 − (1 − α)1/m for some i = 1, ...,m, then the null

hypothesis, H0 : H1, ..., Hm, is rejected. In particular, each specific

hypothesis Hi is rejected if pi ≤ 1− (1− α)1/m.

The adjusted p-values are p∗i = min(1− (1− pi)m, 1).

The Sidák method gives the exact control of the FWER under the null hypothesis,

where the unadjusted p-values are independently U(0, 1) distributed, but like the Bon-

ferroni method, it is also conservative. In fact, it actually is less conservative than the

former, although for very small p-values there is apparently little difference between the

2Since closely spaced SNPs are usually in LD when association studies are performed with many SNPs,
the tests performed depend on the correlation structure among SNPs.
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two methods. It does not however provide FWER control for arbitrary distributions of

the test statistics. In these circumstances control of the FWER can be guaranteed if the

test statistics verify the Sidák’s inequality:

P (|T1| ≤ c1, ..., |Tm| ≤ cm) ≥
m∏
j=1

P (|Tj| ≤ cj). (3.3)

This inequality is also known as the positive orthant dependence property and was

initially derived by Dunn (1961) in a particular setting.

If some of the hypotheses are true, step-wise procedures are generally preferable. Ad-

ditionally, one should also note, that small values of α reduce the power for any single

test. Thus, if we perform a huge number of simultaneous tests one may end with no

significant declared associations. In this case as well, another correction method should

be preferred.

Holm (1979), proposed a simple sequential rejective multiple test procedure based on

the ordered test individual p-values. This step-down method is based on the Bonferroni

inequality and is therefore valid regardless of the joint distribution of the test statistics.

It also controls the FWER in the strong sense. This method was made quite popular in

ecological studies by Rice (1989).

Considering m tests at an overall significance level α, Holms’ proposal consists of the

following steps:

Algorithm 3 - Holm (1979) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the hypotheses H1, ..., Hm and rank them.

ii. Should there be a p(i) ≤ α
m−(i−1)

for some i = 1, ...,m, then the null hypo-

thesis, H0 : H1, ..., Hm, is rejected. In particular, each specific hypo-

thesis H(i) is rejected if p(i) ≤ α
m−(i−1)

and if the previous hypothesis

H(1), ..., H(i−1) have been rejected. Acceptance of H(k) implies acceptance

of all H(l) with l > k, l ≤ m.

The adjusted p-values are p∗(i) = max
k=1,...,i

[
min

(
(m− k + 1)p(k), 1

)]
.
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This is a little less conservative correction procedure compared to Bonferroni and

Sidák corrections, providing a non negligible increase in power of the tests while keeping

all the properties of the formers. This modification cannot however shorten Bonferroni’s

confidence intervals for individual (scalar) parameters. And, like Bonferroni, it does not

as well account for possible dependencies between the tests.

A major assumption of Bonferroni, Sidák and Holm’s methods is, as mentioned previ-

ously, that the tests are uncorrelated, otherwise corrections would be too extreme. It so

happens that in genome-wide association studies this assumption is often violated when,

for example, LD introduces correlation between tests. But still, if the number of indepen-

dent tests among the total of tests can be correctly inferred, these techniques can still be

used.

Another improvement on the Bonferroni procedure was made by Simes (1986). Like

Holm’s procedure, it is also based on the ordered individual test p-values. Considering m

tests at an overall significance level α, it consists of the following steps:

Algorithm 4 - Simes (1986) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the hypotheses H1, ..., Hm and rank them.

ii. Should there be a p(i) ≤ i α
m

for some i = 1, ...,m, then the null hypothesis,

H0 : H1, ..., Hm, is rejected. In an exploratory sense, individual hypo-

theses H(1), ..., H(j) can be rejected for every j = max{k : p(k) ≤ k α
m
}.

Simes method is known to be less conservative than the classical Bonferroni procedure,

thus having more power, and quite simple to apply. Simes (1986) shows in is work, via

a simulation study, that the probability of a type-I error does not exceed the family-

wise threshold α for a variety of multivariate normal and gamma test statistics (Simes’

inequality - equality holds when the p-values Pi are independently uniformly distributed

on [0, 1]):

P
( m⋃
i=1

(P(i) ≤ i
α

m
)
)
≤ α, (0 ≤ α ≤ 1). (3.4)

Moreover, he shows that his procedure has level α under the null when the tests are

independent, meaning that in this case we have weak control of the FWER. Additionally,

his simulation study supports the advantage of the method over the Bonferronis’ when
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there are several highly-correlated test statistics. Sarkar (1998) proved Simes inequality

for general positive dependence.

This criterion however, isn’t always satisfactory as Simes (1986) carefully pointed out

(an example of this can be found in Hommel (1988), pp. 384). Also, there is a problem

of making statements on individual hypotheses for which a solution is not provided - we

only have an exploratory decision criteria. This problem was overcome by Hommel (1988)

(see Algorithm 8) who extended Simes’ procedure for making statements on individual

hypotheses. He also recommended the use of the Simes’ method whenever possible since

it is strictly more powerful than Bonferroni’s algorithm (Algorithm 1) and Ruger’s (1978)

and Hommel’s (1983) procedures.

For situations where the truth of some hypotheses implies the truth of others, Shaffer

(1986) proposed a modification on Holm’s procedure in order to increase power, however

with a complexity cost. Considering m dependent tests at an overall significance level α,

we have the following steps:

Algorithm 5 - Shaffer (1986) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the hypotheses H1, ..., Hm and rank them.

ii. Calculate the values

ti = maximum number of possible true hypothesis given that H(1), ..., H(i−1) are false

for i = 1, ...,m. Obviously ti ∈ {1, ...,m− i+ 1} and t1 = m.

iii. Let i∗ ∈ {1, ...,m} be the first index to verify the inequality p(i∗) >
α
ti∗
.

Then reject H(1), ..., H(i∗−1) and accept H(i∗), ..., H(m). Should there be a

p(i) ≤ α
ti

for some i = 1, ...,m, then the null hypothesis, H0 : H1, ..., Hm,

is rejected.

When there are no logical implications among the m hypotheses, i.e, when the m tests

are independent, ti = m− i+ 1 and, thus, this method coincides with Holm’s. Moreover,

since we have the inequalities
α

m
≤ α

m− i+ 1
≤ α

ti
it is clear that any hypothesis rejected

by Bonferroni procedure is subsequently rejected by Holm’s and Shaffer’s procedures.

The complexity cost issue mentioned, arises from the need to compute the values t1, ..., tm,

which will require some effort especially when m is large.
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Holland and Conpenhaver (1987) made a small but uniform improvement on the Shaf-

fer and Holm procedures for positively orthant dependent test statistics:

Algorithm 6 - Holland & Conpenhaver (1987) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the hypotheses H1, ..., Hm and rank them.

ii. Calculate the values

ti = maximum number of possible true hypothesis given that H(1), ..., H(i−1) are false

for i = 1, ...,m. Obviously ti ∈ {1, ...,m− i+ 1} and t1 = m.

iii. Let i∗ ∈ {1, ...,m} be the first index to verify the inequality p(i∗) > C(ti∗),

where C(x) = 1−(1−α)1/x. Then reject H(1), ..., H(i∗−1) and accept H(i∗), ..., H(m).

Should there be a p(i) ≤ α
ti

for some i = 1, ...,m, then the null hypothesis,

H0 : H1, ..., Hm, is rejected.

This procedure keeps the overall type-I error probability below the threshold α and is

at least as powerful as Shaffer and Holm’s procedures. Holm (1979) himself had already

recognized that his rule could be improved with p(i∗) > C(m − i∗ + 1) for the case of

independent statistics, although he did not mention it was also applicable in certain

dependent situations as is the case of positively orthant dependence.

In their paper, Holland and Copenhaver suggest their method to be used in all circum-

stances where Bonferroni is preferred whenever the positive orthant dependence holds.

Power gains are still possible with the sequential approach by using a step-up instead of

a step-down procedure. Hochberg (1988), presented what he called “a sharper Bonferroni

procedure”, which is an extension of Sime’s procedure that now has strong control of the

FWER.

For m independent tests at an overall significance level α, this step-up method has the

following steps:
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Algorithm 7 - Hochberg (1988) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the hypotheses H1, ..., Hm and rank them.

ii. Take i = 1.

iii. If p(m−i+1) ≤ α
i
then reject H(1), ..., H(m−i+1) and accept the others. Go

to step v.

iv. If p(m−i+1) >
α
i
, increment i, i.e, make i = i+ 1 and go back to iii.

v. H0 is rejected if at least one H(i) as been rejected. Hi is rejected if

pj ≤ α
m−j+1

for any j ≥ i.

The adjusted ordered p-values are p∗(i) = min
k=i,...,m

{
min

{
(m− k + 1)p(k), 1

}}
.

This step-up method, that can be viewed as an analog of Holm’s step down, is uni-

formly more powerful than the latter, but, unlike Holm’s method, you can only use it in

independent tests. Step-up methods are not always better than step-downs’ (see example

in Huang and Hsu, 2007). Both methods are special cases of partition testing (Stefansson

et al. (1988), Hayter and Hsu (1994), Finner and Strassburger (2002)). The difference is

that, Holm’s method tests each partition hypothesis using the largest order statistic, set-

ting a critical value based on the Bonferroni inequality (Equation 3.2) while, Hochberg’s

tests each partition hypothesis using all the order statistics, setting a series of critical

values based on Sime’s inequality (Equation 3.4). See Huang and Hsu (2007) for more

detail and also Lehman et al. (2005) for a discussion on step-up and step-down procedures

optimality.

The Hochberg procedure, is perhaps the most popular improved Bonferroni-type pro-

cedure. Not only it is easier to understand and implement but also only slightly less

powerful than other FWER controlling Bonferroni-type procedures. Sarkar and Chang

(1997) proved that it also controls FWER when the distribution of the test statistics has

exchangeable positive dependence.

Bonferroni, Hochberg, Holm, and Sidak’s procedures are implemented in the R package

multtest via instruction mt.rawp2adjp().
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Related procedures to Hochberg’s are the ones of Hommel (1988) and Rom (1990),

both being more powerful than the former. We will describe below only Hommel’s pro-

cedure since it is a generalization of the Simes’ procedure that gives strong control of the

FWER whenever Simes’ gives weak control (e.g., with independent tests).

Algorithm 8 - Hommel (1988) -

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the hypotheses H1, ..., Hm and rank them.

ii. Calculate the value ki = max
i
p(m−i+j) > α

j

i
, with j = 1, ..., i.

iii. Should there be p(i) ≤ α
ki

for some i = 1, ...,m, then the null hypothesis,

H0 : H1, ..., Hm, is rejected. In particular, each specific hypothesis

H(i) is rejected if p(i) ≤ α
ki
.

The ordered adjusted p-values are p∗(i) = min
{
kip(i), 1

}
.

Hommel’s method, although a bit more complicated when compared to Hochberg’s, is

more powerful than the Hochberg correction and, thus, less conservative. It can be viewed

as an extension of Simes’ procedure as it now enables inferences on individual hypotheses.

An example of application can be found in Wright (1992).

A popular approach in genetic association studies for the control of the type-I error

rate, where Bonferroni-type methods may be too conservative, is the use of a permutation

procedure. Permutation tests provide valid adjustments if the data are permuted as to

simulate the null hypothesis while keeping the data original structure. In genetic asso-

ciation studies, it means retaining the genotype data, so that the LD structure between

SNPs is preserved, and randomizing the phenotype over individuals. In this way the re-

sulting data set will satisfy the null hypothesis of no association between the SNPs and

the phenotype. The analysis of many such data sets (the more the better), comparing

the permutation-based results to the original ones, allows the false-positive rate to be

approximated, based on the probability of observing a p-value as small as the original

minimum, given the correlation between tests. The draw back of such an approach in the

context of large association studies is, of course, computational burden.

Several permutation methods have been proposed in the literature to test the signif-

icance of partial regression coefficients in multiple regression: (1) permute the raw data,
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(2) permute the residuals of a null model (2 variants), or (3) permute the residuals of a

full model (see Westfall and Young, 1993; Legendre and Legendre, 1998; Anderson and

Legendre, 1999; for more information).

Wesfall and Young (1993) discuss several FWER controlling procedures and resam-

pling techinques3 to obtain the adjusted p-values when the distribution of the original

p-values is unknown. We will only mention below the proposed minP and maxT pro-

cedures, which are both step-downs, take into account the joint distribution of the test

statistics, are less conservative than Bonferroni, Holm or Hocheberg’s procedures, and

whose p-values can be estimated by resampling, making successively smaller adjustments

at each step.

Algorithm 9 - single-step minP -

Calculate the adjusted p-values p∗i = P ( min
1≤j≤m

Pj ≤ pi | HC
0 ), where HC

0 is the

complete null hypothesis and Pj denotes the random variable for the unadjus-

ted p-value of the j-th hypothesis.

Procedures based on minP adjusted p-values provide weak control of the FWER.

Strong control is achieved under the assumption of subset pivotality4 (see Westfall and

Young, 1993, pp. 42-43, for more detail). These two last considerations are also valid for

maxT based procedures.

We list some more considerations on this procedure:

1. If the unadjusted minP p-values are independent and Pj is U(0, 1) distributed under

Hj, then the minP adjusted p-values coincide with Sidák’s p-values:

p∗i = P ( min
1≤j≤m

Pj ≤ pj | HC
0 ) = 1− P (Pj > pi for all j | HC

0 ) =
Pj∼U(0,1)

1− (1− pi)k.

2. When the Sidák’s inequality (Equation 3.3) holds, the minP adjusted p-values are

less than or equal to Sidák’s adjusted p-values;

3Could either be through permutation (resamplig without replacement) or bootstrap (resampling with
replacement) - see Westfall and Young (1993), chapters 4 and 5, for more detail.

4The distribution of unadjusted p-values {P1, ..., Pm} is said to have the subset pivotality property,
if the joint distribution of the random vector {Pj : j ∈ Ω} is identical for distributions satisfying the

composite null hypothesis
⋂
j∈Ω

Hj and HC
0 =

m⋂
i=1

Hj , for all subsets Ω of {1, ...,m}.
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3. Under Sidák’s inequality, procedures based on minP adjusted p-values are less con-

servative than Bonferroni or Sidák procedures.

Algorithm 10 - single-step maxT -

Calculate the adjusted p-values p∗i = P ( max
1≤j≤m

|Tj| ≥ |ti| | HC
0 ), where HC

0 is

the complete null hypothesis and Tj and ti denote the random and the observed

test statistics.

Usually the p-value distribution under the null is unknown and therefore resampling

techniques such as bootstrap or permutation, need to be used to estimate the adjusted

p-values. Westfall and Young (1993) suggested several ways of deriving this distribution,

including permutation and bootstrap methods, using either p-values or test statistics. It

is clear that when using permutation methods to obtain the adjusted p-values for the

above procedures, they both become computationally slow, although maxT is known to

be less demanding than the minP. Ge et al. (2003) suggested a fast procedure for the

computation of the minP adjusted p-values - a recent review can be found in Farcomeni

(2008). The adjusted p-values from minP and maxT are the same when the test statistics

are identically distributed. When they are not, maxT adjustments may be unbalanced in

the sense that not all tests contribute equally to the adjustment. Also, maxT can be a

more powerful approach in small “n” large “m” situations.

As an example of application of the use of the minP procedure in a genetic case-control

study context, we have the work of Chen et al. (2006). In this paper they investigate

whether the gain in power, obtained by using permutation resampling to account for

correlations between polymorphisms and test statistics, is big enough as to justify the

associated computational burden. Therefore, they compared the resampling-based minP

procedure with Simes’ procedure and with haplotype analysis (see Mander, 2001, for a

quick review) under several scenarios via simulation, where empirical haplotype struc-

tures in 15 genes were incorporated. Recall that inference with the minP test, relies on

the permutation distribution of the minimum of the ordered p-values, which takes the cor-

relations between SNPs into account whereas the Simes’ global test uses a non-iterative

procedure to adjust the minimum observed p-value for multiplicity. In their work, Chen

et al. found minP to be only slightly more powerful than Simes procedure (around 2%)

and observed a few situations where minP under-performed haplotype-analysis. They

thus proposed an omnibus test procedure combining both haplotype analysis and minP

to obtain a more effective gain in power while still controlling the FWER.
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Other application examples of minP can be found in the work of Hosgood et al.

(2008), also in a case-control associtation context, and Schwartzbaum et al. (2010), now

in a gene expression study context. Chapman and Whittaker (2008) showed that the

minP approach performs quite well under scenarios like e.g., the presence of high and

low LD betweens SNPs, and recommended its use in genetic association studies. Pollard

et al. (2005) argue that approaches that use a data generating distribution, such as a

permutation or bootstrap distribution, that satisfies the complete null, typically rely on

the subset pivotality condition to justify strong control of the FWER, which in turn is

violated in many relevant biomedical and genomic data analysis testing problems, e.g.,

tests concerning correlation coefficients and tests concerning regression coefficients.

Both minP and maxT procedures are implemented in the R package multtest where

correspondent adjusted p-values can be obtained through instructions mt.minP() and

mt.maxT(). The permutation algorithm used to compute these p-values is the one of Ge

et al. (2003).

Despite all the improvements made on the Bonferroni correction procedure (see Garcia,

2004, for a review), they all focus on limiting the chance of making a single type-I error

which, with an increasing number of tests comes at a cost: more type-II errors. I.e, low

power, translating into failing to detect a true effect. In genome-wide genetic association

studies the Bonferroni correction is therefore undesirable, since only a few very strong

effects will be detected among the many many tests performed. And this brings us to the

next section.

3.2 Controlling the false discovery rate

In genetic association studies the risk of a false discovery (indication of association when

there is none) is very high because only few among all markers/genes/SNPs that can be

tested will have an effect on the phenotype and/or disease. See for example the work

of Colhoun et al. (2003) where speculation is made that 19 out of 20 marker-disease

associations reported in the literature are false. To this respect, population stratification

and failure to exclude chance can be argued. Moreover, since it has recently become

possible to screen hundreds of thousands or even millions of SNPs across the genome of

plants and animals to test for association with a disease and/or phenotype of interest,

without the proper control, researchers will be flooded with false discoveries, those being

proportional to the number of tests performed. It is therefore compelling to develop
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proper methods for the adequate control of false discoveries so that a lot of time and

resources are not spent in pursuing dead-end leads.

Motivated by the paper of Soriç (1989), Benjamini and Hochberg (1995) introduced

the FDR as the expected proportion of the true null hypotheses that are wrongly rejected,

the so-called false positives:

FDR = E
[

number of false positives

total number of rejections of the null hypothesis

]
as long as the denominator is different from zero in which case FDR = 0. Contrary to the

FWER, this approach is meant to control the proportion of significant results that are

in fact type-I errors. The reasoning is that in genome-wide genetic association studies, a

few false positives are acceptable if in small proportion to the total number of identified

SNPs, i.e, rejected null hypotheses. To this respect the FWER may be too conservative

and hence, this error rate seems to be appropriate on those problems where the control

of the FWER is not necessarily implied.

This criterion seems to be the most satisfactory approach for dealing with tests’ mul-

tiplicity and has been advocated for ecological studies involving a large number of tests

in which several or even many individual hypotheses have been rejected and in situa-

tions where the most significant p-value is relatively large (Waite and Campbell, 2006).

Benjamini and Hochberg thus proposed a sensible and powerful way of addressing the

multiple testing problem.

Garcia (2004) summarized the following advantages of the FDR approach over the

FWER:

1. it enables controlling the proportion of false positives among the rejected null hy-

potheses;

2. it avoids performing individual tests at very low p-levels in large problems;

3. it is more powerful than the sequential Bonferroni procedures (e.g, Holm, 1979;

Hochberg, 1988; Hommel, 1988);

4. when no actual true positive findings exist (i.e, all the null hypotheses are true), the

FDR method has the same control as the previous methods, i.e, it has a so-called

weak control of the family-wise type-I error;

5. the FDR threshold may be determined from the observed p-value distribution, and
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hence is adaptive to the amount of signal in the data (Genovese and Wasserman,

2002);

6. FDR is family-wise robust, i.e, it tends to be far more consistent than procedures

controlling the FWE in terms of whether a particular hypothesis is rejected, as the

family in which this hypothesis is located changes in size5. Additionally, FDR may

account for the exact dependence structure of the data, via resampling-based proce-

dures (Yekutieli and Benjamini, 1999) or under the normal assumption (Troendle,

2000).

The FDR is less stringent than the FWER and so any procedure controlling the

FWER also controls the FDR. This allows FDR controlling procedures to have greater

power than FWER controlling procedures, which may lead more researchers to actually

use multiplicity adjustment. Also notice that the gain in using the FDR compared to

the FWER increases when the number of false null hypotheses is large. Consequently, it

seems that the FDR is well suited for testing situations in which there are many different

treatments or outcomes for which there is little or no prior knowledge, and the objective

is to identify a smaller set of them to study further.

To better illustrate the differences between FWER and FDR control, let us consider the

possible outcomes of m tests as in Table 3.1, where V is the number of type-I errors, T the

number of type-II errors, U the number of true negatives, S the number of true positives,

m0 the number of true null hypothesis, m−m0 the number of false null hypothesis. Note

that m, R and m-R are observed and the rest of the variables are unknown.

Table 3.1: Number of errors committed when testing m null hypothesis

Accept H0 Reject H0 Σ
H0 true U V m0

H0 false T S m-m0

Σ m-R R m

From the notation in Table 3.1, we have that

FWER = P (V ≥ 1) (3.5)

5See Holland and Cheung (2002) for family-wise robustness criteria for multiple comparisons proce-
dures.
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and (as defined by Benjamini and Hocheberg, 1995)

FDR =

E
(V
R

)
if R > 0

0 if R = 0
(3.6)

where the ratio V/R is called the false discovery proportion (Genovese and Wasserman,

2004).

Other frequently used rates in the literature are the per-family error rate (PFER),

given by PFER = E[V ], and the per-comparison error rate (PCER) given by PCER =
E[V ]

m
. The value of the FDR is in between the PCER and the FWER, i.e,

PCER ≤ FDR ≤ FWER.

When m0 = m, FDR=FWER (Benjamini and Hochberg, 1995). When m0 < m, a FDR

control may be more powerful than a FWER control at the same level. The proposal

of Benjamini and Hochberg (1995) (Algorithm 11) thus controls the FWER in the weak

sense. Moreover, the FDR is adaptive in the sense that, the more hypotheses are not true,

the smaller the FDR.

Also, we have

PCER ≤ FWER ≤ PFER.

From the inequalities above, one can easily see that for a fixed threshold, procedures

that control the PFER are generally more conservative, that is, lead to fewer rejections,

than those that control either the FWER or the PCER, and procedures that control the

FWER are more conservative than those that control the PCER. These results can be

better acknowledged in a comparison study example in Dudoit et al. (2003)6.

We will now present a couple of FDR control methods based in the availability of the

p-values for each of the individual hypotheses. When such is not the case, a generalized

p-value approach is a possibility (see Tsui and Weerahandi, 1989; Tang and Tsui, 2007).

The rational behind the p-value adjustment for FDR controlling procedures is the same

as seen for FWER controlling procedures:

Definition 3.3 If one wishes to control the FDR at a pre-specified level α, the adjusted

6In this paper different approaches to large-scale multiple hypotheses testing in the context of DNA
microarray experiments are discussed.
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p-value for hypothesis Hi is given by

p∗i = inf
{
α ∈ [0, 1] : Hi is rejected at nominal level FDR = α

}
. (3.7)

We start with the Simes-type proposal of Benjamini and Hochberg (1995) who intro-

duced a distribution-free method that controls the expected fraction of falsely rejected

null hypotheses among those rejected, with the understanding that if no null hypotheses

are rejected the proportion is zero.

Algorithm 11 - Benjamini & Hocheberg (1995) - (BH-1995)

Consider m independent tests.

i. Calculate the m individual test p-values, say, p1, ..., pm of the test

statistics T1, ..., Tm of the null hypotheses H1, ..., Hm and rank them in

ascending order p(1) ≤ ... ≤ p(m).

ii. Denote by H(i) the hypothesis corresponding to p(i).

iii. Let k be the largest i for which p(i) ≤ α
i

m
= αi.

iv. Reject all null hypothesis H(1), ..., H(k). The adjusted p-values are

p∗(i) = min
k=i,...,m

[
min

(mp(k)

k
, 1
)]

.

This procedure, also referred to in literature as the step-up linear procedure, was

shown by Benjamini and Hochberg (1995) to control the FDR at the level αm0/m and

thus at level α (Storey et al., 2004 also has an elegant proof of this) under independence.

However, at the beginning it did not deserve much attention since it only provided weak

control of the FWER. Proof against strong control follows from Seeger (1968) and Hommel

(1988). Sarkar (2004) proved that the BH-1995 procedure is unbiased, being a special case

of FDR-controlling step-up-step-down procedures proposed by Sarkar (2002).

Benjamini and Yekutieli (2001) studied the BH-1995 procedure under dependence and

showed that the it controlled the FDR with the same upper bound αm0/m when tests

are positively correlated. In a more general dependence structure it controls the FDR at

level

α(1 +
1

2
+ ...+

1

m
). (3.8)
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When tests are negatively correlated, or have a more complex structure, they demon-

strated that replacing m in the Algorithm 11(iii) with m
m∑
i=1

1

i
also provides FDR control

(we will refer to this modified procedure as BY). The adjusted p-values for this modified

step-up version of the previous procedure are given by

p∗(i) = min
k=i,...,m

[
min

(mp(k)

k

m∑
i=1

1

i
, 1
)]
. (3.9)

In that paper they also proposed an FDR controlling procedure that does not make any

assumption on the joint distribution of the test statistics. Some asymptotic results and

plug-in procedures for the BH-1995 procedure can be found in Genovese and Wasserman

(2002, 2006). Note that BH-1995 and BY procedures differ only in the multiplicity penalty

attributed to the unadjusted p-values: in BH-1995 the applied penalty is of m/k whereas

in BY we have a penalty of (m
m∑
i=1

1

i
)/k.

Both BH-1995 and BY procedures are implemented in the R package multtest and can

be calculated with instruction mt.rawp2adjp(). We also have the BH-1995 procedure

available via instructions qvaluebh95() and p.adjust() from the R packages GenABEL

and stats, respectively. We note that the two last functions return the adjusted p-values

in the initial order whereas the first returns them ordered.

We emphasize the fact that positive dependence is a very common situation in genetic

association studies. E.g., it may arise in SNP/trait association studies when there are

SNPs in LD. Since this correction becomes more stringent as the p-value decreases, i.e, as

we go from p(m) to p(1) the rejection significance levels of the individual tests decrease, in

the context of genetic association studies, this method provides a good balance between

discovery of statistically significant genes (i.e, associations) and limitation of false positive

occurrences thus improving power. It so provides a most satisfactory approach for coping

with multiplicity when a large number of tests are performed simultaneously, which is

usually the case in this specific setting.

Knowledge on m0 can be very useful as a tool to improve the power of BH-1995

procedure. Even with the Bonferroni procedure, taking α/m0 instead of α/m would

enhance its performance. Hochberg and Benjamini (1990) used this idea to construct

more powerful versions of the Holm and Hochberg’s procedures. There is therefore much

interest in constructing procedures that firstly estimate m0 and then use its estimate in

the BH-1995 procedure. These plug-in procedures are usually referred to in literature as
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adaptive procedures. We must underline however, that once an estimator of m0 is used in

the BH-1995 procedure, there is no guarantee that the new procedure assures FDR control

at the desired level. For that purpose additional adjustments in the estimator may be

needed (Storey et al., 2004; Benjamini et al., 2006; Gravilov et al., 2009; Blanchard and

Roquain, 2009). These adjustments are critical under dependence and when m0/m ∼ 1

or even m0/m = 1.

Schweder and Spjφtvoll (1982) were the first ones to propose an informal way of

estimating m0 from inspecting the quantile-plot of the p-values versus their ranks. The

idea is quite simple: since the plot will tend to show a linear behaviour for the largest

p-values which are the ones most likely to correspond to the true null hypotheses, one

chooses the k-largest p-values and takes m̂0 as the slope of the line that passes through the

{(1−p1), ..., (1−pk)} k p-values. Still, it is known that this method tends to overestimate

the number of nulls (Walsh, 2004). Hochberg and Benjamini (1990) referred to this

methodology proposing a straight line to be fit through the largest p-values by OLS

estimation. Heuristic methods on how many largest p-values should be used to fit this

line are also discussed.

Following the idea of m0 estimation with subsequent plug-in in the BH-1995 procedure,

Benjamini and Hochberg (2000) introduced a sharpening procedure for their FDR method

showing that power over the initial method can be substantially improved. Basically, this

procedure uses the data to provide a ’prior’ estimate of the number of true nulls, m0,

among the m null hypotheses:

Algorithm 12 - Benjamini & Hochberg (2000) - (BH-2000)

i. Use the linear step-up procedure BH-1995 at level α and if no hypothesis

is rejected STOP.

ii. Calculate Sk = (m+ 1− k)/(1− p(k)).

iii. Starting with k = 2 STOP when for the first time Sk > Sk−1.

iv. Estimate m̂0 = min{Sk,m} rounding up to the next highest integer.

v. Use the linear step-up procedure BH-1995 with αi = α
i

m̂0

.

This adaptive procedure is implemented in the R package multtest via instruction

mt.rawp2adjp(), which returns the adjusted ordered p-values.
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Storey (2002/2003) introduced a different concept of FDR, the positive FDR, pFDR,

defined as

pFDR = E
[V
R
| R > 0

]
and the concept of q-value of a particular test which gives the expected proportion of false

discoveries when the cutoff point for H0 is at that test’s p-value.

Although similar to the notion of the p-value, these two significance measures should

not be confused. The p-value is a measure of significance in terms of the false positive

rate, whereas the q-value is a measure in terms of the FDR. E.g., a false positive rate

of 5% means that on average 5% of true nulls in a study will be declared significant. A

FDR of 5% means that among all features called significant, 5% of these are true nulls on

average.

To control the introduced pFDR he proposed the following adaptive linear step-up

procedure:

Algorithm 13 - Storey (2002) -

Let the tuning parameter λ be estimated by resampling techniques after fixing

the rejection area.

i. Take r(λ) = #{p(i) ≤ λ}.

ii. Estimate m0 by m̂0(λ) = (m− r(λ))/(1− λ).

iii. Use the linear step-up procedure BH-1995 with αi = α
i

m̂0(λ)
.

There is an inherent bias/variance trade-off in the choice of λ: usually, when λ gets

smaller, the bias of m̂0(λ) gets larger and the variance gets smaller. A balance of this

trade-off can be achieved with an adequate choice of λ. Storey (2002) and Storey and

Tibshriani (2003) recommended the use of λ = 0.5 for the estimation of m0.

Storey et al. (2004) modified this procedure by replacing in Algorithm 13(ii) (m−r(λ))

by (m+ 1− r(λ)) and additionally requiring that p(i) ≤ λ for a hypothesis to be rejected.

Storey and Tibshriani (2003) provide a way of transferring a list of p-values to q-

values as an approach to measure statistical significance in genome-wide studies. These

ideas were incorporated in function qvalue() from the R package qvalue, that returns the
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adjusted p-values without changing their initial order. They also presented a Bayesian

interpretation of the pFDR and gave an algorithm for the estimation of the prior prob-

ability, π0 = m0/m, that a gene is not differentially expressed (in a genome-wide study

context):

Algorithm 14 - Storey and Tibshriani (2003) - (ST)

Let pi be the raw p-value of gene i, with i = 1, ...,m.

i. For τ = 0, 0.01, 0.02, ..., 0.95 compute π̂0(τ) = #{pi > τ}/((1− τ)m).

ii. Fit a natural cubic spline, spl, with three degrees of freedom through

the data points (τ, π̂0(τ)).

iii. Estimate π0 as π̂0 = min{spl(1), 1}.

Benjamini et al. (2006), makes a review of some FDR controlling procedures that

estimate m0 and propose, among others, the following two-stage linear step-up procedure:

Algorithm 15 - Benjamini, Krieger & Yekutieli (2006) - (BKY)

i. Use the linear step-up procedure of BH-1995 at level α/(1 +α) and let

r1 be the number of rejected hypotheses. If r1 = 0 do not reject any

hypothesis and STOP. If r1 = m reject all hypotheses and STOP, other-

wise move on;

ii. Take m̂0 = m− r1;

iii. use the linear step-up procedure of BH-1995 with αi =
α

1 + α

i

m̂0

.

They show this procedure to be more powerful than the BH-1995 and to control the

FDR under independence. Gravilov et al. additionally show it to control the FDR also

under positive dependence. This procedure is also implemented in the R package multtest

via instruction mt.rawp2adjp().

Some more adaptive procedures to control the FDR have been proposed in the litera-

ture, e.g., Storey et al. (2004), Genovese and Wasserman (2004), Sarkar (2006), Benjamini

and Heller (2007), Blanchard and Roquain (2009), Gravilov et al. (2009), Sarkar and Guo
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(2009). A common drawback among all is that asymptotically they have been shown to

control the FDR only under independence. Under dependence, Benjamini et al. (2006)

showed that some adaptive procedures sometimes may fail to control the FDR.

In situations where the joint distribution of the test statistics is unknown, resampling

methods (e.g., boostrap, permutation) can be used to estimate unadjusted and adjusted

p-values, the same way as in FWER controlling procedures (Yekutieli and Benjamini,

1999; Tusher et al., 2001; Reiner et al., 2003). In this way, parametric assumptions on

the test statistics distributions are avoided.

With the development of high-throughput biotechnologies we now have the ability of

screening hundreds of thousands of SNPs and tens of thousands of gene expression profiles.

This is why we are said to be facing the Era of genomics where such an enormous amount

of genetic information certainly poses a huge and obvious problem to data handling and

statistical analysis. To the crucial question “How can one assess the significance of bi-

ological findings over families of thousands or even millions of hypothesis tests?” there

is extensive debate in the literature. Throughout this chapter we have reviewed several

of the many proposed procedures, some able to control the FWER and others the FDR,

or both. The choice of one correction method over another will depend of course on the

context of the investigator’s research. In genetic association studies it is usually better to

allow false associations to occur as long as we can find a few positive associations rather

than being over conservative and incur in a zero findings study, usually accompanied with

time and money losses. As far as we have seen from several genetic association studies,

the preference goes to the use of BH-1995 at the 10% level, although there is actually no

consensus in the literature as to what the threshold should be.

We would now like to finish this chapter by leaving the reader with a small sum-

mary table (Table 3.2) where we briefly review some of the FWER and FDR procedures

discussed and their properties.

Some of these measures will be compared in Chapter 6 in the context of outlier tests.

More recent developments on the subject of FDRs can be found, e.g, in Benjamini

and Gravilov (2009) and Benjamini et al. (2009). We also have a recent and nice state of

the art in Benjamini (2010).
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Table 3.2: Summary table of the discussed multiple testing procedures which have strong
control of either the FWER or the FDR - some properties.

Procedure type-I Strong/weak Stepwise Dependence
error rate control structure structure

Bonferroni FWER Strong Single *
Sidák FWER Strong Single Positive orthant
Holm FWER Strong Down *

Hochberg FWER Strong Up Some dependence
minP FWER Strong Single Subset pivotality
maxT FWER Strong Single Subset pivotality

Benjamini and Hochberg FDR Strong Up Positive regression dep.
Benjamini and Yekutieli FDR Strong Up *
Yekutieli and Benjamini FDR Strong Up Some dependence

Storey pFDR Strong Up Independence
* means that the procedure controls the claimed type-I error rate for general dependence structures, but does not

explicitly take into account the joint distribution of the test statistics.





Everyone believes in the [normal] law of errors, the experimenters because

they think it is a mathematical theorem, the mathematicians because

they think it is an experimental fact.

Henri Poincaré

4
Multiple linear regression

The linear regression model is the simplest and most widely used model to describe the

relationship between variables in many areas of research. More precisely, between a set

of explanatory variables (one or more) and a response variable (or more if we refer to the

multivariate case). Usually, models containing more than one explanatory variable can

be more helpful in predicting values for the response variable, especially on those cases

where the response variable is believed to be controlled by multiple predictor variables,

as in the case of genetic quantitative traits which are known to be ruled by sometimes

many genes.

Linear regression methodology however, is affected by the presence of highly discrepant

observations in the data, which may arise from heavy-tailed distributions, mixture of

distributions or simply from errors in data collection and/or recording. Robust linear

regression on the other hand, presents an alternative to the classical methodology, be-

ing resistant to some of those model misspecifications, in particular to regression out-

liers/normality deviations.

In this Chapter we will review both the classic and the proposed robust approaches in

a linear regression context (Sections 4.1-4.3), going through hypothesis testing (Section

4.4), coefficient of determination (Section 4.5), outlier detection methods (Section 4.6)

61
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and robust plug-in estimators in mixed linear models (Section 4.7).

4.1 The regression model

We describe the general multiple-linear regression model as

Yi = β0 + β1Xi1 + · · ·+ βp−1Xip−1 + εi, i = 1, . . . , n (4.1)

where n > p is the number of observed individuals. This model appropriately rewrites to

Y = Xβ + ε (4.2)

where Y = (Y1, . . . , Yn)T is the (n × 1) vector of the response variable, X is the (n × p)
design matrix, β = (β0, . . . , βp−1)T are the unknown parameters and ε = (ε1, . . . , εn)T is

a vector of non-observable independent errors with expectation E(ε) = 0 and covariance

matrix var(ε) = σ2In, the latter equality meaning the errors are homoscedastic. Hence,

E(Y ) = Xβ and var(Y ) = σ2In.

In the literature it is also usual to see model (4.1) written as

Yi = xiβ + εi (4.3)

where xi = (1 Xi1 ... Xip−1).

For documentation on heteroscedastic errors please see the work of Park (1966), Rut-

miller and Bowers (1968), Harvey (1976), Smyth et al. (2001), Smyth (2002) and Yuan

and Wahba (2004), among others, in the case of the classical approach. Check also the

work of Giltinan and Carroll (1986), Bianco and Rienzo (2000), Carroll and Ruppert

(1982) for the robust approach.

4.2 Least squares and maximum likelihood estima-

tors

From equation (4.1), taking Xi• = (1 Xi1 . . . Xip−1) and writing εi = Yi−Xi•β, the least

squares (LS) or ordinary least squares (OLS) estimate of β is obtained by minimizing the
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error sum of squares
n∑
i=1

ε2
i , i.e,

β̂LS = arg min
β

n∑
i=1

ε2
i = arg min

β
εT ε = arg min

β
(Y −Xβ)T (Y −Xβ). (4.4)

If X has rank p ≤ n the problem has one unique solution β̂LS = (XTX)−1XTY , with

covariance Σβ̂LS
= σ2(XTX)−1 and σ̂2

LS = MSE =
ε̂T ε̂

n− p
=
SSE

n− p
.

In the classical linear multiple regression model we additionally have ε ∼ N(0, σ2In)

and consequently β̂LS coincides with the maximum likelihood estimate (MLE) of β. More-

over, the Gauss-Markov theorem, that ensures the OLS estimator is the best linear unbi-

ased estimator (BLUE), with the normality assumption further ensures that this estimator

is the uniform minimum variance unbiased estimator (UMVUE). Plus, we have

β̂LS|X ∼ N(β,Σβ̂LS
)

where Σβ̂LS
can be unbiasedly estimated by σ̂2

LS(XTX)−1.

The classic estimates of the mean response and the covariance have thus desirable

statistical properties under the true model. The thorny issue is that we usually do not

know the underlying model.

Having the estimates β̂, the predicted value of Y by that estimation is given by

Ŷ = Xβ̂. The difference Y − Ŷ is called residual. We define:

Definition 4.1 Being Yi the ith observed value and Ŷi its predicted value via model

(4.1), the residual of the ith observed value is defined defined as Yi − Ŷi = ri(β̂).

With the residual notation, having εi = ri(β), we re-write equation (4.4) to

β̂LS = arg min
β

n∑
i=1

r2
i (β). (4.5)

We must note at this point that, it is known that even a single corrupted observation is

enough to disrupt the estimate β̂LS. We will not go into detail here but, the largest fraction

of data that can arbitrarily turned into bad values without perturbing the estimator

greatly is known as the breakdown point of that estimator. More information on the

subject can be found for example in Hampel (1968, 1971) and Donoho and Huber (1983).
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4.3 M-estimators

M-estimators were introduced in regression by Huber (1973) and are a class of flexible

estimators which played a central role in the development of robust statistics, the “M”

standing for maximum likelihood type.

In the robust approach, the normality condition on the error distribution is relaxed to

a quasi-normality condition and the estimators are obtained by methods other than ML.

In the M-regression approach the estimates are the solutions to the following minimization

problem,

β̂R = arg min
β

n∑
i=1

ρ
(εi
σ̂

)
= arg min

β

n∑
i=1

ρ
(ri(β)

σ̂

)
(4.6)

where σ̂ is a robust scale estimate of σ and ρ is a function, also called objective function,

with the following properties:

(i) ρ is even;

(ii) ρ(0) = 0;

(iii) ρ(x) is increasing for x > 0 such that ρ(x) < ρ(∞);

(iv) if ρ is bounded then it is also assumed that ρ(∞) = 1.

It is easy to verify that when ρ(x) = x2 we have the LS/ML situation described above,

since

arg min
β

n∑
i=1

ρ
(ri(β)

σ̂

)
= arg min

β

n∑
i=1

r2
i (β)

σ̂2
= arg min

β

n∑
i=1

r2
i (β) = β̂LS.

The LS estimator is therefore an M-estimator.

There are several proposals in the literature for the robust scale parameter and a nice

review can be found in Rousseeuw and Croux (1993) or more recently in Daszykowski et

al. (2007). We have for example the re-scaled MAD (Hampel, 1974)

MAD = 1.4826×median|ri −median(ri)| (4.7)

where the value of 1.4826 is to assure consistency at the gaussian distribution. This

estimator although having a high breakdown point (50%) lacks efficiency at the normal

model (37%). For this reason, among others, Croux and Rousseeuw (1992) proposed the

estimator

Qn = d× {|ri − rj| : i < j}(k) (4.8)
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where d is a constant and k =

(
h

2

)
with h = bn/2c+1, which is also a high breakdown

estimator (50%) but now with 83% efficiency at the normal when we take d = 2.2219.

Note that here (k) refers to the k-th order statistic of the

(
h

2

)
interpoint distances.

Both robust scale measures can be calculated in the R language via instructions mad()

and Qn() from packages MASS and robustbase (Maechler, 2006), respectively.

Differentiating (4.6) for every βj, and equating to zero we get the p equations

n∑
i=1

ψ
(ri(β)

σ̂

)
Xij = 0, j = 0, . . . , p− 1 (4.9)

where ψ = ρ′ and Xi0 = 1, i = 1, ..., n. ψ is said to be redescending if it tends to zero at

infinity, i.e,

lim
z→±∞

ψ(z) = 0.

In particular, if ρ is bounded, then ψ is redescending. Also, redescending ψ functions

exclude observations with large residuals. One example is the Tukey biweight ψ function

with tuning parameter b:

ψ(x) =

x(b2 − x2)2 if |x| ≤ b

0 if |x| > b
. (4.10)

Although (4.6) and (4.9) are not always equivalent, (4.9) is useful in the search of

solutions to (4.6).

Estimates that are obtained through this process are regression, scale and affine equiv-

ariant (Rousseeuw and Leroy, 1987, pp. 116; Maronna et al., 2006, pp.92), which are

desirable properties. Solutions of (4.9) with monotone ψ are called monotone regression

M-estimates and have the major advantage that all solutions to (4.9) are solutions of

(4.6).

Considering the weights

Wi = ψ

(
ri(β)

σ̂

)/
ri(β), i = 1, . . . , n (4.11)
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the p equations (4.9) rewrite to

n∑
i=1

Wi × ri(β)×Xij = 0, j = 0, . . . , p− 1 (4.12)

which are the weighted normal equations that lead to β̂R = (XTWX)−1XTWY when the

Wi’s are known, where W is a diagonal matrix with elements Wi. When the Wi’s are

unknown (4.9) can be solved by Iteratively Reweighted Least Squares (IRWLS), which

consists of the steps:

Step 0. 

β̂(0) = β̂LS

e
(0)
i = Yi − Ŷ (0)

i = Yi −Xβ̂(0), i = 1, ..., n

σ̂(0) = MAD(e
(0)
1 , ..., e

(0)
n )

W (0) : W
(0)
i =

ψ
(
ri(β̂

(0))

σ̂(0)

)
ri(β̂(0))

, i = 1, ..., n

(4.13)

Step k+1. With k ≥ 0

β̂(k+1) = (XTW (k)X)−1XTW (k)Y

e
(k+1)
i = Yi − Ŷ (k+1)

i = Yi −Xβ̂(k+1), i = 1, ..., n

σ̂(k+1) = MAD(e
(k+1)
1 , ..., e

(k+1)
n )

W (k+1) : W
(k+1)
i =

ψ
(
ri(β̂

(k+1))

σ̂(k+1)

)
ri(β̂(k+1))

, i = 1, ..., n

. (4.14)

The iterative procedure stops when a stoping criterion is attained, converging to the

solution if ρ is convex1.

Choosing a robust estimator within the class of M-estimators is not always an easy

task. The objective function ρ proposed by Huber (1964) is known to lead to efficient

estimators under ideal conditions. It is given by

ρ(x) =

x2/2 if |x| ≤ b

b(|x| − b/2) if |x| > b
(4.15)

1A real-valued function f(x) defined on an interval is called convex if for any two points x1, x2 of its
domain, and any t ∈ [0, 1] we have that f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).
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where b is a tuning parameter. The correspondent ψ function is

ψ(x) =


−b if x < −b

x if |x| ≤ b

b if x > b

. (4.16)

Smaller values of b give more resistance to outliers in the data but at the expense of lower

efficiency when the errors are normally distributed. Therefore, it is generally chosen as

to give high efficiency at the normal. Huber (1964) suggested that the tuning parameter

b should take the value of 1.5 if there are no outliers in the data and 1.345 if there are.

In particular, a value of b = 1.345 produces 95% efficiency relative to the sample mean

when the data is normal, and provides substantial resistance to outliers when it is not.

Efficiency and robustness however are inversely related and thus a good compromise

between both should be considered.

Below, in Figure 4.1, we can see the plots of the Huber and LS ρ functions, as well as

their correspondent ψ and weight functions. Although both objective functions ρ increase

without bound as the residual departs from zero, the LS objective function increases faster

than Huber’s ρ.

Some other differences are quite evident from the plot. For instance, Huber’s ψ func-

tion is limited whereas the LS is not and it additionally accounts for a normal model in a

linear way. We know that in general a ψ function that has a linear behavior in the middle

results in better efficiency at the normal distribution (Tukey, 1960). Also, Huber’s weight

function weights the observations differently giving less weight to more extreme observa-

tions, and actually weighting all observations within the bounds of [−b, b] with weight 1,

whereas the LS weight function corresponds to weighting all observations equally to 1.

Other choices are available in the literature like the already mentioned Tukey’s bi-

weight ψ function, but do not always guarantee a unique solution to (4.9) and one needs

good initial estimates of the parameters to assure the convergence of the corresponding

algorithm to the optimal solution. Using Huber’s ρ, the resulting M-estimator of β is

efficient (for both normal and non-normal data) and it is robust against outliers in the

response variable, which is precisely the situation we may find in genetic association stud-

ies of quantitative traits. Library MASS in R has a model-fitting function rlm() in the
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Figure 4.1: Huber and LS function plots; b = 1.345.

conditions described above. By default it uses ρ-Huber with tuning constant b = 1.345

and both β and the scale parameter σ are estimated by the IRWLS procedure with initial

estimates of β and σ given by the LS estimate and the rescaled MAD, respectively.

When there are observations with extreme values in the predictor space (leverage

points), M-regression is not robust and even shows no advantage over the least squares

approach. In such situations, other alternatives exist, e.g, least trimmed squares (LTS)

estimation, S-estimation and MM-estimation, among others, the latter attempting to

retain the robustness and resistance of S-estimation while still keeping the efficiency of

M-estimation (Rousseeuw and Leroy, 1987; Hubert and Rousseeuw, 1997; Maronna and

Yohai, 2000; Ryan, 2008).
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4.4 Testing the models parameters

The first step in data analysis is parameter estimation and we are usually interested in

testing if a sub-vector of the vector of unknown parameters equals zero, i.e, if a subset of

the predictor variables associate or not with the response variable.

4.4.1 The classical approach

A general linear hypothesis concerning β is of the form H0 : Aβ = 0, where A is a known

q × p matrix with q ≤ p. The general test for testing this hypothesis, which is derived

from the LRT2, is to reject H0, at the level α, if F ≥ Fα, where PH0(F ≥ Fα) = α and

F =
(Y −X ̂̂β)T (Y −X ̂̂β)− (Y −Xβ̂)T (Y −Xβ̂)

(Y −Xβ̂)T (Y −Xβ̂)
. (4.17)

β̂ and
̂̂
β are the unrestricted and restricted MLE of β, respectively. We also know that,

n− p
q

F ∼
H0

Fq,n−p ∼
a
χ2

(q) and
n− p
q

F ∼
H1

Fq,n−p,δ (4.18)

where δ is a non-centrality parameter (see Rohatgi and Saleh, 2001, for further detail).

In the context of genetic association studies of quantitative traits, we are primarily

interested in the following two testing situations:

(i) H0 : β1 = · · · = βp−1 = 0 ≡ Aβ = 0 where A = [0 Ip−1], referring to the global test

of association, i.e,

H0 : there is no association between the SNPs in the model and the quantitative trait Y

(ii) {H0k : βk = 0}k=1,...,p−1 ≡ {Aβ = 0} where now A is a 1×p vector of nulls with 1 at

position k+ 1 referring to individual tests of association, i.e, to the individual tests

H0i : there is no association between SNPi and the quantitative trait Y

In (i), the number of parameters to be tested is q = p − 1. In this case we havê̂
β1 = · · · = ̂̂

βp−1 = 0 and
̂̂
β0 = Y , thus the F statistic of (4.17) rewrites to

F =

∑n
i=1(Yi − Y )2∑n
i=1(Yi − Ŷi)2

− 1 =
SST

SSE
− 1 (4.19)

2And therefore assumes the normality of the errors.
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and, under H0, from (4.18) we have (n− p)F/(p− 1)∼Fp−1,n−p ∼
a
χ2

(p−1).

In (ii), for each H0k test, we have q = 1 and so, again under H0 and from (4.18),

(n− p)F∼F1,n−p. Furthermore, we know that
√

(n− p)F ∼
H0

|tn−p| and thus, taking

T =
β̂k√

var(β̂k)
=

β̂k√
(var(β̂))kk

=
β̂k√

(σ2(XTX)−1)kk
(4.20)

we therefore reject H0k at significance level α if |T | ≥ t1−α/2,n−p.

In practice, in the simulation study of Chapter 5, for each bi-allelic SNP, there will

be two dummy variables in the regression model, that is, q = 2 and therefore, under H0,

(n− p)F/2∼F2,n−p ∼
a
χ2

(2).

The classic multiple linear regression model is available in R via instruction lm() of

package stats. The global tests of association (4.19) are provided in the summary table

of the lm() adjusted model. The individual tests (4.20), are available in the Anova()

table from package car and in the anova() table from package stats. However, we must

underline the fact that in the simulation study of Chapter 5, the design is unbalanced

(Shaw, 1993), thus the use of instruction Anova() of package car and not anova() from

package stats. We must also add that we used the default type-II tests though type-III

are also available. A nice discussion on the differences between these two types of tests

can be found in Lansgrud (2003).

4.4.2 The robust approach

As already mentioned in the introduction, contrary to some statements in the litera-

ture dating back to Box (1953), the ANOVA F-test is not robust against non-normality

(Schrader and Hettmansperger, 1980; Ronchetti, 1987; de Haan et al., 2009). What hap-

pens is that the use of the word robust in the literature is usually associated with a good

control of the type-I error rather than with the robustness property of the method (see

for example Taplin, 1999). For this reason we have considered for the robust tests for the

general linear hypothesis, taking γ = Aβ, the robust Wald-type statistic (see Maronna,

2006, pp. 107)

TW =
γ̂T Σ̂−1

γ γ̂

q
∼
H0

Fq,n−p (4.21)
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where Σ̂γ is an estimate of the covariance matrix of γ. Since Σ̂βR = υ̂(XTX)−1, with

υ̂ = σ̂2 avei(ψ(ri/σ̂)2)

(avei(ψ′(ri/σ̂)))2
× n

n− p
, it follows that Σ̂γ = υ̂A(XTX)−1AT .

For the global test for association, whether the predictor variables in the model are

continuous or categorical, we can obtain the test p-value via the R function f.robftest()

of package sfsmisc. However, if the predictor variables are continuous or categorical with

up to two categories (thus one dummy variable in the regression model), to perform the

individual association tests we have to recode function f.robftest() with due care to the

unbalanced data design. Again, in the simulation study (Chapter 5) the TW test statistic

will never simplify to the case where q = 1 since the simulated SNPs are three-category

variables and thus there will be two estimated dummies per covariate. Nevertheless, in

the real data set study (Chapter 7), we had a couple of SNPs with only two categories

and so the situation where q = 1 did happen and may therefore happen as well in other

studies.

4.5 Coefficient of determination

The coefficient of determination is a statistical tool that is commonly used as a summary

measure of predictive power of the selected regression model. It is defined as the percent-

age of variance of the response variable that is explained by the regression model. More

precisely,

R2 = 1− σ2

σ2
Y

. (4.22)

Thus, the larger the R2, the larger the proportion of variation of Y that is explained

by the explanatory variables. When R2 = 1 we say that the regression model perfectly

fits the data.

In the classical approach, the coefficient of determination is estimated as

R2 = 1−

n∑
i=1

ri(β̂LS)2

∑n
i=1(Yi − Y )2

(4.23)

where ri(β̂LS) are the residuals obtained by the LS fit. There are however several other

estimates of R2 in the literature and a good review can be found in Kvalseth (1985). One

major drawback of (4.23) is that this value increases as the number of covariates in the
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model increase3 and it is therefore usual to use the adjusted version

R2
a = 1−R2n− 1

n− p
(4.24)

which may decrease if we enter variables that do not add significantly to the model.

As the LS estimator, this measure is vulnerable to data contamination, i.e, the pres-

ence of outliers. An example of how drastically it may decrease when a single outlier is

introduced in the data set can be seen e.g, in Croux and Dehon (2003). Several robust

proposals have been placed in the literature (Roussseuw, 1984; Anderson-Sprecher, 1994;

Croux and Dehon, 2003; Maronna et al., 2006; Renaud and Vitoria-Feser, 2010). The

parameters σ2 and σ2
Y may be robustly estimated, for instance, taking σ̂2 = Qn(ri(βR))2

and σ̂Y
2 = Qn(Y )2 and then plugged-in (4.22). The estimate of R2 thus obtained, can be

adjusted in the same way as the classical one but using the weights sum derived from the

robust analysis instead of the number of individuals n used in the regression model.

4.6 Outlier detection

Statistics obtained by fitting a regression model can be highly influenced by a small set

of the data that is different from the bulk of the data. In particular, extremely deviant

outliers reduce the power of parametric tests4 (Barnett and Lewis, 1978; Hampel et al.,

1986).

The identification of outlying observations is thus of the utmost importance and so is

the assessment of their effects in the analysis of the data. Therefore, it is natural to look

for such observations after the model has been adjusted and there are several diagnostic

measures available in the literature that one can use to do it. Some of them were planned

to identify individual observations, and others to detect groups of individuals. It may

actually happen that an observation is not influential in itself but a group of observations

of which it is part of is (Rousseeuw and Leroy, 1987).

In this thesis we are mainly interested in regression outliers since that will be the situ-

ation encountered in genetic association studies of quantitative traits where the response

variable is continuous, and thus prone to outlying observations - the explanatory variables

are categorical and therefore there will be no outlying observations to this respect.

3It is known to reach its maximum value of 1 for any saturated model even when the predictors and
outcome are independent of each other.

4For a note on the influence of outliers on non-parametric tests please see Zimmerman (1994).
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In this section we will briefly review some of the usual methodology of outlier identifi-

cation. We would like to underline though, that outlier pinpointing is not the end of the

line in what concerns outliers, but rather the beginning of something far more complex

as some pertinent questions then arise:

i. What should we do with outliers? Should we ignore them? Discard them? Incor-

porate them in the model?

ii. Why are these points different from the bulk of the data? Are they measurement

errors? Do they represent rare events?

iii. How do these points affect the conclusions of our analysis? Are they influent?

One thing is for sure though, no observation should ever be removed from the data on

statistical grounds alone! Here, statistical grounds include, for example, outlier testing.

We start by defining the hat matrix, which plays a major role in the identification of

outliers:

Definition 4.2 We define the hat-matrix as H = X(X tX)−1XT and hii as the i-th

element of the diagonal of H.

The hat-matrix verifies H = HT ( H is symmetric), H = H2 (H is idempotent) and we

have tr(H) = p. More detailed properties of H can be found for example in Hoaglin and

Welsch (1978) and Cook and Weisberg (1982). This matrix plays as well an important

role in the identification of leverage points. More precisely, the diagonal elements hii of

the hat matrix can reveal the leverage points in the data. When hii is near 1, the variance

of the i-th residual is near 0 which means that observation i has a large influence in the

regression estimates. More precisely, if hii ≥ 2p/n then observation i should be considered

a leverage point. In simple regression hat values hii measure distance from the mean of

X, whereas in multiple linear regression hii measures the distance from the centroid point

of all of the X’s (mean vector).

We write a few results in terms of the hat-matrix, which can easily be derived and

that will be handy ahead (see Myers et al., 2001, for more detail):

i. Ŷ = Xβ̂LS = HY ; H is sometimes called in the literature as prediction matrix

because of this equality; usually we know it by projection matrix since it projects

the Y values onto their predicted values;
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ii. var(Ŷ ) = σ2H;

iii. ε̂ = r(β̂LS) = Y − Ŷ = (I −H)Y where I −H is called the residual matrix;

iv. var(ε̂) = var(r(β̂LS)) = σ2(I − H) and thus, the variance of the i-th residual is

var(ε̂i) = var(ri(β̂LS)) = σ2(1− hii), which is estimated by MSE(1− hii);

v. cov(ε̂i, ε̂j) = −hijσ2 for i 6= j, which is estimated by −hij ×MSE.

Since regression outliers are obviously not contemplated by the hat matrix, they have

to be acknowledged separately. The analysis of the least squares residuals is one common

way of detecting model failures. In multiple regression, an outlier can thus be defined as

an observation with large residuals. As a general rule of thumb, 95% of the standardized

residuals should lie between −2 and 2. However, this approach could be misleading since

outliers’ residuals often look like normal ones, e.g., when an outlier is also a high-leverage

point, it pulls the fitted least squares line towards it and the resulting residual often does

not indicate that it is actually an outlier. Plus, there are two additional problems in

outlier diagnostic methods through residual analysis: the masking effect problem, where

outliers mask the effect of others leaving those undetected, and the swamping effect, when

regular observations are flagged as outliers when they are not.

In (iii) above, we can see that the LS estimated residuals ε̂ = r(β̂LS) and the related

unknown true residuals ε = r(β) are typically correlated since it can be showed that

(I − H)Y = (I − H)ε and have different variances (iv). For diagnostic purposes this

variances should be equalized. As such, several transformations of the residuals have been

suggested and the hat matrix can be used to easily studentize the regression residuals:

i. Studentized residuals

r∗i =
ε̂i√

σ2(1− hii)
(4.25)

where E(r∗i ) = 0 and var(r∗i ) = 1.

ii. Studentized deleted residuals

r◦i =
ε̂i√

σ̂2
(−i)(1− hii)

(4.26)

where σ̂(−i) is the residual mean squares estimate of σ when the i-th observation

is omitted from the data, i.e, σ̂2
(−i) = MSE(−i). Studentized residuals, have mean

near 0 and a variance slightly larger than 1. They also follow a t-distribution with

n− 1− p degrees of freedom5.

5Note that we are always assuming εi ∼
i.i.d

N(0, σ2).
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In large data sets, the values of the standardized and studentized residuals should not

differ greatly. When compared with standardized residuals, studentized residuals have the

particularity of overcoming the problem of a single large outlier inflating σ̂ and therefore

masking itself.

The value MSE(−i) that appears in the studentized deleted residuals is also known

in the literature as the external MSE. To calculate its value, one needs not to run the

regressions over and over again, dropping observation i, i = 1, ..., n, in each turn. Instead

we can use the hat matrix to estimate MSE(−i) as follows:

σ̂2
(−i) =

(n− p)σ̂2 − ε̂2
i

1− hii
n− 1− p

. (4.27)

With a little algebra this equation rewrites to

σ̂2
(−i) =

1

n− 1− p

(
ε̂T ε̂− ε̂2

i

1− hii

)
(4.28)

which is just the SSE subtracted by a correction element and divided by the degrees of

freedom. We can as well acknowledge the important role of the hat matrix in determining

the magnitude of a studentized residual and hence in the identification of outlying Y

observations.

Observations that have a studentized residual outside the ±2 standard deviations

range are considered statistically significant at the 95% level, i.e, are flagged as outliers.

We have reasons to be even more concerned and therefore alert, with observations whose

residuals exceed ±3 standard deviations.

Another way to assess if any of the n observations are outliers or not, is to perform a

test using the studentized deleted residuals statistic r◦i for every observation, adjusting for

multiple testing via, e.g., Bonferroni correction (see Netter et al., 1996, for more detail).

The hypothesis

H0i : observation i is not an outlier

will be rejected if p∗i < α, where p∗i is the i-th adjusted p-value and α a pre-specified

threshold. The Bonferroni critical value for the test is t(1−α/2;n−1−p). The R function

outlier.test() from the car package gives the Bonferroni corrected p-value for the

largest absolute studentized residual. Instruction ls.diag() from package stats provides

the studentized residuals. With these values the tests can easily be constructed and p-
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values corrected via Bonferroni with instruction mt.rawp2adjp() from the R package

multtest.

At this point we must bring to the reader’s attention the fact that this correction may

be too conservative if n is large, in which case other alternatives should be considered

(see Chapter 3 for more detail).

Another technique would be to plot the studentized residuals from the regression

against the t-distibution. Observations straying outside the 95% confidence interval should

be flagged out as outliers. This can be done with instruction qq.plot() from the R

package car. Graphical methods are important tools in outlier detection, since the patterns

of residuals are often more important than their magnitudes (Atkinson, 1985). Plotting

the fitted values versus standardized residuals is also an usual approach to regression

outliers identification.

Having an outlier identified does not mean that it necessarily influences the regression

line. However it will tend to increase the standard error, and this is why in particular

it messes up the F test. Be aware that, as a rule of thumb, if more than 20% of the

observations are identified as outliers, one should begin questioning oneself about the

distribution assumed by the model, the model itself and/or about the quality of the data

collected.

Next to identifying outliers, the following natural step is to ascertain whether an outlier

is influential or not. There are three popular measures of influence, each one based on

the omission of a single observation to measure its influence. They are briefly described

below.

Cook’s distance (Cook, 1977) is a diagnostic method that can be used to identify

influent points. It measures the influence of the i-th observation on all n fitted values of

the outcome. One calculates the distance:

Di =
(Ŷ − Ŷ(−i))

T (Ŷ − Ŷ(−i))

p×MSE
=
r◦i

2

p

hii
1− hii

=
ε̂2
i

p×MSE(−i)

hii
(1− hii)2

(4.29)

where Ŷ is the predicted value of Y from the whole model, i.e, the model with all n

observations, and Ŷ(−i) is the predicted value of Y based on the parameters estimated

after deleting observation i from the data. The last equality shows the Cook’s distance

Di to depend on the size of the residual ε̂i and the leverage value hii. The larger either one
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of these values is, the larger Di is. In this way, an observation i is considered influential

if:

i. it has a large residual ε̂i and a moderate leverage hii;

ii. it has a large leverage hii and a moderately sized residual ε̂i;

iii. it has both large residual ε̂i and leverage value hii.

One rule of thumb is to consider point i influential when Di >
4

n− p
. However, since

under the null the Di’s are distributed as an Fn,n−p, another possibility is to reject for

values of Di > F0.5,n,n−p . The R library MASS as an instruction cooks.distance() that

allows for the calculation of the Di’s once a regression model has been adjusted. It can

also be done via instruction ls.diag() from package stats, which, among other statistics,

gives Cook’s distances, or with cookd() from package car. Inspecting the plot of Cook’s

distances versus observations index is also a useful tool of analysis. Another useful plot

is the influence plot where hat values are plotted against the studentized residuals and

where there are circles plotted as well for each observation representing the relative size

of Cook’s D. This can be done in R via instruction influenceplot() from package car.

Contrary to Cook’s distance, DFFITS (difference in fit standardized) distance, a pop-

ular influence statistic, measures the influence of the i-th observation solely on the fitted

value Ŷi:

DFFITSi =
Ŷi − Ŷi(−i)√
MSE(−i)hii

(4.30)

where again, Ŷi is the predicted value of Yi from the whole model and Ŷi(−i) is the predicted

value of Yi based on the parameters estimated after deleting observation i from the data.

If DFFITSi is large, it means that the i-th observation is influential on the model’s

predicted value for the i-th observation meaning the model does not fit observation i

well. In general, any observation i with |DFFITSi| > 2
√
p/n is set aside for further

investigation, but only if n is large. For small values of n, the cut-off is |DFFITSi| > 1.

The two methods discussed above measure the influence of an observation in the fitted

values of the regression. To assess the influence of such an observation on the coefficients’

estimates we have the DFBETAS distance, which measures how much the regression
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coefficients change when an observation is omitted:

DFBETASk,i =
β̂k − β̂k(−i)√

((XTX)−1)kkMSE(−i)
, (4.31)

where β̂k is the estimate of parameter βk obtained from the whole model, i.e, the model

with all n observations, and β̂k(−i) is the estimate of βk obtained when observation i is

deleted from the data. If DFBETASk,i is positive then the effect of the i-th observation

is to increase the estimate of βk, whilst when it is negative it has the contrary effect.

A large value of |DFBETASk,i| indicates that observation i has a large impact on the

k-th regression coefficient. In particular, for large data sets, an observation i is considered

influential in the estimation of parameter βk if |DFBETASk,i| > 2/
√
n (Belsley et al.,

1980). For small n we should look for values of |DFBETASk,i| > 1.

If after investigating whether an outlier is or not an influential observation we conclude

negatively, then we have no reason to worry about that observation. At least, in what

concerns the regression estimates. As to the tests of association, that is totally a different

matter, since we have already pointed out that this observation will tend to increase

MSE thus messing up the F test. The simulation study in Chapter 5 will show how bad

the F test may become in the presence of contamination, while giving evidence that the

alternative proposed may be more adequate for the association studies of quantitative

traits.

Robust estimation and outlier detection are intimately related. McKean et al. (1993)

showed that with monotone ψ, M-regression residual plots can be interpreted the same

way as LS residual plots. That will be the case when we take Huber’s ψ function. In this

way, given such robust estimates of the true values of an assumed null model, analyzing

the robust residuals6 plotted against the fitted values, can indicate which, if any, of the

observations are outliers.

Robust methods are particularly important in situations where there are multiple

outliers whose presence is masked when diagnostic methods that delete one observation

at a time are used. In M-regression (with monotone ψ), observations with final small

weights are usually outlying. Another important aspect is that robust regression may be

a useful tool for confirming the reasonability of OLS results, e.g., when the residuals are

similar, one is reassured that OLS is not being influenced by outlying observations. Jajo

6I.e, the residuals obtained from a robust fit.
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(2005) makes a succinct review of robust regression and diagnostic measures in linear

regression.

Rice and Spiegelhalter (2006) proposed a simple outlier diagnostic plot assembling

M-regression, residual plots and false discovery rates, that will be briefly described below.

To test the hypothesis H0i : observation i is not an outlier proceed as follows:

i. take the standardized robust residuals

rRi = ε̂Ri /σ̂R (4.32)

where ε̂Ri are the robust residuals and σ̂R a robust estimate of scale (e.g, equations

(4.7) and (4.8));

ii. calculate pi = 2× Φ
(
− |rRi |

)
for each observation i = 1, ..., n;

iii. adjust for multiple testing with the BH-1995 FDR (Chapter 3, Algorithm 11), i.e,

consider qi = n× p(i)/i

iv. reject the null hypothesis at a given FDR threshold, e.g, 10%.

They showed through simulation for various levels of the FDR (more precisely, 0.01, 0.02

and 0.1) and different number of individuals (namely, 50, 100, 150, ..., 1000) that, when

the data is contaminated by a symmetrical distribution, the procedure works well with

an excellent agreement between sample and nominal FDR levels. When an asymmetric

contaminant distribution was considered, the level of FDR control was not as accurate

as in the previous setting. However it did not amount to much concern since the FDR

level was never exceeded by more than 1%. We must underline that in this study the

regression model considered only the intercept.

Next, to better illustrate the performance of the proposed method, they presented an

example of application with the “phones” data from Rousseeuw and Leroy (1987), which

is available in the R library MASS. This data set contains information on the total number

of calls, in millions, made in Belgium from the year of 1950 to 1973 (24 observations in

total). It is also known to have misrecorded number of calls between the years of 1964 to

1969. Here, the residuals used in the outlier tests were based on the regression of calls on

years.
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We have replicated this study and present the diagnost plot of Rice and Spiegelhalter

(the R code is available in routine C.1) together with the correspondent plot that would

be obtained from the classical residual analysis (using r∗i ):

Figure 4.2: Plot of year versus calls (black dots), with q-value rescaled plot superimposed
(blue dots), plus the regression line (black dashed line) and FDR 10% rescaled threshold
(green dashed line)

Clearly, the robust methodology identifies the 6, known to be, outliers whereas the

classical approach does not identify any, and this diagnostic plot is very useful in observing

just that. However, the use of it is only viable in situations where we have a single

explanatory variable. We must also add that in this particular case, the FDR threshold

level of 10% used could and should be lowered to at least 1% without fear of losing

significance of the 6 identified outliers. In general, to avoid the known swamping effect,

the FDR level should be as low as possible.
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4.7 Estimation and tests in the mixed linear model

setup

The general linear mixed model can be written as

y = Xβ + Zu + ε, (4.33)

where y ∈ Mn×1 is the vector of observed values, X ∈ Mn×p and Z ∈ Mn×n are the

incidence matrices for the fixed and random effects, respectively, β ∈Mp×1 and u ∈Mn×1

are the correspondent fixed and random effects with u ∼ N(0, G) and ε ∈Mn×1 is a vector

of residual deviations with ε ∼ N(0, R). Both u and ε are assumed to be independent

vectors and so cov(u, ε) = 0 and var(y) = ZGZ ′ +R = Φ ∈Mn×n.

In a genetics association context, y is the phenotype for each of the n individuals, X

the individual genotype and u usually quantifies the genetic effects.

For the model described we have the following likelihood function

L(β, σ2|y) = (2π)−n/2|Φ|−1/2 exp
[
− 1

2
(y −Xβ)′Φ−1(y −Xβ)

]
(4.34)

and the correspondent log-likelihood

l(β, σ2|y) = −n
2

log(2π)− 1

2
log |Φ| − 1

2
(y −Xβ)′Φ−1(y −Xβ) (4.35)

where σ2 = [σ2
ij]i,j=1,...,n are parameters of Φ.

We are interested in studying the model where G = σ2
AA and R = σ2

EI, where A

is a relationship matrix between the n individuals, e.g., a kinship matrix in a genetics

context, also referred to as an identity-by-descent (IBD) matrix. Moreover, we consider

that we only have one observation per individual, i.e, Z = I and that Φ is a positive

definite-matrix. Therefore the model (4.33) rewrites to

y = Xβ + Iu + ε (4.36)

and we have the following derivation for the variance of y

var(y) = σ2
AA+ σ2

EI = Φ = σ2
E

(σ2
A

σ2
E

A+ I
)

= σ2
E

(
σ2
∗A+ I

)
= σ2

EΦ∗.
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The vector of parameters of Φ thus becomes σ2 = (σ2
∗, σ

2
E).

If Φ∗ is known, the generalized least squares estimate of β, that is a best linear unbiased

estimate (BLUE) of β, and its covariance are given by

β̂ = (X ′Φ−1X)−1X ′Φ−1y = (X ′Φ∗
−1

X)−1X ′Φ∗
−1

y (4.37)

and

var(β̂) = (X ′Φ−1X)−1 = σ̂2
E(X ′Φ∗

−1

X)−1 = Σ̂ , (4.38)

the best linear unbiased predictor (BLUP) of u is

û = σ̂2
EGZ

′Φ∗
−1

(y −Xβ̂) = σ̂6
Eσ

2
∗AΦ∗

−1

(y −Xβ̂) (4.39)

where

σ̂2
E =

1

n
(y −Xβ̂)′Φ∗

−1

(y −Xβ̂). (4.40)

Substituting β̂ and σ̂2
E in (4.35) we get the profile log-likelihood function

lP (σ2
∗|β = β̂, σ2

E = σ̂2
E,y) = −n

2

(
log(2π) + log(σ̂2

E) + 1
)
− 1

2
log |Φ∗| (4.41)

= constant− n

2
log(σ̂2

E)− 1

2
log |Φ∗| = lP (σ2

∗, σ̂
2
E). (4.42)

Being Φ∗ a semi-definite positive matrix, taking its Cholesky decomposition, model

(4.36) rewrites to

Y ∗ = X∗β + ε∗ (4.43)

where Y ∗ = chol(Φ∗)−1Y , X∗ = chol(Φ∗)−1X, ε∗ = chol(Φ∗)−1ε. Moreover, now we have

var(ε∗) = σ2I and we are thus in the multiple linear regression setup described in Section

4.1 allowing us to easily obtain the LS and robust estimates needed.

When Φ∗ is unknown, an estimate Φ̂∗ of the covariance matrix Φ∗ has to be considered.

It is usually obtained through the ML or REML methodology, although there is some

criticism around the former since the ML estimators of the variance components do not

account for the loss in the degrees of freedom in the calculation of β and are therefore

biased downward. REML, on the other hand, corrects for this. For an insight on this

approach we refer to the works of Harville (1974), Searl (1979), Searl et al. (1992),

Netter et al. (1996) and LaMotte (2007), and in a genetic context to Meyer (1983/1985)

and Lynch and Walsh (1997). As to the ML approach, we will briefly describe below a
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derivative-free methodology for the estimation of Φ∗, which is easy to understand and

quite straightforward.

4.7.1 Using maximum likelihood for the estimation of Φ∗

A derivative-free approach for the estimation of Φ∗, i.e, the estimation of σ2
∗, consists on

taking the profile log-likelihood function (4.42) and an initial value for σ2
∗, say σ2

∗
(0)

. For

this value σ2
∗

(0)
, we calculate σ2

E
(0)

from (4.43) and evaluate lP (σ2
∗ = σ2

∗
(0)
, σ̂2

E = σ2
E

(0)
) in

(4.42). We iterate in the same way for other possible values of σ2
∗ until (4.42) is maximized.

With the final value of σ2
∗ obtained from the iterative process, say σ2

∗
(k)

for some k, we

calculate Φ∗ and proceed as in model (4.43) to obtain the estimates of β and σ2
E.

Another possibility would be to write the log-likelihood equations and use some nu-

merical method, like the Newton-Raphson (NR) or the expectation-maximization (EM)

algorithms, to calculate an approximation of their solution.

The function lmekin() from the R package kinship takes the former approach, using

the optim() function to minimize minus the log-likelihood (4.42).

In order to obtain an estimate of Φ∗ for the robust approach, we suggest plugging-in

the robust estimates in (4.42) and proceed in analogous way. We have recoded the R

function lmekin() as to do so and named it lmekinR(). Its code can be found in the

Appendix C, Section C.3.

4.7.2 Hypothesis testing

Inference for the fixed-effects terms, i.e, the tests H0 : Lβ = 0 of q ≤ p fixed-effects are

conducted by the F statistic

F =
β̂′L′(LĈL′)−1Lβ̂

q
(4.44)

where

Ĉ = (X ′Φ̂−1X)− = (X ′(σ̂2
EΦ̂∗)−1X)− = σ̂2

E(X ′Φ̂∗
−1
X)− (4.45)

pointing out that we now consider instead of (4.40), the centered estimate

σ̂2
E =

1

n− rank(X)
(y −Xβ̂)′Φ∗

−1

(y −Xβ̂). (4.46)

Under the null7, the sampling distribution of F is asymptotically distributed as an

7Where we consider as well the normal distribution of the errors.
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Fq,ν where ν has to be appropriately estimated. There are several proposed methods in

literature to the estimation of ν. E.g., the Satterthwaite approximation, the Kenward-

Roger (KR) method8 (available in SAS) and others. When we are dealing with unbalanced

data though, these two methods are usually preferred over the remaining.

A full theoretical derivation of the KR approximation can be found in Alnosaier (2007)

and evidence that the KR method outperforms the Satterthwaite at the nominal type-I

error rate control can be found in Spike et al. (2005) and Schaalje et al. (2001).

The Satterthwaite approximation for ν is obtained as follows:

i. Compute the spectral decomposition of LĈL′, where P ∈ Mq×q is an orthogonal

matrix of LĈL′ eigenvectors and D ∈Mq×q a diagonal matrix of LĈL′ eigenvalues.

ii. Let lm = PL[m, ], i.e, the mth row of PL.

iii. Compute the variance/covariance matrix of the unknown parameters in Φ, σ2 =

(σ2
E, σ

2
∗), Bij = (S−1)ij where Sij =

1

2
tr(Φ−1ΦiΦ

−1Φj) and

Φi =

I when σ2
i = σ2

E

A otherwise
(4.47)

iv. Let νm =
2(Dm)2

g′mBgm
where Dm is the mth diagonal element of D and gm the gradient

of lmCl
′
m with respect to σ2 evaluated at σ̂2, where σ̂2 is the ML/REML estimate

of σ2.

v. Let E =

q∑
m=1

νm
νm − 2

I{νm > 2}.

vi. Compute ν =
2E

E − q
provided E > q, otherwise set ν = 0.

Inference for the fixed-effects terms in the robust analysis can be performed using

the Wald-type F statistic above (4.44) plugging in the robust estimates of β, σ2 and Φ∗

obtained as described in the previous sections.

8F does not necessarily have an F-distribution and so KR approximates the distribution of F by
choosing λ and m so that λF ∼ F (q,m).
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4.7.3 Coefficient of determination

Generalizing the concept of R2 from the general linear multiple regression model to the

context of a mixed model is not straightforward and there is not yet a consensus in the

literature as to which of the proposed measures should be used to assess the goodness of

fit of a linear mixed model. One of those measures is the one of Magee (1990)

R2
LR = 1− exp

(
− 2

n
(logLM − logL0)

)
(4.48)

where logLM is the maximum log-likelihood of the model of interest M and logL0 is the

maximum log-likelihood of the null model, i.e, the model with only the intercept.

This measure was compared with several others by Sun (2006) in the context of also

several linear mixed models, one of which the genetic association model proposed by Yu

et al. (2006). They used a maize and an Arabidopsis data set in their comparisons and

concluded that (4.48) was the most useful R2-type statistic and the one that made more

sense amongst all the R2 proposals studied. Kramer (2005), also advised its use as a

measure of goodness of fit of the model to the data since it is available in most software

and is also easily calculated. A recent review on the theme can be seen e.g, in Edwards

et al. (2008) where, besides presenting a new approach, he also reviews, among others,

the proposals of Snijders and Bosker (1994), Vonesh and Chinchilli (1997), Zheng (2000),

Xu (2003), Kramer (2005), Gelman and Pardoe (2006).

A robust version of this measure may be taken plugging in (4.48) the robust estimates

of β, σ2 and Φ∗ obtained as described in the previous sections and replacing n in the

formula by the weight sum obtained from the robust linear mixed model regression.





As far as the laws of mathematics refer to reality, they are not certain,

and as far as they are certain, they do not refer to reality.

Albert Einstein

5
Simulation study I

The main goal of this chapter is to compare the robust approach with the classic method-

ology, both described in Chapter 4, the latter being commonly used in genetic association

studies, and two other non-parametric methods. Namely, the non-parametric method

proposed by McKean et al. (2009) and the usual rank-transform (RT) method which con-

sists on transforming the observed phenotypes to their ranks and consider these values as

the response variable in the classic linear regression model.

It is our intention to show that, free from the simulation burden they once were

victims of, the use of robust methods now have their own place also in the context of

genetic association studies to which they can be a much valuable asset.

This chapter consists of 5 sections. First, the simulation model is introduced (Section

5.1). Next the simulation model’s parameters are chosen (Section 5.2). We then discuss

the simulation settings (Section 5.3), present the results (Section 5.4) and end with a brief

discussion (Section 5.5).
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5.1 The simulation model

The model from which the data to use in the comparative analysis was simulated, is the

one proposed by Liu (1997). This model is not completely specified by Liu in his book

but one can find the necessary information to complete the model’s specification in Wu

et al. (2007). The simulation model will be briefly described below.

We simulate N biallelic genes on one pair of chromosomes of an F2 population (see

Section 2.4.1). We start by simulating the genotype for the first gene. Afterwards,

each new gene genotype is simulated based on the previous gene genotype, assuming

no crossover interference and a recombination fraction r between both genes, randomly

taken from the uniform distribution, U(0, 0.5) (see Liu, 1997 and Section 2.4.1 for further

details on the simulation of an F2 population genotype). This one gene at a time type

of data simulation is easier than the joint approach where there may be a large number

of possible genotypes to consider. E.g, for N biallelic genes there would be 3N possible

genotypes.

If a quantitative trait is assumed to be controlled by a number N of genes, without

epistatic interactions1, it can be simulated by

yj = µ+
N∑
i=1

(
aix(2i−1)j + dix(2i)j

)
+ εj, (5.1)

where yj is the trait value for the j-th individual in the population, (x(2i−1)j, x(2i)j) are

the dummy variables associated to the additive and dominance effects for the N genes,

respectively, (ai, di) are the additive and dominance effects for each gene, µ is the overall

mean for the trait and εj is the random error for the j-th individual, j = 1, . . . , n.

The dummy variables are coded (x(2i−1)j, x(2i)j) = (1, 0), (x(2i−1)j, x(2i)j) = (0, 1), and

(x(2i−1)j, x(2i)j) = (−1, 0), for genotypes AA, Aa and aa, respectively. In order to use

(5.1), we need to specify some parameters underlying the simulation model. These are:

Heritability (broad sense). See Section 2.4.2 for more detail. From equation (2.4)

and for a certain value of H2 (6= 0, 1) we have the relations

σ2
G =

H2σ2
e

1−H2
and σ2

e =
(1−H2)σ2

G

H2
. (5.2)

Genetic, additive and dominance variances. The genetic variance can be de-

1Without epistatic interactions means that the effect of one gene is not conditioned by the effect of
another. This is the same as “no interaction” in statistical terminology.
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composed as σ2
G = σ2

A + σ2
D, where σ2

A and σ2
D are the additive and dominance variances

respectively. Under model (5.1) the additive and dominance variances between genes are

given by (see Wu et al., 2007)

σ2
A =

1

2

N∑
i=1

a2
i +

1

2

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)aiaj

σ2
D =

1

4

N∑
i=1

d2
i +

1

4

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)
2didj

(5.3)

where rij represents the recombination fraction between genes i and j.

From the genotype data simulation, the values of r1, . . . , rN−1 coincide with the values

of r12, r23, . . . , r(N−1)N . We also have rii = 0 ∀i.

In order to obtain the remaining values of the recombination fractions between genes,

and since recombination fractions are not additive, r1, . . . , rN−1 can be converted to map

distances d∗1, . . . , d
∗
N−1 via Kosambi’s or Haldane’s map function. Map distances are addi-

tive so, with the values of d∗1, . . . , d
∗
N−1, the distances between all genes can be calculated

and through the inverse process the recombination fractions between all genes can thus

be obtained (see Liu, 1997, for further detail).

The relative importance of the additive and dominance variances can be quantified by

their ratio and so we may consider, for simulation purposes, σ2
D/σ

2
A = t and write

σ2
A = σ2

G

1

t+ 1

σ2
D = σ2

G

t

t+ 1

(5.4)

Additive and dominance effects. Assuming the relative sizes of the effects to be

given by ki = ai/a1 = di/d1, i = 1, . . . , N , the additive and dominance effects can be

obtained from (5.3) in the following way (derivation for σ2
D is analogous):

σ2
A =

1

2

N∑
i=1

a2
i +

1

2

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)aiaj =
a2

1

a2
1

[1

2

N∑
i=1

a2
i +

1

2

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)aiaj

]
=

= a2
1

[1

2

N∑
i=1

a2
i

a2
1

+
1

2

N∑
i=1

N∑
j=1
j 6=i

(1−2rij)
aiaj
a2

1

]
=

ki=
ai
a1

a2
1

[1

2

N∑
i=1

k2
i +

1

2

N∑
i=1

N∑
j=1
j 6=i

(1−2rij)kikj

]
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⇒ a1 =

√√√√√σ2
A/
(1

2

N∑
i=1

k2
i +

1

2

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)kikj

)

and therefore we have the equalities



a1 =

√√√√√σ2
A/
(1

2

N∑
i=1

k2
i +

1

2

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)kikj

)
ai = a1ki, i = 2, . . . , N

d1 =

√√√√√σ2
D/
(1

4

N∑
i=1

k2
i +

1

4

N∑
i=1

N∑
j=1
j 6=i

(1− 2rij)2kikj

)
di = d1ki, i = 2, . . . , N

. (5.5)

For a fixed value of H and σ2
G = 1, and using equation (5.2), we have εj = zσe =

z
√

(1−H2)/H2 for each individual j = 1, . . . , n, where z is a random observation from

the N(0, 1) distribution. Finally, for a fixed value of t, the additive and dominance

variances can be calculated from (5.4) and from there all the additive and dominance

effects (5.5). The quantitative trait is then simulated for the n individuals.

The R language was used to implement the model.

5.2 Choosing the simulation model’s parameters

The aim of this simulation study is to compare the performance of classic, robust and two

non-parametric approaches in genetic association studies, i.e, in association tests between

a quantitative trait and several genetic markers, more precisely, SNPs. At this point we

should underline the fact that SNPs are biallelic with alleles A and T or C and G and this

is the reason why the model described in the previous section can be used to simulate a

quantitative trait from SNP data.

For that purpose we first need to simulate the data sets with which to perform the

comparative analysis. We must therefore, decide which parameters to use in model (5.1).

The idea is to have simulation settings with appropriate size, where the classic tests

have the best behavior possible, i.e, uniform p-value distribution under the null and high
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power to detect global and individual SNP/trait associations when such exist.

We started out by making a few experiments with the parameters on a 2 SNP model,

observing p-value distribution under the null and test power under the alternative hy-

pothesis. We randomly fixed µ = 50 and t = 0.6. Also, we considered H2 = 0.3 since

quantitative traits variation is only shortly explained by genetic factors. We varied the

number of individuals n, the recombination fraction between SNPs r and the relative sizes

of the effects k. Association tests were run 10000 times and the conservative Bonferroni

correction was used. The goal is to choose fixed values for these parameters.

Table 5.1: Classic POWER (%) obtained from simulation under H1 without outliers,
for the global test of association in the 2 SNP simulation model, for several values of
the recombination fraction, r, relative additive and dominance effects, k, and number of
individuals, n.

r k SNP1 SNP2
n=200 n=350 n=500 n=200 n=350 n=500

k1 = 1, k2 = 1/1 > 70 > 90 ' 100 > 70 > 90 ' 100
0.1 k1 = 1, k2 = 1/2 > 90 ' 100 100 > 30 > 55 > 75

k1 = 1, k2 = 1/3 > 95 ' 100 100 > 15 > 30 > 45
k1 = 1, k2 = 1/5 ' 100 100 100 > 5 > 10 > 15
k1 = 1, k2 = 1/1 > 95 ' 100 100 > 95 ' 100 100

0.2 k1 = 1, k2 = 1/2 ' 100 100 100 > 60 > 85 > 95
k1 = 1, k2 = 1/3 ' 100 100 100 > 30 > 60 > 75
k1 = 1, k2 = 1/5 ' 100 100 100 > 10 > 25 > 35
k1 = 1, k2 = 1/1 100 100 100 ' 100 100 100

0.3 k1 = 1, k2 = 1/2 100 100 100 > 75 > 95 100
k1 = 1, k2 = 1/3 100 100 100 > 45 > 75 > 90
k1 = 1, k2 = 1/5 100 100 100 > 15 > 30 > 45
k1 = 1, k2 = 1/1 100 100 100 100 100 100

0.4 k1 = 1, k2 = 1/2 100 100 100 > 85 ' 100 ' 100
k1 = 1, k2 = 1/3 100 100 100 > 55 > 80 > 90
k1 = 1, k2 = 1/5 100 100 100 > 20 > 35 > 55
k1 = 1, k2 = 1/1 100 100 100 100 100 100

0.5 k1 = 1, k2 = 1/2 100 100 100 > 90 ' 100 100
k1 = 1, k2 = 1/3 100 100 100 > 55 > 85 > 95
k1 = 1, k2 = 1/5 100 100 100 > 20 > 40 > 55

We observed that p-value distribution under the null was uniform for all parameter

settings tested for both global and individual SNP/trait tests. As to the tests under the

alternative hypothesis, results concerning the power of the tests can be seen in Table 5.1.

From that table it follows, as expected, that power increases:

1. when the number of individuals, n, increases;

2. with the increase of the recombination fraction r;
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3. when k2 → k1 = 1.

Other interesting observations are:

1. The gain in power with the increase of the number of individuals is greater when we

increase from 200 to 350 individuals than when we increase from 350 to 500. This is

not strange since we can increase power by increasing the number of individuals but

only up to a limit, i.e, up to a point from where increasing the number of individuals

in the experiment is then unjustified.

2. When both SNPs have the same effect on trait variation (k1 = k2) and recombination

fraction is greater or equal than 0.3, the association detection between them and

the quantitative trait is 100%. When r < 0.3 power is still good enough, i.e, it stays

over 70%.

3. Despite the number of individuals and the value of the recombination fraction,

power drops dramatically in the detection of association regarding SNP2 when its

contribution to the trait value is 1/5 of that of SNP1. Even in the best scenario,

i.e, with r = 0.5, it stays merely above 55%.

Since we are interested in selecting the settings that provided an uniform distribution

under the null (they all did) and gave more power under the alternative hypothesis, it

seems appropriate to take r = 0.5, which assures the independence of the SNPs thus

avoiding any collinearity issues regarding the specification matrix of the regression model,

and n = 500. As to k, although the situation k1 = k2 = 1 presented itself as the most

powerful, it is most unlikely that two genes/SNPs contribute exactly in the same amount

to a trait value and so we have decided to take k1 = 1 and ki out of an uniform distribution

U(0.8, 1), with i = 2, ..., N , N being the number of SNPs in the model. In this way we

assure that the SNPs have an important though unequal contribution to the trait value.

Finally, with these fixed parameters, we enlarged our experiment to the situation

where we have N = 2, 3, 4, 5 and 10 SNPs in order to asses the decrease in power with the

increase in the number of SNPs to be simultaneously tested. The global tests detected

association with 100% power in all settings. Moreover, the minimum individual SNP/trait

test power observed was in the 10 SNP model with a reasonably value of over 75%.
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5.3 Simulation settings

From the exploratory analysis made in the previous section we have the following fixed

parameters: H2 = 0.3, t = 0.6, µ = 50, n = 500. Also, we considered the relative additive

and dominance effects of the genes ki ∼ U(0.8, 1), i = 2, . . . , N so that in this way every

SNP in the model would have an important, though unequal, contribution to the trait

value.

Additionally, for the purpose of the simulation, we considered independent SNPs, that

is rij = 0.5 ∀i 6=j. This assures that the SNPs are in HWE and that there is no LD between

pairs of SNPs.

As to the number of SNPs in the model, we took N = 2, 3, 4, 5 and 10. A percentage,

2, 5 and 10%, of data contamination (outliers) was also considered. The contamination

was generated from a normal distribution N(µc, σ
2
c ) where σc was obtained from a uni-

form distribution U(1, 5) and µc from U(80, 90), U(60, 70) and U(55, 60), corresponding,

respectively, to gross, intermediate or smooth contamination. Association tests were run

10000 times.

In order to compare the modeling approaches, one needs first to investigate how they

control the FWER at a pre-specified level. On the other hand a better performance of

one over another means POWER. Hence, we have the following two testing settings:

Under the null hypothesis we looked at three distinct situations:

i. traits were simulated independently from the SNPs genotypes out of a N(50, 1)

distribution;

ii. traits were simulated independently from the SNPs genotypes out of a N(50, 1) and

a percentage of outliers (2, 5 and 10%) was then introduced in the trait values;

iii. a percentage of the traits (98, 95 and 90%) were simulated independently from the

SNPs genotypes, that is under H0, but using the normal contaminant distributions,

whereas the remaining traits (2, 5 and 10%) were generated from model (5.1), that

is under H1.

Under the alternative hypothesis two situations were considered:

i. the traits were simulated according to model (5.1);
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ii. the traits were simulated from model (5.1) and a percentage (2, 5 and 10%) of

outliers, obtained from the normal distributions N(µc, σ
2
c ) previously described, was

introduced.

5.4 Simulation results

We adjusted in R the additive model described in (4.1) via the usual linear regression

(lm()) and the robust linear regression (rlm()) with the M-Huber estimator, in the two

simulation settings described. Function lm() was also used for the RT method, i.e, the

original quantitative traits were replaced by their ranks.

As to the Wilcoxon methodology (WIL) we used the R function wwest() from McKean

et al. (2009).

We then tested for association using the ANOVA table for the usual linear regression

model and RT method, and robust Wald-type tests for the robust model as described in

Chapter 4.

Tests for the WIL approach were obtained from function wwest() also via Wald-type

tests.

SNPs were always tested in a multiple regression framework. We must also underline

that due to the computational effort of the wwest() function, simulations for the WIL

approach ran only 1000 times instead of the 10000.

Figure 5.1: P-value histogram of the global tests for association under H0 in the 10SNP
model. Recall that we only have 1000 observations in the Wilcoxon approach
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We concluded that under the null without contamination, the distribution of the p-

values is, in all cases, approximately U(0, 1)2 (see Figure 5.1) and thus all methods are

comparable, allowing for the use of the same multiple testing corrections.

In the (ii) situation under H0, there were no surprises, i.e., all methods were able to

control the FWER at the 5% level whatever the contamination, gross, intermediate or

smooth. However, in the (iii) situation under H0, we noticed that in the smooth contam-

ination setting, the FWER of the classic approach surpasses 5% most of the times, while

the robust approach always keeps it around that threshold (Table 5.2). This tendency of

the classic approach towards inflated type-I error rates was also observed in the interme-

diate contamination setting and accompanied by the WIL approach also in the smooth

and intermediate contamination settings. As to the RT approach, it only failed to control

for the FWER at the desired level once.

Under H1 (Table 5.3), all methods show very good power to detect association between

the SNPs and the quantitative trait, in the following order: Classical>WIL>Robust>RT,

and with relatively small differences. Even using Bonferroni correction, we had over 99%

power in all methods, up to 5 SNPs, and still over 76% power when we took the model

with 10 SNPs (0% contamination).

With the introduction of contamination, as expected, the power of all methods de-

creases as the contamination level increases. However, the robust method shows much

higher power to detect associations than the classic method (Figure 5.2) and higher power

than the RT approach, being neck to neck with the WIL approach. At the worst scenario,

10 SNPs in association with the trait and 10% gross outliers, the robust method, with

RT and WIL close behind, has a power over 52% to detect those associations, whilst the

usual model stays under 1%. Even in the smooth contamination case, the power of the

classical method is only 23.5% versus over 48% for all the other approaches.

Moreover, we must stress out that there are relevant power losses even in cases where

the residual deviations from normality are not evident. See for example in Table 5.3 the 10

SNP model with 2% smooth contamination, where there is 13% power loss from the classic

approach relative to the robust one but whose residuals do not look different from normal

(see the correspondent residual Q-Q plots in Figure 5.3). There are even situations where

the Shapiro-Francia (SF) normality test3 p-values may go as low as 0.000001 and still the

2Uniformity of the p-value distribution was tested with the R instruction ks.test().
3Available in the R nortest package via instruction sf.test().
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Table 5.2: FWER (in %) obtained from simulation∗ under H0 with a percentage of con-
taminated traits - (iii) setting under H0

∗∗

Cont Model 2SNP 3SNP 4SNP 5SNP 10SNP
2% Classical 4.7 4.8 4.6 4.7 4.5

Robust 5.0 4.8 5.0 5.0 4.8
RT 4.3 5.0 4.9 5.0 4.8

G WIL 5.3 5.4 5.2 5.8 4.3
R 5% Classical 5.0 4.9 5.1 4.7 4.9
O Robust 5.3 4.9 4.8 4.8 5.0
S RT 5.2 4.8 4.7 5.3 5.3
S WIL 5.9 6.1 5.8 4.3 5.2

10% Classical 5.2 5.4 5.2 5.3 5.2
Robust 4.9 4.9 5.1 4.8 4.7

RT 5.3 5.1 4.9 5.1 5.1
WIL 4.9 4.5 5.0 5.3 5.1

2% Classical 5.1 4.9 4.9 4.8 4.8
Robust 5.0 4.8 4.9 4.8 5.0

RT 4.9 4.7 5.0 5.2 4.8
I WIL 5.3 5.7 3.9 4.5 4.3
N 5% Classical 5.6 5.3 5.4 5.3 5.0
T Robust 5.0 4.9 5.0 4.9 4.7
E RT 4.9 5.3 4.8 5.0 5.3
R WIL 5.8 4.6 4.4 4.6 4.5
. 10% Classical 6.2 5.8 5.6 5.7 5.5

Robust 4.8 4.8 5.0 5.0 5.0
RT 5.3 5.2 5.1 4.7 4.8

WIL 6.9 4.5 6.0 5.4 5.7
2% Classical 5.3 5.1 5.1 4.9 5.0

Robust 5.2 5.1 4.9 4.9 5.1
RT 5.1 5.6 5.1 4.8 4.8

S WIL 5.3 5.4 5.1 5.1 4.7
M 5% Classical 5.9 5.6 5.6 5.6 5.0
O Robust 5.1 4.8 5.0 5.1 4.8
O RT 5.1 5.1 5.0 4.9 5.1
T WIL 5.5 4.1 4.4 5.1 5.2
H 10% Classical 7.6 6.9 6.5 6.6 6.0

Robust 5.3 5.1 5.2 5.4 5.2
RT 5.4 5.1 5.3 4.8 4.9

WIL 7.1 5.7 6.3 7.2 5.0
* Results obtained from 10000 simulations except for the WIL method

which ran only a 1000 times;

** Results in bold correspond to cases significantly different from 5%,

according to the binomial exact test at the 5% level.

Q-Q normal plot gives indication of approximate normality (Figure B.4). We emphasize

the fact that this SF p-value of 0.000001 corresponds to a Pearson’s goodness-of-fit4 test

p-value of 0.134 giving no evidence against H0 should this be the normality test used.

We may thus be tempted either to lower the SF threshold upon which we reject the null

hypothesis or to opt by the Pearson’s test at the usual threshold of 5% (or lower!.. see

4Available in the R nortest package via instruction pearson.test().
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Table 5.3: POWER (in %) obtained from simulation under H1 without contamination
and with a percentage of grossly (G), intermediate (I) and smoothly (S) contaminated
traits. (truncated minimum power observed to detect every SNP in the simulation model)

Cont. Model 2SNP 3SNP 4SNP 5SNP 10SNP
None Classical 100 100 99.9 99.7 81.2

Robust 100 100 99.9 99.7 78.2
RT 100 100 100 99.6 76.2

WIL 100 100 99.9 99.5 79.5
2% Classical 62.6 41.1 26.6 15.2 3.4

Robust 100 100 99.9 99.3 75.0
RT 100 100 99.8 98.5 71.0

G WIL 100 100 100 99.7 74.0
R 5% Classical 25.1 12.4 8.5 4.7 1.2
O Robust 100 100 99.9 98.6 61.3
S RT 100 99.9 99.6 97.4 57.6
S WIL 100 100 99.6 97.6 67.7

10% Classical 11.9 5.6 4.0 2.3 0.8
Robust 100 99.7 99.1 92.6 52.6

RT 100 99.3 96.5 92.4 44.5
WIL 100 100 98.7 94.3 51.0

2% Classical 99.1 94.7 86.6 72.8 30.6
Robust 100 100 99.9 99.4 74.6

RT 100 100 99.8 98.5 71.3
I WIL 100 100 100 99.4 74.3
N 5% Classical 86.8 65.2 55.4 38.7 11.0
T Robust 100 99.9 99.8 98.4 62.5
E RT 100 99.9 99.6 97.6 58.1
R WIL 100 99.9 99.8 98.2 65.8
. 10% Classical 59.1 36.2 27.33 16.33 4.9

Robust 100 99.7 99.0 92.4 53.0
RT 100 99.3 97.0 92.0 44.2

WIL 100 100 98.6 93.7 52.2
2% Classical 100 99.9 99.3 95.9 62.2

Robust 100 100 99.9 99.5 75.5
RT 100 100 99.9 98.6 71.9

S WIL 100 99.8 99.9 99.8 73.5
M 5% Classical 99.6 96.8 93.1 82.9 37.1
O Robust 100 99.9 99.8 98.5 63.3
O RT 100 99.9 99.6 97.8 59.6
T WIL 100 100 99.7 98.4 69.1
H 10% Classical 95.6 82.8 75.2 55.4 23.5

Robust 100 99.8 99.2 93.4 55.3
RT 100 99.5 97.3 93.5 48.3

WIL 100 99.8 99.3 95.2 56.9
* Results obtained from 10000 simulations except for the WIL method

which ran only a 1000 times.

Figure B.5). In the latter situation, in 10000 simulations of association tests performed

in the 10 SNP model with 2% smooth contamination, where only models with Pearson’s

p-values between 0.05 and 0.1 were considered, the power loss from the classic approach

relative to the robust counterpart amounted to 11%. This difference in power is likely to
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Table 5.4: Truncated, average number of SNP detected in the simulation underH1 without
contamination and with a percentage of grossly (G), intermediate (I) and smoothly (S)
contaminated traits.

Cont. Model 2SNP 3SNP 4SNP 5SNP 10SNP
None Classical 2 3 3.99 4.99 9.01

Robust 2 3 3.99 4.99 8.80
RT 2 3 4 4.99 8.70

WIL 2 3 3.99 4.99 8.83
2% Classical 1.22 1.04 0.84 0.61 0.17

Robust 2 3 3.99 4.98 8.39
RT 2 3 3.99 4.98 8.20

G WIL 2 3 4 4.99 8.47
R 5% Classical 0.45 0.28 0.18 0.12 0.03
O Robust 2 3 3.99 4.96 7.76
S RT 2 2.99 3.99 4.92 7.20
S WIL 2 3 3.99 4.96 7.88

10% Classical 0.20 0.10 0.06 0.04 0.01
Robust 2 2.99 3.97 4.85 6.30

RT 2 2.99 3.93 4.74 5.46
WIL 2 3 3.97 4.84 6.38

2% Classical 1.98 2.85 3.53 3.92 3.61
Robust 2 3 3.99 4.99 8.40

RT 2 3 3.99 4.98 8.23
I WIL 2 3 3.99 4.99 8.49
N 5% Classical 1.77 2.12 2.20 2.04 1.16
T Robust 2 2.99 3.99 4.96 7.82
E RT 2 2.99 3.99 4.93 7.24
R WIL 2 2.99 3.99 4.97 7.90
. 10% Classical 1.24 1.15 0.93 0.78 0.32

Robust 2 2.99 3.97 4.86 6.33
RT 2 2.99 3.94 4.74 5.46

WIL 2 3 3.98 4.85 6.39
2% Classical 1.99 2.99 3.98 4.89 7.21

Robust 2 3 3.99 4.99 8.42
RT 2 3 3.99 4.98 8.29

S WIL 2 2.99 3.99 4.99 8.50
M 5% Classical 1.99 2.95 3.78 4.41 4.94
O Robust 2 2.99 3.99 4.97 7.89
O RT 2 2.99 3.99 4.94 7.43
T WIL 2 3 3.99 4.97 7.93
H 10% Classical 1.94 2.65 3.09 3.25 2.65

Robust 2 2.99 3.98 4.87 6.61
RT 2 2.99 3.95 4.79 5.81

WIL 2 2.99 3.98 4.87 6.65
* Results obtained from 10000 simulations except for the WIL method

which ran only a 1000 times.

increase as one loosens the threshold for the tests.

In real data example analysis, the authors rarely report a normality test p-value. We

think this happens mostly because there are several available criteria in the literature
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Figure 5.2: Power comparison between classical (in blue) and robust analysis (in black)
from simulation under H1, with and without a % of smooth and gross data contamination,
for the 2, 5 and 10 SNPs models.

and no consensus about the most adequate to use. Most researchers opt to look at the

normal Q-Q plots. In the real data example analyzed in Chapter 7 this procedure was no

exception. Quoting Weber et al. (2008): “Residual plots were examined to determine if

there were any patterns indicating that a transformation was necessary”. In theory, when

such is the case, you may find a normality test that gives you the p-value you need to

accept H0, i.e, evidence not to reject the normality assumption. In the 10000 simulations

for the 10 SNP model with 2% smooth contamination, the SF normality test at the 5%

threshold gave us indication of approximate normality only 5% of the times, fact that

justifies the loss in power from the classical approach to the robust one. Pearson’s test

gave that same evidence 56% of the times. When using a 1% threshold, that evidence

escalated to 72%. This means of course, that one may be confident of one’s analysis

results, and still be incurring in power loss in the detection of possible associations.

To end this line of thought, we must add that, being the SF test the least conservative

of the two normality tests mentioned5, rejecting the normality hypothesis 95% of the times

5We also compared it with Shapiro-Wilks and Lilliefors tests concluding the SF test to be the least
conservative of them all.
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Figure 5.3: Q-Q Plots for the 10 SNP model under H1 with 2% Gross, Intermediate and
Smooth contamination, from one out of the 10000 simulations, for the classic and robust
analysis only.

at a 5% level (in 10000 simulations for the 10 SNP model with 2% smooth contamination),

this test is, if nothing else, a good indicator of data contamination.

If we now analyze Table 5.4, we see that the robust method detects in general more

SNPs than the classical and RT procedures. Although that difference may not look sub-

stantial in the smooth contamination setting, it is quite evident in the 10 SNP simulation

for 5 and 10% gross contamination. If compared to the WIL approach, in the 10 SNP

simulation WIL comes off better than the robust approach but with a maximum difference

of only 0.08.

Table 5.5 shows the results for the 10 SNP simulation scenario. Note that the global

robust test, as well as the RT and WIL global tests, keep a 100% power in all simulation

settings whereas the classical power falls down to 15.21% at the 10% gross contamination

setting.
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Table 5.5: POWER (%) obtained from simulation under H1, without contamination and
with a percentage of contaminated traits for the global test of association in the 10 SNP
simulation model.

Cont. Model Gross Interm. Smooth
0% Classical 100 100 100

Robust 100 100 100
RT 100 100 100

WIL 100 100 100
2% Classical 76.71 100 100

Robust 100 100 100
RT 100 100 100

WIL 100 100 100
5% Classical 32.48 96.54 100

Robust 100 100 100
RT 100 100 100

WIL 100 100 100
10% Classical 15.21 77.24 99.69

Robust 100 100 100
RT 100 100 100

WIL 100 100 100

5.5 Discussion

In the previous Sections we compared the performance of classic, robust and two non-

parametric methodologies in genetic association studies in a particular simulation frame.

We showed that under the null, without contamination, the four methods considered

have control of the FWER at the desired level. We acknowledged not only the tendency of

both the classic and WIL approaches towards inflated type-I error rates, but also that the

robust approach proposed (Huber M-regression plus Wald-type tests to assess association)

is not as sensitive to outlier contamination as the classical approach and is more powerful

than the RT approach to detect SNP/trait associations.

Despite the fact that the WIL approach kept close to the robust methodology in terms

of power, its tendency to inflated type-I error rates and computational issues indicate that

for an association study involving a small number of independent SNPs to be tested (as

in the simulation study), the robust multiple-SNP linear model is preferable over the

remaining approaches.

We conclude this chapter with the belief that the robust methodology is much promis-

ing to genetic association studies of quantitative traits. Therefore we would suggest it

should be used in this context in a regular basis together with the classical methodology

in order to assess and discuss possible arising differences in the results.





Our energy is in proportion to the resistance it meets. We attempt

nothing great but from a sense of the difficulties we have to encounter,

we persevere in nothing great but from a pride in overcoming them.

William Hazlitt

6
Simulation study II

In Section 4.6 we reviewed a proposal of Rice and Spiegelhalter (2006) for outlier detection

via robust residuals, Benjamini and Hochberg FDR and a simple diagnostic plot. They

only studied the case when a single explanatory variable is considered. Here we propose

to study the case of regression outliers in the context of association studies and thus

multiple regression.We do not have in this context problems with outlying observations

in the explanatory variables since they are categorical and will therefore not be concerned

with leverage points, although caution is needed with regression outliers that may be

influential to the analysis on the account of the unbalanced design and/or the complexity

of the model, i.e, the sometimes large number of explanatory variables. Another important

concern will be with the allowed level of swamping. As opposed to association studies

where an FDR of 10% is usually acceptable, in outlier detection, depending on what we

intend to do after detecting the outlying observations, a 10% FDR threshold may be

exaggerate.

The goal of the simulation study in the first section of this Chapter will therefore

be to assess if the control of the FDR in outlier detection, via the proposed approach, is

possible in the context of increasing model complexity and in the presence of smooth data

contamination. Several FDR correction measures proposed in the literature will also be

studied to see if power in detecting true outliers can be improved.

103
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In Section 6.2 we will study how well the robust coefficient of determination reflects the

heritability of a trait, also in the context of a multiple regression model with independent

SNPs.

6.1 False discovery rate control in outlier tests: a

robust approach.

For this study we considered:

1. n = 250, 500 and 750 individuals

2. N = 2, 3, 4, 5, 10, 50 and 100 independent SNPs

3. BH-1995, BH-2000, BY, ST, BKY and Bonferroni corrections (see Algorithms in

Chapter 3) at nominal levels of 0.01, 0.05 and 0.1;

4. data generated from model (5.1) in Chapter 5;

5. trait heritabilities of H2 = 0.3, 0.5 and 0.75;

6. for the outlier tests we used the standardized residuals in equation (4.32) and the

studentized residuals

rRi =
ε̂Ri

σ̂R
√

1− hii
(6.1)

in a robustified version of (4.25);

7. for the robust estimate σ̂R in equations (4.32) and (6.1) we considered the robust

s = MAD and Qn (see equations (4.7) and (4.8) respectively);

8. B = 1000 simulations.

Some results of the simulations will only be displayed in the Appendix B.

I. Simulations considering H2 = 0.3; n = 500.

From Figures 6.1 and 6.2 (also B.6 and B.7) we can see that as the % of contamination

increases the observed values of the FDR decrease, a trend that was also observed in all

other simulations. However it is quite clear the inability of the BH-1995 FDR to control

the FDR at the nominal levels established. Nevertheless, using Qn as a robust estimate

of scale instead of s allows us to grasp that control for models with up to 10 SNPs at
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Table 6.1: Average number of detected true positives corresponding to Figures 6.1 and
6.2 - for the 2% contamination setting only, which amounts to a total of 10 contaminant
observations.

True Outliers
nSNPs s Qn

0.01 0.05 0.1 0.01 0.05 0.1
2 SNPs 5.763 6.575 6.964 5.633 6.464 6.864
3 SNPs 5.656 6.434 6.803 5.493 6.302 6.699
4 SNPs 5.288 6.137 6.487 5.160 6.021 6.373
5 SNPs 5.056 5.857 6.258 4.904 5.737 6.144
10 SNPs 4.409 5.232 5.638 4.277 5.103 5.517

Table 6.2: Average number of detected true positives corresponding to Figures 6.5 and
6.6 - for the 2% contamination setting only, which amounts to a total of 10 contaminant
observations.

True Outliers
nSNPs s Qn

0.01 0.05 0.1 0.01 0.05 0.1
2 SNPs 5.097 5.738 6.019 4.949 5.599 5.909
3 SNPs 4.930 5.598 5.924 4.749 5.478 5.789
4 SNPs 4.550 5.262 5.602 4.410 5.128 5.484
5 SNPs 4.358 5.065 5.375 4.220 4.916 5.237
10 SNPs 3.795 4.439 4.744 3.670 4.301 4.644

a cost of a decrease in the number of true positives detected as shown in Table 6.1. If

we think of the level of equation (3.8) given for models with a more general dependence

structure, then with Qn we achieve that control in models up to 50 SNPs but this is not

an interesting situation given the high number of false positives.

When using the stundentized robust residuals (6.1) instead of the standardized ones

(4.32) the results are pretty much the same (Figures 6.3/B.8 and 6.4/B.9) and therefore

this choice does not appear to compensate the effort of a few more calculations.

When we used the Bonferroni correction the values of the observed FDR dropped when

compared to the ones resulting from the BH-1995 FDR correction (Figures 6.5/B.10 and

6.6/B.11). However, it looks that that control will not be maintained much farther away,

in which case further simulations will be needed to assess the exact point where it is

actually lost. Any way, from Tables 6.1 and 6.2 we can acknowledge that the number of

true outliers detected using Bonferroni correction is lower than the one we obtain with

BH1995. Nevertheless, from the plots we can see that the proportion of observed false

positives in this case, up to a 10 SNP model is near zero, which is a good thing meaning

no swamping effect.
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Results using the robust studentized residuals for the Bonferroni correction (6.1) can

be seen in Figures B.12 and B.13 in Appendix B. As before, there seems to be no particular

advantage in using these residuals for the outlier tests.

First considerations.

Ending this first set of simulations we’re inclined to advise the use of standardized

robust residuals together with the robust estimate of scale Qn for outlier detection since

with this choice, independently of using BH-1995 FDR correction or Bonferroni’s, we

were able to control the FDR at the nominal levels in models up to 10 SNPs, and we

also acknowledged the control of the FDR at levels α(1 + 1
2

+ ... + 1
n
) (equation 3.8) for

models with up to 50 SNPs when using Bonferroni correction. With BH-1995 this was

only verified for α = 0.05 and 0.10.

It also seems evident from these results that if we can improve both the control of

the FDR and the detection of true outliers in models with 2% contamination, then those

improvements will show even better in the other contamination settings of 5 and 10%.

Hence, hereafter we will only worry about the 2% contamination setting.

II. Simulations considering H2 = 0.5, 0.75; n = 500; Qn only; 2% contamination

only.

Let us see what happens to the FDR and number of true positives when H2 varies.

Results for values of H2 = 0.5 and 0.75 are displayed in Figures 6.7-6.10, and also B.14-

B.17. As expected, the control of the FDR at the nominal α levels improves and so does

the number of true positives as the trait heritability increases.

More considerations.

In the simulations we acknowledged that in general it is not possible to control the

FDR in models above 10 SNPs, unless of course we are dealing with a high heritable trait

(Tables 6.8 and 6.10) which is usually not the case of quantitative traits. In models with

10 or less SNPs, using Bonferroni corrected p-values at the nominal levels considered, we

were able to control the FDR at those same levels independently of the trait heritability,

the robust estimate of scale used and of the correction made to the robust residuals.
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Figure 6.7: Observed FDR and True Positives for models with 2, 3, 4, 5, 10, 50 and 100
SNPs, trait heritability H2 = 0.5, 2% of smooth data contamination and robust parameter
of scale Qn. Benjamini and Hochberg (1995) correction used at the nominal levels of 1, 5
and 10%. Outlier tests performed with the robust standardized residuals (4.32). Blue, red

and black lines refer respectively, to the nominal FDR levels of 0.01, 0.05 and 0.1.

Figure 6.8: Observed FDR and True Positives for models with 2, 3, 4, 5, 10, 50 and 100
SNPs, trait heritability H2 = 0.5, 2% of smooth data contamination and robust parameter
of scale Qn. Bonferroni correction used at the nominal levels of 1, 5 and 10%. Outlier tests
performed with the robust standardized residuals (4.32). Blue, red and black lines refer respectively,

to the nominal FDR levels of 0.01, 0.05 and 0.1.
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Figure 6.9: Observed FDR for models with 2, 3, 4, 5, 10, 50 and 100 SNPs, trait heritabil-
ity H2 = 0.75, 2% of smooth data contamination and robust parameter of scale Qn.
Benjamini and Hochberg (1995) correction used at the nominal levels of 1, 5 and 10%.
Outlier tests performed with the robust standardized residuals (4.32). Blue, red and black lines

refer respectively, to the nominal FDR levels of 0.01, 0.05 and 0.1.

Figure 6.10: Observed FDR for models with 2, 3, 4, 5, 10, 50 and 100 SNPs, trait heri-
tability H2 = 0.75, 2% of smooth data contamination and robust parameter of scale Qn.
Bonferroni correction used at the nominal levels of 1, 5 and 10%. Outlier tests performed
with the robust standardized residuals (4.32). Blue, red and black lines refer respectively, to the nominal

FDR levels of 0.01, 0.05 and 0.1.
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Table 6.3: Values of the observed FDR obtained using Bonferroni correction at the nom-
inal levels of α = 0.01, 0.05 and 0.1, with the robust estimate of scale Qn and H2 = 0.3,
for models with n/5/2 independent SNPs.

n n/5 nSNPs α
∑n

i=1 1/i Observed FDR
0.01 0.05 0.1 0.01 0.05 0.1

250 50 25 0.0610 0.3050 0.6101 0.0535 0.1143 0.1713
500 100 50 0.0679 0.3396 0.6793 0.0636 0.1450 0.1967
750 150 75 0.0720 0.3599 0.7198 0.0777 0.1556 0.2166

We have seen this approach to also control the FDR at the level α(1 + 1
2

+ ... + 1
n
)

in all simulations with H2 = 0.3, n = 500 and up to 50 SNPs which is good in a way

but not a solution since this threshold is much higher than the nominal levels of α. Any

way, when we performed the outlier tests with n = 250 and 750 and nSNPs= 25 and

75, respectively, that control was not achieved simultaneously for all nominal levels of

α considered (see Table 6.3 for different values of n) and thus, the hope that we could

control the FDR at that level for models with up to nSNPs≤ n/5/2 did not succeed. We

saw it to be possible only when we take α ≥ 0.05 in which case the observed FDR stayed

over 10%, a percentage not at all acceptable for swamping. When we considered instead

nSNPs≤ n/10/2 then we were able to control the FDR at that threshold simultaneously

for all the α values (see Table 6.4), meaning that if we want to perform outlier tests in

models over 10 and below n/10/2 independent SNPs, using Bonferroni correction with

α = 0.01 could be an option, having the FDR controlled at level 0.01(1 + 1
2

+ ...+ 1
n
).

With the Benjamini and Hochberg FDR we were also able to control the FDR at the

nominal α levels but only when using Qn as the robust scale estimate. Control of the

FDR at levels α(1 + 1
2

+ ...+ 1
n
) as well, was not attained simulaneously for all considered

α values in the simulations with n = 500 for models with 50 SNPs or more (results not

shown) and therefore we cannot assure it in general. Nevertheless, since this approach

got the highest rate of true positives detected it is therefore the one we advise should be

used in these tests when the total of SNPs in the model does not go over 10 and, for the

time being, when ≥ 500 individuals are used in the study.

III. Simulations considering H2 = 0.3; nSNPs= 2, 3, 4, 5, 10 only; Qn only; 2%

contamination; BH-2000, BY, ST, BKY.

It is now time to see if we can improve power while still keeping FDR control at the

nominal levels of α. According to the FDR procedures discussed in Chapter 3, Section

3.2, we have several alternatives to BH-1995 that allow us to increase power, in this case



6.1 False discovery rate control in outlier tests: a robust approach. 113

Table 6.4: Values of the observed FDR obtained using Bonferroni correction at the nom-
inal levels of α = 0.01, 0.05 and 0.1, with the robust estimate of scale Qn and H2 = 0.3,
for models with dn/10/2e independent SNPs.

n n/10 nSNPs α
∑n

i=1 1/i Observed FDR
0.01 0.05 0.1 0.01 0.05 0.1

250 25 13 0.0610 0.3050 0.6101 0.0118 0.0488 0.0751
500 50 25 0.0679 0.3396 0.6793 0.0089 0.0374 0.0618
750 75 38 0.0720 0.3599 0.7198 0.0145 0.0420 0.0677

the number of true positives detected. Four such methods are e.g, the ones of the BH-

2000, BY, ST and BKY. Simulations were made to assess the control of the FDR at the

pre-specified α levels in models with up to 10 SNPs. The number of true outliers was also

recorded in order to provide a comparison of the methods.

From Figure 6.11 we can see that not all methods allowed for the control of the FDR

at the nominal levels of α considered: ST procedure failed its control at the 5% level in

the 10 SNP model; BH-2000 and BKY procedures, both reached the 5% level in the 10

SNP model and BY procedure controlled the FDR way below the nominal levels of α

considered. This could of course be a good thing if the number of true detected outliers

was big, which was not the case. It is not even better than the correspondent results

obtained using Bonferroni correction (compare Tables 6.2 and 6.5).

Among the three FDR controlling methods, the ones of BH-2000 and BKY come up

with more true outliers detected (Figure 6.12). Looking at Table 6.5, it is not clear which

one is best, for their results are quite similar to one another. As to the number of false

negatives observed in each one, they’re also quite close (results not shown). So, we cannot

say which one is actually best either from the number of true outliers detected or the

number of false positives detected point of view. However they both look slightly superior

when compared to the true outliers detected with BH-1995 FDR correction (compare

Tables 6.1 and Table 6.5).

IV. Simulations considering H2 = 0.3; nSNPs= 10; Qn only; 2, 5 and 10% contami-

nation; BH-2000 correction and n = 150, 200, 250, ..., 1000.

We will now perform new simulations with BH-2000 correction varying the number

of individuals and the percentage of contamination. Note that 1000 individuals in a

quantitative trait association study is usually too much, i.e, would be to good to be true!

We usually do not have much more than 500 individuals after quality control has been

made, e.g, individuals with insufficient genotype call rates are usually eliminated from
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Figure 6.11: Observed FDR in models with up to 10 SNPs for several alternatives to the
BH-1995 FDR correction. Blue, red and black lines refer respectively, to the nominal FDR levels of 0.01, 0.05 and

0.1.
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Figure 6.12: Observed number of True Positives in models with up to 10 SNPs for several
alternatives to the BH-1995 FDR correction. Blue, red and black lines refer respectively, to the nominal

FDR levels of 0.01, 0.05 and 0.1.
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Table 6.5: Number of detected true positives corresponding to Figure 6.12 for the three
FDR controlling approaches, where there is a total of 10 outliers.

True Positives
nSNPs 0.01 0.05 0.1

B
H

-2
0
00

2 SNPs 5.644 6.471 6.865
3 SNPs 5.300 6.135 6.528
4 SNPs 5.287 6.146 6.531
5 SNPs 4.974 5.786 6.164
10 SNPs 4.242 5.125 5.553

B
Y

2 SNPs 4.797 5.507 5.820
3 SNPs 4.370 5.151 5.503
4 SNPs 4.352 5.108 5.503
5 SNPs 4.119 4.871 5.159
10 SNPs 3.392 4.093 4.421

B
K

Y

2 SNPs 5.642 6.470 6.866
3 SNPs 5.298 6.134 6.524
4 SNPs 5.287 6.146 6.527
5 SNPs 4.975 5.785 6.164
10 SNPs 4.242 5.123 5.552

the study (Devlin and Roeder, 1999/2001; Zheng et al., 2006). Also, we have started

the simulations at n = 150 because below that value for a 10 SNP model with 2%

contamination it is not possible to control the FDR at the nominal levels (results not

shown).

From the plots in Figure 6.13, we acknowledge the control of the FDR to be possible

only in models with over n = 400 individuals, where an exceedance of less of one per-

centage point is sometimes observed for the nominal levels of α = 0.01 and 0.05. As to

the number of true outliers detected (Figure 6.14) they always keep way below the total

number of outliers in the model. However, from Figure 6.15 we see that when considering

α = 0.1 we manage to detect over half of that total. This situation is not verified for

α = 0.05 as can be seen in the 10% contamination setting in Figure B.18, nor for α = 0.01

(results nor shown). The plots also show that as the level of contamination increases the

control of the FDR begins to be attained earlier in terms of the number of individuals

in the study. At the same time, the number of true detections sees a slight fall but still

keeps above the half number detection for the nominal level α = 0.1.

Final considerations.

To conclude, we advise outlier tests to be conducted in the context of robust multiple

linear regression. Being such, if the total number of SNPs in the model still exceeds 10

independent SNPs, we suggest that outlier tests are performed solely with the SNPs that
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were declared significant in the association tests. This recommendation has to do with

the inability of the evaluated correction measures in controlling the FDR in models above

10 SNPs.

When the total number of significantly declared SNPs from the multiple-SNP analysis

stays above 10, then the user should opt for the Bonferroni correction together with the

robust estimate of scale Qn for the standardized robust residuals, knowing that up to 50

SNPs, for a nominal FDR of α, the FDR is controlled at level α(1 + 1
2

+ ...+ 1
n
). This is

obviously a high price to pay in terms of swamping but is nonetheless an alternative.

Please remember that this results were obtained for a smooth contamination of the

data, which is usually the case where outlier tests have difficulties in distinguishing true

outliers from regular observations. Should the data have been contaminated more dras-

tically, the true number of detections would most certainly be higher. Do not forget as

well that both FDR control and true detection improve as the trait heritability increases,

and that brings us to the next section..

6.2 Coefficient of determination and trait heritability

In the previous section we have established that it is possible to perform outliers tests

with control of the FDR at the usual nominal levels, in models with up to 10 independent

SNPs, with a minimum number of 400 individuals using BH-2000 FDR correction as long

as the trait heritability is ≥ 30% (simulations not made for lower values of H2). We also

saw in this case, that fixing the FDR threshold at 10% we could identify over half the

total of contaminant observations. However we do not always know the value of the trait

heritability and therefore, in this section we will study how well the robust coefficient of

determination reflects the heritability of a trait.

In order to answer that question, we therefore simulated several models with N =

2, 3, 4, 5, 10, 50 and 100 independent SNPs under 0, 2, 5 and 10% smooth contamination

scenarios for trait heritabilities of H2 = 0.1, 0.3, 0.5 and 0.75.

Results presented in Table 6.6 show that under no contamination both measures (see

Section 4.5) approximate the real value of H2 up to the 10 SNP model. Above that, we

see a tendency of the robust measure to inflate the value of the adjusted R2. See for

example in the H2 = 0.1 case the 100 SNP model where the robust R2 overestimates

H2 in approximately 14%, meaning that an adaptive correction should be used in this



6.2 Coefficient of determination and trait heritability 121

Table 6.6: Mean values of the adjusted coefficient of correlation R2
a for all the models

considered in the 1000 simulations with varying heritabilities and percentage of data
smooth contamination - n = 500

Contamination
H2=0.1 0% 2% 5% 10%

classic robust classic robust classic robust classic robust
2 SNPs 0.1012 0.1031 0.0873 0.0991 0.0737 0.0971 0.0581 0.0916
3 SNPs 0.0986 0.1005 0.0870 0.1001 0.0748 0.0961 0.0575 0.0883
4 SNPs 0.0985 0.1011 0.0845 0.0992 0.0742 0.0955 0.0595 0.0886
5 SNPs 0.1018 0.1043 0.0894 0.1001 0.0760 0.0974 0.0596 0.0878
10 SNPs 0.0985 0.1065 0.0905 0.1050 0.0778 0.0999 0.0622 0.0910
50 SNPs 0.1015 0.1482 0.0934 0.1418 0.0850 0.1358 0.0739 0.1283
100 SNPs 0.0997 0.2361 0.0982 0.2343 0.0883 0.2261 0.0790 0.2132
H2=0.3
2 SNPs 0.3015 0.3043 0.2206 0.2995 0.1572 0.2971 0.1040 0.2917
3 SNPs 0.2976 0.2997 0.2208 0.2990 0.1623 0.2954 0.1063 0.2855
4 SNPs 0.2979 0.3001 0.2263 0.2988 0.1612 0.2947 0.1096 0.2854
5 SNPs 0.3021 0.3048 0.2289 0.2997 0.1668 0.2950 0.1120 0.2826
10 SNPs 0.2975 0.3040 0.2344 0.3026 0.1763 0.2960 0.1194 0.2827
50 SNPs 0.2984 0.3369 0.2589 0.3260 0.2145 0.3131 0.1644 0.2892
100 SNPs 0.3008 0.4057 0.2725 0.3960 0.2329 0.3779 0.1879 0.3469
H2=0.5
2 SNPs 0.5011 0.5032 0.3189 0.4987 0.2049 0.4964 0.1244 0.4914
3 SNPs 0.4975 0.4997 0.3204 0.4991 0.2134 0.4965 0.1289 0.4872
4 SNPs 0.4981 0.5006 0.3298 0.4993 0.2119 0.4958 0.1329 0.4875
5 SNPs 0.5015 0.5046 0.3348 0.5003 0.2210 0.4956 0.1369 0.4848
10 SNPs 0.4973 0.5022 0.3465 0.5013 0.2378 0.4959 0.1477 0.4841
50 SNPs 0.5001 0.5260 0.4020 0.5155 0.3156 0.5010 0.2243 0.4727
100 SNPs 0.4988 0.5751 0.4327 0.5624 0.3556 0.5407 0.2707 0.4886
H2=0.75
2 SNPs 0.7504 0.7345 0.4119 0.7322 0.2425 0.7312 0.1383 0.7288
3 SNPs 0.7484 0.7473 0.4154 0.7470 0.2542 0.7458 0.1447 0.7399
4 SNPs 0.7489 0.7508 0.4291 0.7494 0.2525 0.7473 0.1491 0.7421
5 SNPs 0.7505 0.7528 0.4375 0.7503 0.2651 0.7473 0.1544 0.7408
10 SNPs 0.7481 0.7508 0.4576 0.7502 0.2896 0.7475 0.1683 0.7399
50 SNPs 0.7497 0.7626 0.5577 0.7559 0.4119 0.7456 0.2753 0.7240
100 SNPs 0.7492 0.7873 0.6138 0.7774 0.4801 0.7601 0.3465 0.7211

case, whereas the classic adjusted R2 still gives a good approximation (within ±0.0003).

With the introduction of contamination in the data, the classic adjusted coefficient of

determination no longer approximates the trait heritability H2 (see in Table 6.6 the 10%

setting). The robust measure on the other hand, although decreasing with the increase

of contamination, up to 50 SNPs kept around H2± 0.05, the worst situation being in the

H2 = 0.1 case with 50 SNPs. That difference gets higher with high dimensionality as

seen in the no contamination setting. All in all, remembering that a model with 50 SNPs

implies the estimation of 100 + 1 parameters (one for the intercept), results show us that

up to a ratio of n/5 parameters (intercept not included), the robust adjusted R2
a is a good

indicator of the trait heritability.
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Table 6.7: Mean values of the adjusted robust coefficient of correlation R2
a for all the

models considered in the 1000 simulations with varying heritabilities and percentage of
data smooth contamination. Only 20% of the SNPs in the models are in association with
the trait.

n = 500 Contamination
Total SNPs 20% SNPs 0% 2% 5% 10%

H
2

=
0.

1

10 SNPs 2 SNPs 0.1077 0.1043 0.1026 0.0933
15 SNPs 3 SNPs 0.1109 0.1081 0.1035 0.0948
20 SNPs 4 SNPs 0.1154 0.1125 0.1096 0.0094
25 SNPs 5 SNPs 0.1226 0.1175 0.1092 0.1008
50 SNPs 10 SNPs 0.1465 0.1474 0.1341 0.1176
100 SNPs 20 SNPs 0.2293 0.2297 0.2223 0.2128

H
2

=
0.

3

10 SNPs 2 SNPs 0.3084 0.3011 0.2976 0.2860
15 SNPs 3 SNPs 0.3104 0.3048 0.3010 0.2848
20 SNPs 4 SNPs 0.3123 0.3098 0.2985 0.2834
25 SNPs 5 SNPs 0.3169 0.3129 0.3024 0.2804
50 SNPs 10 SNPs 0.3351 0.3273 0.3093 0.2759
100 SNPs 20 SNPs 0.4019 0.3896 0.3613 0.3023

H
2

=
0.

5

10 SNPs 2 SNPs 0.5051 0.4999 0.4967 0.4853
15 SNPs 3 SNPs 0.5087 0.5039 0.4967 0.4839
20 SNPs 4 SNPs 0.5098 0.5049 0.4966 0.4825
25 SNPs 5 SNPs 0.5114 0.5087 0.4993 0.4781
50 SNPs 10 SNPs 0.5252 0.5170 0.5021 0.4694
100 SNPs 20 SNPs 0.5728 0.5580 0.5321 0.4464

H
2

=
0.

75

10 SNPs 2 SNPs 0.7353 0.7328 0.7314 0.7258
15 SNPs 3 SNPs 0.7522 0.7498 0.7454 0.7381
20 SNPs 4 SNPs 0.7551 0.7520 0.7475 0.7388
25 SNPs 5 SNPs 0.7561 0.7545 0.7494 0.7363
50 SNPs 10 SNPs 0.7632 0.7578 0.7490 0.7283
100 SNPs 20 SNPs 0.7864 0.7771 0.7597 0.6977

We must not forget though, that the SNP models considered contained all and only

the SNPs responsible for the trait heritability. But what happens if those SNPs are

among a bigger set of SNPs, e.g, if they represent only a total of 10, 20% of the total

number of SNPs in the model? Do we still get a robust coefficient of determination that

approximates H2?

Tables 6.7 and 6.8 tell us that up to a total of 50 independent SNPs in a model, if

all the SNPs responsible for the trait are amongst them, then the robust coefficient of

determination still approximates the real value of H2, overestimating this parameter with

no more than 5% error (the worst case being the 0% contamination setting in H2 = 0.1).

From Tables 6.6, 6.7 and 6.8 it is also clear that the accuracy of the robust adjusted

R2 improves with the increase of the real trait heritability, being a good approximation
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Table 6.8: Mean values of the adjusted robust coefficient of correlation R2
a for all the

models considered in the 1000 simulations with varying heritabilities and percentage of
data smooth contamination. Only 10% of the SNPs in the models are in association with
the trait.

n = 500 Contamination
Total SNPs 10% SNPs 0% 2% 5% 10%

H
2

=
0.

1 20 SNPs 2 SNPs 0.1154 0.1104 0.1061 0.0957
30 SNPs 3 SNPs 0.1245 0.1240 0.1157 0.1031
40 SNPs 4 SNPs 0.1344 0.1310 0.1218 0.1083
50 SNPs 5 SNPs 0.1453 0.1422 0.1337 0.1204
100 SNPs 10 SNPs 0.2351 0.2254 0.2188 0.2015

H
2

=
0.

3 20 SNPs 2 SNPs 0.3122 0.3072 0.2989 0.2822
30 SNPs 3 SNPs 0.3190 0.3160 0.3048 0.2800
40 SNPs 4 SNPs 0.3271 0.3211 0.3054 0.2753
50 SNPs 5 SNPs 0.3356 0.3276 0.3115 0.2752
100 SNPs 10 SNPs 0.4050 0.3860 0.3579 0.2845

H
2

=
0.

5 20 SNPs 2 SNPs 0.5078 0.5041 0.4971 0.4816
30 SNPs 3 SNPs 0.5138 0.5112 0.5017 0.4793
40 SNPs 4 SNPs 0.5199 0.5149 0.5015 0.4734
50 SNPs 5 SNPs 0.5265 0.5187 0.5043 0.4682
100 SNPs 10 SNPs 0.5749 0.5577 0.5286 0.4393

H
2

=
0.

75 20 SNPs 2 SNPs 0.7353 0.7328 0.7314 0.7258
30 SNPs 3 SNPs 0.7522 0.7498 0.7454 0.7381
40 SNPs 4 SNPs 0.7551 0.7520 0.7475 0.7388
50 SNPs 5 SNPs 0.7561 0.7545 0.7494 0.7363
100 SNPs 10 SNPs 0.7632 0.7578 0.7490 0.7283

even in the 100 SNP model (see values of R2
a in all tables when H2 = 0.75).

Another interesting question would be, what if among a set of SNPs only a few are

responsible for a proportion of the trait variation? Will the robust coefficient of determi-

nation drop by that proportion?

We considered the situation where only half of the SNPs responsible for the trait

variation were present. Results in Table 6.9, as expected, show the coefficient of determi-

nation to drop, but only to a bit less than a half thus still reflecting the amount of genetic

variation that is explained by the causative SNPs that remained in the model. Let’s not

forget that in our simulation model we have considered all the SNPs used to generate

the quantitative trait to contribute unequally but approximately in the same amount to

the trait variation. And this fact explains why we don’t exactly get half the value of the

robust coefficient of determination when we take from the model half of the responsible

SNPs.
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Table 6.9: Mean values of the adjusted robust coefficient of correlation R2
a for all the

models considered in the 1000 simulations with varying heritabilities and percentage of
data smooth contamination. Not all the SNPs in the model were used to generate the
quantitative trait.

n = 500 Contamination
SNPs∗ 0% 2% 5% 10%

H
2

=
0.

1 1 SNPs 0.0433 0.0429 0.0414 0.0395
2 SNPs 0.0457 0.0453 0.0433 0.0403
5 SNPs 0.0527 0.0519 0.0491 0.0452
25 SNPs 0.0714 0.0667 0.0638 0.0608

H
2

=
0.

3 1 SNPs 0.1288 0.1281 0.1262 0.1241
2 SNPs 0.1349 0.1344 0.1316 0.1280
5 SNPs 0.1503 0.1487 0.1451 0.1395
25 SNPs 0.1677 0.1599 0.1530 0.1427

H
2

=
0.

5 1 SNPs 0.2179 0.2171 0.2150 0.2127
2 SNPs 0.2371 0.2364 0.2309 0.2270
5 SNPs 0.2426 0.2418 0.2381 0.2328
25 SNPs 0.2652 0.2601 0.2521 0.2295

H
2

=
0.

75 1 SNPs 0.3746 0.3728 0.3704 0.3680
2 SNPs 0.3614 0.3601 0.3556 0.3506
5 SNPs 0.3626 0.3630 0.3580 0.3522
25 SNPs 0.3859 0.3805 0.3729 0.3478

∗ The quantitative trait was generated with twice the

number of SNPs in the model.

We have thus showed that in the context of robust multiple linear regression where we

have a set of N ≤ 50 independent SNPs, the robust adjusted coefficient of determination

proposed and studied is a good approximation of the proportion of phenotypic variation

that is explained by the genetic variation among individuals. Should one have before hand,

via family based studies or other, an idea as to what is the heritability of the trait under

study, then the difference between the value of the robust coefficient of determination and

the hypothesized trait heritability gives an indication of how much of the trait heritability

was left unexplained, giving us a motif to look for that variability somewhere else in the

species’ genome.



Far better an approximate answer to the right question, which is often

vague, than an exact answer to the wrong question, which can always

be made precise.

John Tukey

7
Example

Zea mays ssp. mays, commonly addressed to as maize or, in many English-speaking

countries, simply as corn, is an important crop species, if not the most important, for

besides feeding the world’s population and livestock, it also provides raw materials for

several industries. One can hardly imagine the use of corn in industry. Not only corn is

in most processed food like hamburgers, soda, doughnuts but also in farmed fish, fruit

wax, sweeteners, ethanol (ethyl alcohol), corn plastic and so forth1. It definitely has the

highest production of any crop in the world and in particular, it plays a central role in all

of US agriculture and food production.

At the diversity level, maize is the crop species presenting more variation in morpho-

logical traits and showing greater extension of DNA polymorphisms: modern maize lines

usually have a SNP every ∼ 100 bp (Tenaillon et al., 2001). Understanding the mecha-

nisms underlying both morphological and genetic diversity of maize is critical for future

plant breeding and of the utmost interest to scientists and plant breeders.

Teosintes are wild growing relatives of maize. Amongst those, Zea mays ssp. parvig-

lumis, or Balsas teosinte (because the largest populations grow in the river Balsas basin

1Out of curiosity, do watch the interview at
http://abcnews.go.com/GMA/OnCall/story?id=4439943page=1 and also the documentary “King
corn” easily found on YouTube.
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in southwestern Mexico), is believed to be maize’s wild ancestor (White and Doebley,

1998; Galinat, 2001; Doebley, 2004). The domestication of maize around 9000 years ago

and the bottlenecks it experienced somewhere in between, first due to the limited pool of

founder plants and afterwards because of artificial selection, reduced the genetic diversity

of maize relative to its ancestor Balsas teosinte (Eyre-Walker et al., 1998; Wright et al.,

2005; Buckler and Stevens, 2006). Two major key questions therefore naturally follow

How natural and artificial selection have shaped the molecular diversity of maize?

and

How does this molecular diversity relate to functional trait variation?

To this purpose, among the certainly many researches in the field, we highlight the

ongoing project “The Genetic Architecture of Maize and Teosinte” (formerly entitled

“Molecular and Functional Diversity in the Maize Genome”)2, funded by the National

Science Foundation, where one of the five proposed goals is to identify genes that control

domestication traits and three key agronomic traits: flowering time, plant height, and

kernel quality. To achieve this goal, populations are being genotyped for SNPs in genes

that putatively control the traits of interest and association genetic studies are being per-

formed to assess if those associations are valid or not and eventually find new associations

worthwhile investigating further. Altogether, data and results obtained from this project

are being released at the project website http://www.panzea.org and are freely available

for download.

In Chapter 5, we saw that the robust methodology presented itself quite promising

for genetic association studies of quantitative traits, although in a very specific setting.

It thus makes sense to now apply it to some real data example, preferably one that has

already been studied in the literature. This is where the “The Genetic Architecture of

Maize and Teosinte” project comes in: we searched the project site for some published

work with correspondent available data set. This Chapter is therefore dedicated to the

replication of the results obtained in the selected paper and confrontation of those results

with the ones obtained when analyzing the data with a robust regression model approach.

7.1 Example data and methodology

As an example of application we downloaded the data of Weber et al. (2008) (see Zhao

et al., 2006, and http://www.panzea.org) on 493 maize plants, with respect to the

2Detailed information on this project can be found at http://www.panzea.org and in Zhao et al.
(2006).
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quantitative trait FERL (length of the female and hermaphroditic portions of the basal-

most ear on the lateral branch), getting information on 61 SNPs from 22 candidate genes

(see data description on Table A.1), chosen based on their possible effects on the trait

under study given their known mutant phenotype in maize or other plants. The goal of

Weber’s work was to determine if major regulatory genes of maize contribute to natural

variation in its wild ancestor Balsas teosinte and follows from previous work (Weber et

al., 2007). We will however restrict ourselves only to the analysis of the quantitative

phenotype FERL.

In that paper, Weber studied the association between these SNPs and this Teosinte

trait, among others, by adjusting the mixed linear model, as presented by Yu et al.

(2006),

y = Pv + Sα + Iu+ e, (7.1)

where y is the vector of phenotypic values3, v is a vector of fixed effects regarding pop-

ulation structure (inferred via PowerMarker - Liu and Muse, 2005), α is the fixed effect

for the candidate SNP, u is a vector of random effects relative to recent coancestry, e a

vector of residuals, P is a matrix of the 10 significant principal components (determined

via EIGENSTRAT - Price et al., 2006), S a vector of the SNP genotypes and I an identity

matrix. The structure assumed for the variances is: var(u) = 2KVg and var(e) = IVR,

where K is the Kinship matrix (generated via PowerMarker), which quantifies the pro-

portion of shared alleles, Vg = θ is the genetic variance and VR = σ2 is the residual

variance. The pertinence of this mixed linear model is justified by the systematic sources

for spurious associations found under the simple model,

y = Sα + e, (7.2)

non uniformity of the p-values and high type-I error rates (Figure 7.1; the correspondent

Q-Q normal plots can be seen in Figure B.19). The adequacy of the full model to test

under the null hypothesis is also clear, with only ≈ 5.4% by chance significant associations

in both the classical and the robust methodologies.

Here, we configured SNP as a numerical covariate, which is the proper way to analyze

this kind of data when testing under the null hypothesis (see Figure 7.2 for the classical

analysis and the correspondent Figure B.20 for the robust analysis).

3In his study, Weber transformed, with a square root, 2 of the 31 phenotypic traits studied after
examining residual plots; FERL was not one of them.
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Figure 7.1: Histograms of the 498 p-values for both simple and full models, in the classical
and robust analysis.

However, when we are not under the null, the codification of SNP as factor is more

adequate in order to capture eventual dominance effects, unless of course the effects in

the model are only additive, which may not always be the case. In these circumstances,

we will therein consider SNP coded as factor. We started by rewriting model (7.1) as

Y ∗ = X∗β + ε∗ (7.3)

where Y ∗ = y, X∗ = Pv+Sα and ε∗ = Iu+e, with var(ε∗) = σ2V , V = K θ
σ2 +I = Kθ0+I

(i.e., we consider θ0 = θ/σ2). When V is known, and is positive semi-definite, taking its

Cholesky decomposition, leads to

Y = Xβ + ε (7.4)

where Y = chol(V )−1Y ∗, X = chol(V )−1X∗, ε = chol(V )−1ε∗ and now var(ε) = σ2I. The

ML estimates of β and σ2 may then easily be obtained.

Usually, the matrix V is unknown and θ0 is estimated by ML, REML or some other

method. We should note that Weber used the SAS Proc Mixed routine with REML, and

we used ML from the R function lmekin() in package kinship, which may justify the

slight differences between both results. Once an estimate of V , V̂ , has been obtained, it



7.2 Single-SNP analysis 129

Figure 7.2: Cumulative distribution of the 498 p-values for both simple and full models,
classical method.

is used in (7.4) so that the estimates of β and σ2 can be calculated.

Inference for the fixed-effects terms, i.e., the tests H0 : Hβ = 0 of q ≤ p fixed-

effects, were conducted by the usual F statistic with degrees of freedom estimated by the

Satterthwaite approximation (as in Weber et al., 2008; see Sections 4.4.1; 4.4.2 and 4.7.2).

7.2 Single-SNP analysis

Following Weber’s analysis, we performed the classical analysis described above for each

of the 61 candidate SNPs with routine lmekin() from the R package kinship (see routine

C.2). The robust analysis was performed with a robustified version of this instruction

(see routine lmekinR() in C.3). This single-SNP analysis allowed for the detection of

9 associations in the classic analysis and 8 in the robust analysis at the 5% level (i.e,

p ≤ 0.05), all associations being significant after correction for multiple testing via FDR

(q ≤ 0.1) - Table 7.1.

In both analysis we have the 6 SNPs identified by Weber. Moreover, with the exception

of zagl1.6, all other detected SNP are common between approaches. Also,

i. from the identified SNP, SNP PZD00073.5 and PZD00073.8 are not independent

since they are in high LD (r2 = 0.6770); all other observed pair-wise-LD is low (r2 ≤
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Table 7.1: Significant SNPs detected at the 5% level and with FDR under 10% in the
single-SNP analysis.

SNP N R2
∗ R2

LR R2
LRa

2a/σ2
P d/a 2a d p-value q-value

zagl1.1 487 0.021 0.103 0.080 0.176 -2.55 1.90 -2.43 0.0057 0.0212
C PZD00073.5 474 0.015 0.107 0.084 0.839 -1.01 9.05 -4.57 0.0069 0.0212
L PZD00006.1 465 0.006 0.114 0.091 0.301 -0.11 3.26 -0.17 0.0083 0.0212
A PZD00022.3 455 0.021 0.112 0.088 0.436 0.87 4.72 2.06 0.0102 0.0212
S PZD00073.8 457 0.017 0.110 0.086 0.934 -0.94 10.20 -4.82 0.0112 0.0212
S te1.3 489 0.010 0.106 0.083 0.422 1.01 4.55 2.29 0.0208 0.0312
I ba1.9 453 0.027 0.104 0.079 0.984 -0.86 10.60 -4.57 0.0267 0.0344
C PZB00049.7 453 0.016 0.100 0.075 0.094 5.08 1.01 2.56 0.0336 0.0378

zagl1.6 490 0.008 0.101 0.079 0.109 3.07 1.18 1.82 0.0499 0.0499
zagl1.1 487 0.120 0.200 0.179 0.139 -3.15 1.50 -2.37 0.0067 0.0169

R PZD00073.5 474 0.030 0.179 0.157 0.834 -1.03 9.00 -4.65 0.0090 0.0169
O PZD00006.1 465 0.057 0.256 0.235 0.279 0.06 3.03 0.09 0.0083 0.0169
B PZD00022.3 455 0.226 0.229 0.207 0.430 0.61 4.66 1.42 0.0092 0.0169
U PZD00073.8 457 0.127 0.206 0.184 0.936 -1.05 10.22 -5.37 0.0106 0.0169
S te1.3 489 0.014 0.281 0.261 0.273 0.96 2.95 1.41 0.0442 0.0201
T ba1.9 453 0.002 0.210 0.187 0.985 -0.79 10.61 -4.21 0.0151 0.0450

PZD00049.7 453 0.046 0.213 0.191 0.052 8.17 0.56 2.72 0.0450 0.0450
N is the number of individuals used in each analysis;

R2
∗ are the R2 values obtained via simple model (7.2) and as in Section 4.5;

R2
LR and R2

LRa
are the unadjusted and adjusted R2 values proposed for the mixed linear model

in Section 4.7.3.

0.02) - we used LD() instruction from the R package genetics for the calculations

(see Table A.2);

ii. only SNP PZD00006.1 shows an additive mode of inheritance (−0.5 < d/a < 0.5);

zagl1.1, zagl1.6 and PZB00049.7 show overdominance (|d/a| > 1.25) and the re-

maining SNPs show partial or complete dominance (0.50 < |d/a| < 1.25);

iii. from the R2
∗ values, which were the ones calculated by Weber et al., we acknowledge

that all individual effects are small, ranging from 0.8% to 2.7% in the classic analysis.

Being true this could mean the marker assayed is not the causative site but is in

LD with the causative site giving an underestimate R2 of the real effect, the trait

may have low heritability or the associations may be due to alleles of small effect.

The robust counterpart in turn, signals SNPs zagl1.1, PZD00022.3 and PZD00073.8

with significant individual effects;

iv. if we look instead at the values of the unadjusted and adjusted R2
LR, we see that all

the SNPs detected in both analysis have larger values of R2.

We additionally performed the Shapiro-Francia (SF) normality test, via the R instruc-

tion sf.test() from package nortest, on both the residuals from the classic and robust

approaches and observed that they all failed the normality assumption (see Table 7.2 and
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residual QQ-plots in Figures B.21 and B.22) showing heavy tails, specially on the left side

of the distribution. Although it is not a pre-requisite in the robust analysis, residual nor-

mality is one of the classical assumptions. This violation indicates that either the classical

analysis normality assumption we have made is not realistic or the model adjusted is not

good. Either way, one should take care with false association detection (possibly the case

of SNP zagl1.6 detected in the classical methodology but not in the robust) and possible

reduction in power.

Table 7.2: Results from the Shapiro-Francia test on the models’ residuals.

SNP Classic Robust
zagl1.1 0.0015 0.0002

PZD00073.5 0.0027 0.0006
PZD00006.1 0.0007 0.0002
PZD00022.3 0.0013 0.0002
PZD00073.8 0.0029 0.0006

te1.3 0.0051 0.0007
ba1.9 0.0014 0.0003

zagl1.6 0.0037 —
PZB00049.7 0.0020 0.0004

To end, we must underline that the quantitative trait “FERL” was the only that

was not transformed to normality by Weber et al.. They argued that the normal Q-Q

plots were approximately normal, therefore not justifying data transformation. If we had

performed the Pearson chi-square normality test instead of the SF test, we too could not

reject the normality assumption for each of these single-SNP analysis. And this happens

because both normality tests differ mainly in the importance they give to the tails of the

distribution, which is higher in the SF test as compared to the Pearson’s.

7.3 Multiple-SNP analysis

It is known that a joint analysis of SNPs may be more adequate whenever we believe the

trait of interest to be controlled by many genes, which is usually the case of quantita-

tive traits, being much more informative than single-SNP analysis (Jannot et al., 2003).

Multiple regression can accommodate many explanatory variables that may somehow be

correlated, allowing us to infer causality where single-SNP analysis did not. It has how-

ever some drawbacks and/or limitations, e.g, the number of explanatory variables must

not be greater than the number of individuals in the sample and the large number of

degrees of freedom usually involved inevitably implicates power loss.

In this particular case, we have a total of 61 SNPs each with either 2 or 3 categories,

and all with missing observations ranging from 0.2% and 9.3%. This means that if we
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consider the model with the 61 SNPs altogether, after eliminating from the model all

observations for which the SNP genotype was not observed, we will end with a p >> n

situation which will derail the regression analysis as it is. One possible solution is to do

data imputation where missing genotypes are replaced by predicted genotypes based on

the genotypes of nearby SNPs (Little and Rubin, 2002; Souverein et al., 2006; Balding,

2006). Another way to circumvent the dimensionality problem would be to do some

previous TagSNP selection (Byng et al., 2003; Stram, 2004; Carlson et al., 2004; Halperin

et al., 2005; Gopalakrishnan and Qin, 2006; He and Zelikovsky, 2006; Nicolas et al., 2006;

Xu et al., 2007) based on some criteria like e.g. LD, before doing the regression analysis,

thus reducing the number of SNPs on the model hopefully enough as not to still have

p >> n.

Since data imputation and TagSNP selection are not the scope of our work, we decided

only to further investigate the SNPs detected in the single-SNP analysis now in a joint

analysis. This procedure is in itself another way of avoiding the p >> n issue, i.e, we

consider for the multiple-SNP analysis only the SNPs that were significant in the single-

SNP analysis.

The multiple-SNP analysis regarding the previously detected SNPs (Table 7.4), after

correcting for multiple testing with the conservative Bonferroni correction (bold p-values),

left us with only two significant SNPs in the classic analysis (PZD0006.1 and PZD00022.3)

and three significant SNPs in the robust analysis (PZD0006.1, PZD00022.3 and ba1.9). If

we consider the FDR at level 10% (bold q-values), as in Weber, then both methods detect

SNPs PZD00006.1, PZD00022.3, ba1.9 and PZB00049.7. The classic analysis additionally

detects SNP zagl1.6. In order to evaluate the models adequacy we plotted the conditional

residuals plots (Figure 7.3), and performed the SF test of normality, verifying, again, the

non-normality of both the classical (p ' 0.034) and the robust residuals (p ' 0.003) at

the 5% level.

The plots in Figure 7.3 also show heavier tails on the left of the distributions (normal

QQ-plots) and the presence of possible outlying observations (conditional residuals plots).

To conclude, we removed the outlying observations identified by the robust analysis

either using a rule of thumb (in this case standardized robust residuals that deviated

more than 3 standard deviations from the mean) or the outlier robust test described in

Section 4.6, where the robust residuals of equation (4.32) were considered with the robust

estimate of scale Qn (equation (4.8)) and the multiple test corrections of Bonferroni and
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Figure 7.3: Conditional residual plots and QQ-normal plots from the multiple-SNP anal-
ysis.

BH-2000 at the 10% level (these choices are supported by the results obtained in the

simulation study of Chapter 6).

In the first situation we identified a total of 8 outliers, namely TAMex0344/0719/0775/

0802/0805/0807/0821/1534. On the other hand, via the robust outlier test, we identified

as outliers only one plant from the previous outlier list using Bonferroni correction and two

using BH-2000. More precisely, TAMex0344 in the first situation and TAMex0344/0775

in the second. This is not a surprising result since we have seen in Chapter 6 that the BH-

2000 has more power in detecting outlying observations while controlling the FDR at the

same time, relative to the use of the Bonferroni correction. We must note however that

the simulations’ conditions are not quite the same as the ones of this study. In particular,

the SNPs in this model are not independent. As mentioned before, SNPs PZD00073.5

and PZD00073.8 are in high LD.

According to the influence diagnostic measures discussed in Chapter 4 we have for the

eight plants the results displayed in Table 7.3. There we observe that plants TAMex0344/

0775/0719 are the only ones among the total of eight that are declared influential by the

three influence measures simultaneously. Also, TAMex0344/0775 are the ones with the
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Table 7.3: Diagnostic measures for the influence of the eight plants identified as outliers
by the rule of thumb. Last column refers to the weights given by the robust analysis.

Plant ID Cook’s Di |DFFITS| |DFBETAS| Weights
TAMex0344 0.0185 0.7193 YES 0.3672
TAMex0719 0.0190 0.7262 YES 0.4309
TAMex0775 0.0170 0.6903 YES 0.3340
TAMex0802 0.0018 0.2208 NO 0.5108
TAMex0805 0.0036 0.3165 YES 0.5211
TAMex0807 0.0103 0.5345 YES 0.4172
TAMex0821 0.0116 0.5648 YES 0.5448
TAMex1534 0.0091 0.5021 YES 0.4251
bold Cook values and |DFFITS| and YES |DFBETAS|, are the ones

that are influent according to the thresholds 4/(n∗ − p), 2
√
p/n∗

and 2/
√
n∗, respectively; p is the number of estimated parameters;

n∗ is the number of plants used in the multiple analysis.

smallest weights given by the robust analysis, meaning our robust outlier test with BH-

2000 correction was able to identify among the plants whose residuals deviated the most

from the bulk, the ones that were highly influencing simultaneously the fitted values, the

estimated parameters and who had the smallest weights. We also observed through the

DFBETAS values, that TAMex0344/0775 are influencing the estimated parameters of 3

SNPs each, whereas TAMex0719 is influencing only 2 SNPs (results not shown). The

weight given by the robust analysis to TAMex0719 is not the third smallest of all. These

two observations may be the reason why TAMex0719 was not declared an outlier in the

robust test.

We then re-ran the classical analysis without those three sets of outliers in each time

(Table 7.4,∗, ∗∗ and ∗∗∗). As an immediate result, we now had p ' 0.9325, p ' 0.0895

and p ' 0.3873 for the SF normality test in the three analysis, respectively. Also, we

can see that SNP zagl1.6 no longer appears as a significant association in any of the new

classic tests of association reinforcing the idea that it was in fact a false positive in the

first classical analysis. Both ∗∗ and ∗∗∗ analysis provided the same results in terms of the

SNPs detected, in a total of four.

It was expected though, that the classical analysis without the outlying observations

would produce the same results as the robust analysis with all observations. However, in
∗, SNP PZB00049.7 now misses significance by merely 0.0092. This happens because the

robust analysis gave the outlying observations weights between 0.36 and 0.55, whereas

the classical approach without the outliers actually corresponds to giving zero weight

to the outliers and one to the remaining observations. Moreover, we have seen in the

simulation study of Chapter 5 that it is sometimes possible to have a residual distribution
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approximately normal, i.e, passing the SF test, and still the classic approach losing power

relative to the robust approach. We thus have reason to believe at this point that SNP

PZB00049.7 may be a false negative of the classical analysis ∗ without outliers, idea that

is corroborated by the results of ∗∗ and ∗∗∗. Furthermore, this situation clearly alerts us

to the danger of removing outlying observations from the data. After all, outliers may

contain some relevant information on the model that should not be disregarded.

To end, if we now take a look at the adjusted R2 values of the multiple-SNP models

in Table 7.4, we see that the robust approach has the highest value of all. So, from this

observation and based on what was said before, we therefore have reasons to believe that

the SNPs identified in the robust analysis should be the ones further investigated for

association with FERL.
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It is not the strongest of the species that survives, nor the most intelligent

that survives. It is the one that is the most adaptable to change.

Charles Darwin

8
Discussion

In this thesis we have reviewed some basics of genetics, the multiple testing issue arising

from the simultaneous test of a high number of null hypothesis, the classical method-

ology approach used in genetic association studies of quantitative traits and the robust

counterpart we proposed to be used in this particular context (Chapters 2, 3 and 4).

In Chapter 5 we compared the performance of the usual approach with the robust

methodology proposed and two other literature suggestions, more precisely, two non-

parametric methods, in genetic association studies of quantitative traits under a specific

frame, when the normality assumption is violated. We acknowledged that the robust

approach was not as sensitive to outlier contamination as the classical one, having greater

power to detect SNP/trait associations while still controlling the FWER. Moreover, we

alerted to the danger of conducting the classical analysis even when the residuals distri-

bution looks approximately normal, since in one of the simulation settings studied, results

revealed a 13% power loss of the classical approach relative to the robust. For one reason

or another, the other two studied methodologies did not compete with the performance

of the robust suggested methodology.

The results obtained in this chapter clearly indicate that for an association study

involving a not very large number of independent SNPs to be tested (p << n), the
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robust multiple-SNP linear model is preferable over the classical linear model, assuring the

investigator that the outliers that may or not be in the data, and therefore disturbing or

not the residuals’ distribution, will not translate into false negatives and biased estimates

for the model’s parameters.

Chapter 6 took us to another much discussed problem in the literature which concerns

the identification of regression outliers. In the literature, we have seen outlier detection

being made, among other strategies, via robust residuals but always in models with only

one explanatory variable. In genetic association studies of quantitative traits, I would dare

say, we never have models with just a single explanatory variable! It seemed therefore

compelling that an exploratory study was made in this area to assess the ability of the

robust outlier tests in detecting outlying observations when model complexity increases.

Moreover, since there are usually hundreds of individuals in an association study, adds

to this problem the one of multiple testing, presenting therefore a wonderful opportunity

of integrating robust outlier tests with multiple testing corrections with the goal of FDR

control and power increase. This intent was not accomplished in full, although we saw

Benjamini and Hochberg adaptive correction to control the FDR in models with up to 10

independent SNPs while warranting over half of the outliers in the data detected when a

10% threshold was used.

In this chapter we also acknowledged the ability of the robust coefficient of deter-

mination proposed in reflecting the proportion of phenotypic variation that is actually

explained by the genetic variation among individuals, i.e, in reflecting the trait heritabil-

ity. This aspect of the analysis is quite important, among other things, for prediction

purposes, although this it was not part of the thesis scope. In the ambit of our work, it

can be of paramount importance for the outlier tests, since we have seen FDR control

and true outlier detection increase with the increase of the trait heritability.

In Chapter 7 we applied both the classical and the robust methodologies to a pub-

lished real data set. This data set was not in the conditions of the simulation study

and was therefore treated accordingly. Results from both analysis showed the presence

of outliers and therefore the non-normality of residuals which is known to compromise

the results of the classical approach. Having these outliers removed using three different

criteria and re-running the classical analysis for those new three data sets, given the vari-

ability of the classical approach in detecting and non-detecting SNP/trait associations,

the robust methodology again proved to be more adequate, a fact that strengthens our

belief against removing outlying observations on statistical grounds alone. These results
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together with the simulation study of Chapter 5, were recently published by Lourenço,

Pires and Kirst (2011) which certifies the importance of bringing to the area of research

of genetic association studies, methods able to circumvent the handicaps of traditional

methodologies.

Log-transforming the data, or any other suitable transformation, should not be pre-

ferred over a good robust model since it may be difficult to find and/or raise interpretation

problems.

Most genetic association studies of quantitative traits in plants and animals are on

economically important traits. For this reason, too many false positive associations and

few or no true associations detected incur in time and money losses. It is therefore

unquestionable the need for a good compromise between the number of true and spurious

associations. That compromise can only be successfully achieved if we indulge ourselves

in the search for more and more robust methods and more effective multiple testing

correction procedures and we believe that this work, away from being finished, enlightens

a new pathway in achieving that goal.

Future/Ongoing Work.

In Chapter 4 we briefly reviewed the coefficient of determination in the general multiple

regression model and in the context of a mixed model. We became aware of the difficulties

in extending the valuable R2 statistic from the linear univariate model to the linear

mixed model, in part because the new version of R2 now should account not only for the

proportion of variation in the response variable that is explained by the fixed effects but

also by the random effects. The bottom line is that there seems to be no general definition

for R2 for mixed models that will cover every model.

In the work of Edwards et al. (2008) a proposal based on the F-test in equation (4.44)

has been made to measure association for fixed effects in the linear mixed model. They

compared their R2 proposal for different methods of estimation of the degrees of freedom

ν, in terms of intercept, fixed effects and covariance estimation, concluding the Kenward-

Roger approximation to be the best choice in this case. It would thus be interesting to see

the performance of this proposal when robust estimates of β, σ2 and Φ∗ are plugged in,

making this an open issue for future work since it clearly stays in the interest of genetic

association studies where mixed models are currently being used to test for association

between a set of genotyped SNPs and a quantitative trait.
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In Chapter 6 we have discussed multiple testing corrections for robust outlier tests.

We have seen that, in general, we are able to control the FDR at the usual nominal

levels for several correction measures in models up to 10 SNPs, therefore minimizing

swamping. However, the number of true associations detected stayed a bit over half the

total of outliers introduced in the data, when using a 10% threshold, leaving us with an

obviously high level of masking. In our opinion, a new more powerful correction measure

not prejudicing FDR control and which accounts for the complexity of the model and

not just the total number of tests being made should be investigated further. There is

for example the recent work of Hekimoglu and Erenoglu (2009) where the performance of

Huber’s M-estimation for the detection of outliers is increased via reducing the weights of

some observations. They showed the performance of their proposed approach to be high

especially for small magnitude outliers, situation that is prone to masking and swamping.

For that reason, this line of thought certainly deserves our attention. Outliers that are

not mere errors are far too important to be simply disregarded. Either way, given the

importance of the results already obtained in this chapter a paper is already underway.

In the data analysis example (Chapter 7) we did not use REML but a derivative-free

ML methodology to estimate the variance-covariance matrix V , via our robustified version

of lmekin() function from the R package kinship. This was due to the impossibility of

incorporating the kinship matrix K in the available R functions for mixed linear models,

e.g, lme() and lmer() (Pinheiro and Bates, 2000). We did find an R package that

allows for this and that uses REML, the ASReml package. However this R package is

not free. We believe results in the estimation of V can be improved with the use of

a robustified REML methodology together with the Kenward-Roger approximation for

the degrees of freedom of the F test statistic (Kenward and Roger, 1997) in detriment

of the Satterthwaite approximation used by Weber (Schaalje et al, 2001; Padilla and

Algina, 2004; Spike et al, 2004 and 2005; Alnosaier, 2007) unless of-course the data

is balanced in which case both approximations yield similar results, the Satterthwaite

approximation being computationally less demanding. This clearly leaves us with an

open topic for future work where the analysis of the work of Graser et al. (1987), where

a derivative-free REML approach for the estimation of variance components in animal

models is proposed, could be a good starting point together with the book of Searle et al.

(1992) on variance components, where both ML and REML methodologies are discussed

for balanced and unbalanced data. Also in this chapter, we have used the BH-1995

FDR at 10% level to assess significance of associations as done in Weber et al. (2008).

However, in the context of genetic association studies permutation/bootstrap p-values

could be investigated. There are already some robust approaches in the literature, e.g,
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the robust bootstrap: Salibian-Barrera and Zamar, 2002/2004; Salibian-Barrera, 2005.

In the latter paper, Salibian-Barrera studies the estimation of p-values for robust tests in

the linear regression model but focusing only on score-type tests. The author states that

his approach can be extended to e.g, Wald-type tests and so this leaves us with another

window of opportunity.

There are suggested semi-parametric methods in literature for association studies (e.g,

Zhang et al., 2003; Li et al., 2008). In a near future we are sure many more will come up.

A comparison between these and robust methods is always of high interest. However, in

our case it will make more sense after we have improved the methodology discussed in

this work with, for example, the ideas presented in the previous paragraphs.

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end

of the beginning.

Winston Churchill
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Table A.1: Candidade genes for the quantitative phenotype FERL.

Gene Gene symbol Num SNPs Genotyped SNPs
another ear an1 1 an1.4

teosinte branched tb1 4

PZD00062.2
tb1.18
tb1.19
tb1.5

indeterminate growth id1 2
PZD00068.1
PZD00068.3

indeterminate spikelet1 ids 3
PZD00069.2
PZD00069.4
PZD00069.5

zea floricaula leafy2 zfl2 1 zfl2.6
aberrant phyllotaxy abph1 1 abph1.20

zea apetala homolog1 zap1 4

zap1.2
PZD00022.1
PZD00022.3
PZD00022.4

barren stalk ba1 3
ba1.6
ba1.9

PZD00078.2

terminal ear1 te1 5

PZD00006.1
PZD00007.1
PZD00008.3

te1.3
te1.4

ramosa2 ra2 3
Ra2−ORF.2
Ra2−ORF.4

Ra2−promoter.3
zea mays MADS19 zmm19 1 PZD00030.5

fasciated ear2 fea2 4

Fea2.5
PZD00067

PZD00067.2
PZD00067.3

teosinte glume architecture1 tga1 1 PZD00009.5

thick tassel dwarf1 td1 2
PZB01115.5
PZB01115.6

ramosa1 ra1 4

PZD00073.5
PZD00073.8
PZB00175.1
PZB00175.3

ramosa3 ra3 1 PZB01238.5

zea mays MADS1 zagl1 8

PZD00019.1
PZD00020.2
PZD00020.3
PZD00020.4
PZD00021.2
PZD00021.5

zagl1.1
zagl1.6

AZM4− 91097 AZM4− 91097 2
PZB01110.2
PZB01110.3

AZM4− 116423
AZM4− 116423

2
PZB01111.6
PZB01111.8

zea centroradialis zen1 3
zen1.1
zen1.2
zen1.4

zea mays gigantea ZmGI 3
PZB00049.2
PZB00049.4
PZB00049.7

BM660811 BM660811 3
PZB00092.4
PZB00229.3
PZB00229.4
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Figure B.4: Q-Q Normal plots of residuals from the 10 SNP model association analy-
sis with 2% smooth contamination, with SF p-values of 0.00001, 0.00003 and 0.00045,
respectively, corresponding to Pearson p-values of 0.134, 0.256 and 0.379.

Figure B.5: Q-Q Normal plots of residuals from the 10 SNP model association analysis
with 2% smooth contamination, with Pearson p-values of 0.0249 and 0.0352 corresponding
to SF p-values of 0.000001 and 0.0009, respectively.
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Figure B.14: Observed FDR and True Positives for models with 2, 3, 4, 5, 10, 50 and 100
SNPs, trait heritability H2 = 0.5, 2% of smooth data contamination and robust parameter
of scale s. BH-1995 correction used at the nominal levels of 1, 5 and 10%. Outlier tests
performed with the robust standardized residuals (4.32). Blue, red and black lines refer respectively,

to the nominal FDR levels of 0.01, 0.05 and 0.1.

Figure B.15: Observed FDR and True Positives for models with 2, 3, 4, 5, 10, 50 and 100
SNPs, trait heritability H2 = 0.5, 2% of smooth data contamination and robust parameter
of scale s. Bonferroni correction used at the nominal levels of 1, 5 and 10%. Outlier tests
performed with the robust standardized residuals (4.32). Blue, red and black lines refer respectively,

to the nominal FDR levels of 0.01, 0.05 and 0.1.
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Figure B.16: Observed FDR and True Positives for models with 2, 3, 4, 5, 10, 50 and 100
SNPs, trait heritability H2 = 0.75, 2% of smooth data contamination and robust parame-
ter of scale s. BH-1995 correction used at the nominal levels of 1, 5 and 10%. Outlier tests
performed with the robust standardized residuals (4.32). Blue, red and black lines refer respectively,

to the nominal FDR levels of 0.01, 0.05 and 0.1.

Figure B.17: Observed FDR True Positives for models with 2, 3, 4, 5, 10, 50 and 100 SNPs,
trait heritability H2 = 0.75, 2% of smooth data contamination and robust parameter of
scale s. Bonferroni correction used at the nominal levels of 1, 5 and 10%. Outlier tests
performed with the robust standardized residuals (4.32). Blue, red and black lines refer respectively,

to the nominal FDR levels of 0.01, 0.05 and 0.1.
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Figure B.19: Cumulative distribution of the 498 p-values for both simple and full models,
in the classical and robust analysis.
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Figure B.20: Cumulative distribution of the 498 p-values for both simple and full models
- robust methodology.
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Figure B.21: QQ-normal residual plots from the classic single-SNP analysis.
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Figure B.22: QQ-normal residual plots from the robust single-SNP analysis.
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C.1 R code for the phones data example on Section

4.6

library(MASS); library(GenABEL)

data(phones); attach(phones)

modeloR<-rlm(calls~year)

modelo<-lm(calls~year)

diagnost<-ls.diag(modelo)

p<- 2*pnorm(-abs(diagnost$std.res))

pR<- 2*pnorm(-abs(modeloR$residuals)/modeloR$s)

a<-qvaluebh95(p)$qvalue; aR<-qvaluebh95(pR)$qvalue

op <- par(mfrow=c(1, 2))

plot(year,calls,main="classical plot")

lines(year,200*a,type="o",col=4,pch=16)

abline(modelo,lwd=1,lty=2)

abline(20,0,col=3,lty=3,lwd=2)

plot(year,calls,main="robust plot")

lines(year,200*aR,type="o",col=4,pch=16)

abline(modeloR,lwd=1,lty=2)

abline(20,0,col=3,lty=3,lwd=2)
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C.2 Description of the R lmekin routine

lmekin<-function (fixed, data = parent.frame(), random, varlist =

NULL, variance, sparse = c(20, 0.05), rescale = T, pdcheck = T,

subset, weight, na.action) {

call <- match.call()

m <- match.call(expand.dots = FALSE)

temp <- c("", "data", "weights", "subset", "na.action")

m <- m[match(temp, names(m), nomatch = 0)]

if (missing(variance))

theta <- NULL

else theta <- variance

reSt <- reStruct(random, REML = F, data = NULL)

gform <- getGroupsFormula(reSt)

if (is.null(gform)) {

temp.fixed <- fixed

gvars <- NULL

}

else {

gvars <- all.vars(random)

fvars <- all.vars(formula)

gvars <- gvars[is.na(match(gvars, fvars))]

temp.fixed <- paste(deparse(as.vector(fixed)), collapse = "")

temp.fixed <- paste(temp.fixed, paste(gvars, collapse = "+"),

sep = "+")

temp.fixed <- as.formula(temp.fixed)

}

m$formula <- temp.fixed

m[[1]] <- as.name("model.frame")

m <- eval(m, sys.parent())

Terms <- terms(fixed)

X <- model.matrix(Terms, m)

Y <- model.extract(m, "response")

n <- length(Y)

weights <- model.extract(m, "weights")

offset <- attr(Terms, "offset")

tt <- length(offset)

offset <- if (tt == 0)
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rep(0, n)

else if (tt == 1)

m[[offset]]

else {

ff <- m[[offset[1]]]

for (i in 2:tt) ff <- ff + m[[offset[i]]]

ff

}

ncluster <- length(gvars)

if (ncluster == 0)

stop("No grouping variables found")

groups <- getGroups(m, gform)

temp <- coxme.varcheck(ncluster, varlist, n, gvars, groups,

sparse, rescale, pdcheck)

varlist <- temp$varlist

kindex <- temp$kindex

ntheta <- temp$ntheta

theta.names <- NULL

for (i in 1:ncluster) {

if (ntheta[i] == 1)

theta.names <- c(theta.names, gvars[i])

else theta.names <- c(theta.names, paste(gvars[i], 1:ntheta[i],

sep = ""))

}

if (length(theta) == 0)

theta <- rep(0, sum(ntheta))

else if (length(theta) != sum(ntheta))

stop("Wrong length for theta")

names(theta) <- theta.names

theta.names <- NULL

for (i in 1:ncluster) {

if (ntheta[i] == 1)

theta.names <- c(theta.names, gvars[i])

else theta.names <- c(theta.names, paste(gvars[i], 1:ntheta[i],

sep = ""))

}

if (length(theta) == 0)
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theta <- rep(0, sum(ntheta))

else if (length(theta) != sum(ntheta))

stop("Wrong length for theta")

names(theta) <- theta.names

tindex <- which(theta == 0)

if (ncluster > 1)

stop("function can have only 1 random effect")

varlist <- varlist[[1]]

kindex <- kindex[, 1]

if (max(kindex) != n)

stop("The random effect must be 1 per subject")

ntheta <- ntheta[1]

kindex2 <- integer(n)

kindex2[kindex] <- 1:n

logfun <- function(itheta, X, Y, varlist, theta, tindex,

center) {

theta[tindex] <- exp(itheta)

tkmat <- varlist[[1]]

tkmat@blocks <- tkmat@blocks * theta[1]

diag(tkmat) <- diag(tkmat + 1)

if (length(varlist) > 1) {

for (i in 2:length(varlist)) tkmat@blocks <- varlist[[i]]@blocks *

theta[i] + tkmat@blocks

}

tkmat@blocks <- tkmat@blocks/tkmat@blocks[1]

gk <- gchol(tkmat)

newx <- solve(gk, X, full = FALSE)

newy <- solve(gk, Y, full = FALSE)

resid <- qr.resid(qr(newx), newy)

n <- length(Y)

loglik <- (n/2) * (log(mean(resid^2)) - center) + sum(log(diag(gk)))/2

loglik

}

newX <- X[kindex2, ]

newY <- as.vector(Y[kindex2])

dimnames(newX) <- NULL

if (length(tindex) > 0) {
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center <- log(mean((Y - mean(Y))^2))

nfit <- optim(par = rep(-1, length(tindex)), logfun,

method = "L-BFGS-B", lower = log(1e-05), X = newX,

Y = newY, varlist = varlist, theta = theta, tindex = tindex,

center = center)

iter <- nfit$counts

theta[tindex] <- exp(nfit$par)

}

else iter <- 0

tkmat <- varlist[[1]]

tkmat@blocks <- tkmat@blocks * theta[1]

diag(tkmat) <- diag(tkmat + 1)

if (length(varlist) > 1) {

for (i in 2:length(varlist)) tkmat@blocks <- varlist[[i]]@blocks *

theta[i] + tkmat@blocks

}

gk <- gchol(tkmat)

xok <- as.matrix(solve(gk, newX, full = F))

yok <- solve(gk, newY, full = FALSE)

lfit <- lm(yok ~ 0 + xok)

names(lfit$coefficients) <- dimnames(X)[[2]]

ls <- summary(lfit)

resid.var <- mean(lfit$residuals^2)

theta <- c(theta * resid.var, resid.var)

names(theta) <- c(theta.names, "resid")

fitted <- c(X %*% lfit$coef)

residuals <- Y - fitted

frail <- residuals[kindex2]

names(frail) <- groups

fcoef <- lfit$coef

call$fixed <- fixed

call$random <- random

fit <- list(coefficients = list(fixed = fcoef, random = frail),

theta = theta, variance = ls$cov.unscaled * ls$sigma^2, ctable =

ls$coefficients, residuals = residuals, fitted.values = fitted,

effects = lfit$effects, rank = lfit$rank, assign = lfit$assign,

df.residual = lfit$df.residual - length(theta),
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loglik = (-n/2)*(log(mean(lfit$residuals^2)) + 1 + log(2 * pi)) -

sum(log(diag(gk)))/2,

iter = iter, n = n, call = call, method = "ML")

na.action <- attr(m, "na.action")

if (length(na.action))

fit$na.action <- na.action

oldClass(fit) <- c("lmekin")

fit

}

C.3 Description of the R robust version of the R

lmekin routine

lmekinR<-function(fixed, data = parent.frame(), random, varlist =

NULL,variance, sparse = c(20, 0.05), rescale = T, pdcheck = T,

subset, weight, na.action) {

call <- match.call()

m <- match.call(expand.dots = FALSE)

temp <- c("", "data", "weights", "subset", "na.action")

m <- m[match(temp, names(m), nomatch = 0)]

if (missing(variance))

theta <- NULL

else theta <- variance

reSt <- reStruct(random, REML = F, data = NULL)

gform <- getGroupsFormula(reSt)

if (is.null(gform)) {

temp.fixed <- fixed

gvars <- NULL

}

else {

gvars <- all.vars(random)

fvars <- all.vars(formula)

gvars <- gvars[is.na(match(gvars, fvars))]

temp.fixed <- paste(deparse(as.vector(fixed)), collapse = "")

temp.fixed <- paste(temp.fixed, paste(gvars, collapse = "+"),

sep = "+")

temp.fixed <- as.formula(temp.fixed)
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}

m$formula <- temp.fixed

m[[1]] <- as.name("model.frame")

m <- eval(m, sys.parent())

Terms <- terms(fixed)

X <- model.matrix(Terms, m)

Y <- model.extract(m, "response")

n <- length(Y)

weights <- model.extract(m, "weights")

offset <- attr(Terms, "offset")

tt <- length(offset)

offset <- if (tt == 0)

rep(0, n)

else if (tt == 1)

m[[offset]]

else {

ff <- m[[offset[1]]]

for (i in 2:tt) ff <- ff + m[[offset[i]]]

ff

}

ncluster <- length(gvars)

if (ncluster == 0)

stop("No grouping variables found")

groups <- getGroups(m, gform)

temp <- coxme.varcheck(ncluster, varlist, n, gvars, groups,

sparse, rescale, pdcheck)

varlist <- temp$varlist

kindex <- temp$kindex

ntheta <- temp$ntheta

theta.names <- NULL

for (i in 1:ncluster) {

if (ntheta[i] == 1)

theta.names <- c(theta.names, gvars[i])

else theta.names <- c(theta.names, paste(gvars[i], 1:ntheta[i],

sep = ""))

}

if (length(theta) == 0)
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theta <- rep(0, sum(ntheta))

else if (length(theta) != sum(ntheta))

stop("Wrong length for theta")

names(theta) <- theta.names

theta.names <- NULL

for (i in 1:ncluster) {

if (ntheta[i] == 1)

theta.names <- c(theta.names, gvars[i])

else theta.names <- c(theta.names, paste(gvars[i], 1:ntheta[i],

sep = ""))

}

if (length(theta) == 0)

theta <- rep(0, sum(ntheta))

else if (length(theta) != sum(ntheta))

stop("Wrong length for theta")

names(theta) <- theta.names

tindex <- which(theta == 0)

if (ncluster > 1)

stop("function can have only 1 random effect")

varlist <- varlist[[1]]

kindex <- kindex[, 1]

if (max(kindex) != n)

stop("The random effect must be 1 per subject")

ntheta <- ntheta[1]

kindex2 <- integer(n)

kindex2[kindex] <- 1:n

logfun <- function(itheta,X, Y, varlist, theta, tindex,center) {

theta[tindex] <- exp(itheta[1])

tkmat <- varlist[[1]]

tkmat@blocks <- tkmat@blocks * theta[1]

diag(tkmat) <- diag(tkmat + 1)

if (length(varlist) > 1) {

for (i in 2:length(varlist)) tkmat@blocks <- varlist[[i]]@blocks *

theta[i] + tkmat@blocks

}

tkmat@blocks <- tkmat@blocks/tkmat@blocks[1]

gk <- gchol(tkmat)
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newx <- solve(gk, X, full = FALSE)

newy <- solve(gk, Y, full = FALSE)

modR <- rlm(newy~newx)

n <- length(Y)

loglik <- (n/2) * (log(modR$s^2) - center)+ sum(log(diag(gk)))/2

loglik

}

newX <- X[kindex2, ]

newY <- as.vector(Y[kindex2])

dimnames(newX) <- NULL

if (length(tindex) > 0) {

center <- log(mad(Y)^2)

nfit <- optim(par = rep(-1, length(tindex)+1), logfun, X = newX,

Y = newY, varlist = varlist, theta = theta, tindex = tindex,

center = center)

iter <- nfit$counts

theta[tindex] <- exp(nfit$par[1])

}

else iter <- 0

tkmat <- varlist[[1]]

tkmat@blocks <- tkmat@blocks * theta[1]

diag(tkmat) <- diag(tkmat + 1)

if (length(varlist) > 1) {

for (i in 2:length(varlist)) tkmat@blocks <- varlist[[i]]@blocks *

theta[i] + tkmat@blocks

}

gk <- gchol(tkmat)

xok <- as.matrix(solve(gk, newX, full = F))

yok <- solve(gk, newY, full = FALSE)

lfit <- rlm(yok ~ 0 + xok)

names(lfit$coefficients) <- dimnames(X)[[2]]

ls <- summary(lfit)

resid.var <- lfit$s^2

theta <- c(theta * resid.var, resid.var)

names(theta) <- c(theta.names, "resid")

fitted <- c(X %*% lfit$coef)

residuals <- Y - fitted
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frail <- residuals[kindex2]

names(frail) <- groups

fcoef <- lfit$coef

call$fixed <- fixed

call$random <- random

fit <- list(coefficients = list(fixed = fcoef, random = frail),

theta = theta, variance = ls$cov.unscaled * lfit$s^2, s=lfit$s,

X=newX,Weigth=lfit$w, ctable = ls$coefficients, residuals = residuals,

fitted.values = fitted, effects = lfit$effects, rank = lfit$rank,

assign = lfit$assign, df.residual = lfit$df.residual - length(theta),

loglik = (-n/2)*(log(lfit$s^2) + 1 + log(2 * pi)) -

sum(log(diag(gk)))/2,

iter = iter, n = n, call = call, method = "ML")

na.action <- attr(m, "na.action")

if (length(na.action))

fit$na.action <- na.action

oldClass(fit) <- c("lmekin")

fit

}

C.4 R routine for the example robust single-SNP

analysis

#loading Weber’s data, i.e, data on phenotype and 61 SNPs for 493

#plants

candidate<-read.table("WeberDataSet.txt")

#creating a vector with the SNPs identification

SNPsNames<-colnames(candidate);SNPsNames<-SNPsNames[-1]

#creating a vector for the phenotypic values - 493x1 matrix

Y<-as.matrix(candidate[,1]);colnames(Y)<-"FERL"

#creating a matrix with SNP data - 493x61 matrix

SNPs<-candidate[,2:62]; nSNPs<-dim(candidate)[2]-1

#loading Weber’s 10 Principal Components - 493x10 matrix
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PCs<-read.table("WeberPrincComps493Plants.txt");cpsnames<-names(PCs)

#loading Weber’s Kinship matrix for the 493 plants - it’s a 493x493

#matrix - this is not a semi-definite positive matrix

ship<-read.table("WeberKinship493Plants.txt");KShip<-as.matrix(ship)

#plant identification is taken out of KShip columns

plantid<-colnames(KShip)

#SNPs rows identification

rownames(SNPs)<-plantid

#loading the necessary R libraries

library(kinship); library(MASS);

library(numDeriv); library(nortest)

#load the lmekinR routine that is not loaded with package Kinship by

#running its code on the R environment

#creating a vector to store the association tests p-values

teste<-vector()

#creating some more vectors to store information on additive and

#dominance effects, phenotypic standard error and number of

#observations used in the regression analysis respectively; additive

#effects are calculated as

#abs(mean(Y.fitted_Hom_AA)-mean(Y.fitted_Hom_aa))/2; dominance

#effects are calculated as

#mean(Y.fitted_Het_Aa)-(mean(Y.fitted_Hom_AA)+mean(Y.fitted_Hom_aa))/2

a<-vector(); dom<-vector(); sd_pheno<-vector(); Nobs<-vector()

#initiating the cycle where all 61 p-values will be calculated in a

#single-SNP analysis

for(w in 1:dim(SNPs)[2]){

dat<-cbind(Y,PCs,SNPs[,w])

#taking out obs with non-observable SNP genotype:

dados<-dat[!is.na(SNPs[,w]),]
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plantnames<-rownames(dados)

#defining the new kinship matrix:

KS<-KShip[plantnames,plantnames]

#testing if KS is semi-definite positive; if it’s not an

#adjustment is made so that it becomes semi-definite positive

eigenKS<-eigen(KS)$values

if(length(eigenKS[eigenKS<0])>0){

lambda<-abs(eigenKS[length(eigenKS)])+1e-9

KSpd<-(KS+lambda*diag(dim(KS)[1]))/(1+lambda)

rownames(KSpd)<-plantnames

colnames(KSpd)<-plantnames

KS<-KSpd

}

#separating the data in phenotype and PCs+SNPs matrices:

dat<-dados[,-1]

Y1<-dados[,1]

colnames(dat)[dim(PCs)[2]+1]<-colnames(SNPs)[w]

#running the robust mixed model

modelo<-lmekinR(Y1~dat[,1]+dat[,2]+dat[,3]+dat[,4]+dat[,5]+dat[,6]

+dat[,7]+dat[,8]+dat[,9]+dat[,10]+dat[,11],

data=dat,random=~1|plantnames,varlist=list(KS))

#calculating the additive and dominance effects of SNP[,w],

#the number of observations used in the regression model and the

#phenotypic standard error

Nobs[w]<-modelo$n

Y_fitted<-modelo$fitted.values

sd_pheno[w]<-sqrt(var(Y1))

a[w]<-abs(mean(Y_fitted[dat[,11]==names(summary(dat[,11])[1])])

-mean(Y_fitted[dat[,11]==names(summary(dat[,11])[3])]))/2

dom[w]<-mean(Y_fitted[dat[,11]==names(summary(dat[,11])[2])])-

( mean(Y_fitted[dat[,11]==names(summary(dat[,11])[1])])

+mean(Y_fitted[dat[,11]==names(summary(dat[,11])[3])]) )/2

#performing a Wald type test on the effect of SNP on the

#trait; we need to have the inverse of the var/covar matrix,
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#the number of estimated parameters for SNP w and its values

x<-modelo

l<-dim(x$variance)[1]

covarmat<-x$variance[12:l,12:l]

invcovarmat<-solve(covarmat)

estim<-x$ctable[12:l,1];estim<-as.matrix(estim)

q<-length(levels(SNPs[,w]))-1

#writing the test statistic and calculating the test p-value

Twald<-t(estim)%*%invcovarmat%*%estim/q

pv<-1-pf(Twald,q,x$n-l-q)

#storing the test p-value

teste[w]<-pv

}

C.5 R routine for the example robust multiple-SNP

analysis

#we define the vector of the SNPs declared significant in the single

#SNP analysis and then subset the data set of all SNPs

sigsNames<-c("zagl1.1","PZD00073.5","PZD00006.1","PZD00022.3",

"PZD00073.8","te1.3","ba1.9","PZB00049.7")

SNPs2<-subset(SNPs,select=sigsNames) sigsdat<-cbind(Y,PCs,SNPs2)

#we now remove from the data all observations that do not have an

#observable genotype at a SNP and construct the new kinship matrix

#for the new data set

for(i in 1:dim(SNPs2)[2]){

sigsdat<-sigsdat[!is.na(sigsdat[,i+11]),]

}

plantnames<-rownames(sigsdat)

KS<-KShip[plantnames,plantnames]

#we test if the kinship matrix is or not positive definite

eigenKS<-eigen(KS)$values

if(length(eigenKS[eigenKS<0])>0){
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lambda<-abs(eigenKS[length(eigenKS)])+1e-9

KSpd<-(KS+lambda*diag(dim(KS)[1]))/(1+lambda)

rownames(KSpd)<-plantnames

colnames(KSpd)<-plantnames

KS<-KSpd

}

#we define the sets for the multiple regression analysis

Y2<-sigsdat[,1] PCs2<-sigsdat[,2:11]

SNPs2<-sigsdat[,12:dim(sigsdat)[2]]

sett<-cbind(PCs2,SNPs2) teste<-vector() for(w in 1:dim(SNPs2)[2]){

modelo<-lmekinR(Y2~sett[,1]+sett[,2]+sett[,3]+sett[,4]+sett[,5]+sett[,6]

+sett[,7]+sett[,8]+sett[,9]+sett[,10]+sett[,11]+sett[,12]

+sett[,13]+sett[,14]+sett[,15]+sett[,16]+sett[,17]+sett[,18],

data=sett,random=~1|plantnames,varlist=list(KS))

#when w=1 we are taking care of the last SNP in the data

#set, i.e, SNP k=dim(SNPs2)[2]-w+1

k<-dim(SNPs2)[2]-w+1

n<-modelo$n

Kin<-KS

p<-dim(modelo$ctable)[1]

q<-length(levels(SNPs2[,k]))-1

x<-modelo

l<-dim(x$variance)[1]

covarmat<-x$variance[(l-q+1):l,(l-q+1):l]

invcovarmat<-solve(covarmat)

estim<-x$ctable[(l-q+1):l,1];estim<-as.matrix(estim)

Twald<-t(estim)%*%invcovarmat%*%estim/q

pv<-1-pf(Twald,q,n-l-q) #pvalue de teste
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teste[k]<-pv

#we now "rotate" the SNP matrix, putting the last SNP in

#first place; in this way in the next iteration we will

#calculate the p-value for the new last SNP in the SNP data

#set - we have to proceed this way because we are dealing with

#unbalanced data

lixo<-SNPs2[,dim(SNPs2)[2]];lixo<-as.matrix(lixo)

colnames(lixo)<-names(SNPs2)[dim(SNPs2)[2]]

SNPs2<-SNPs2[,-dim(SNPs2)[2]]

SNPs2<-cbind(lixo,SNPs2)

sett<-cbind(PCs2,SNPs2)

}

C.6 R routine for the example classic single-SNP anal-

ysis

The initial part of the R code for this section is equal to that of Section C.4. In this

program we used the Satterthwaite approximation for the df of the F test distribution

since this was the approach taken by Weber in her analysis.

#we define extra matrices to keep the values of the regression

#residuals and fitted values:

residuals<-matrix(NA,493,61)

fitted<-matrix(NA,493,61)

#we also want to keep track of the plants that were used in each

#regression:

plants<-matrix(NA,493,61)

#load the lmekinC routine that is not loaded with package Kinship by

#running its code on the R environment

#initiating the cycle where all 61 p-values will be calculated in a

#single-SNP analysis

for(w in 1:dim(SNPs)[2]){

... the same as in the robust counterpart ...
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#running the classic mixed model

modelo<-lmekinC(Y1~dat[,1]+dat[,2]+dat[,3]+dat[,4]+dat[,5]

+dat[,6]+dat[,7]+dat[,8]+dat[,9]+dat[,10]+dat[,11],

data=dat,random=~1|plantnames,varlist=list(KS))

#keeping the regression residuals, fitted values and plants

#identification used in the regression:

residuals[1:modelo$n,w]<-modelo$residuals

fitted[1:modelo$n,w]<-modelo$fitted

plants[1:modelo$n,w]<-plantnames

#calculating the additive and dominance effects of SNP[,w],

#the number of observations used in the regression model and the

#phenotypic standard error:

... the same as in the robust counterpart ...

#we identify the number of observations used in the

#regressio, which equals the total number of the model estimated random

#parameters:

n<-modelo$n

#we change the name of the kinship matrix and define

#variables for the number of fixed parameters estimated in the model, p, and

#the number of parameters estimated for SNPw, q

Kin<-KS

p<-dim(modelo$ctable)[1]

q<-p-(dim(PCs)[2]+1)

#defining vectors to keep the estimates of the fixed and random

#parameters, respectively, b and u

u<-modelo$coefficients$random

b<-modelo$coefficients$fixed

b<-as.matrix(b)

#identifying the specification matrix relative to the

#model’s fixed component:
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X<-modelo$X

#computing the matrices needed to perform the hypothesis

#test on the fixed parameters coefficients

I<-diag(1,modelo$n,modelo$n) #identity matrix nxn

G<-modelo$theta[1]*Kin #matrix nxn

R<-modelo$theta[2]*I #matrix nxn where modelo$theta[2]==sigma^2

V<-G+R #matriz de nxn

#we define the C matrix as a function of (thet,sig)

Cfunc<-function(thet,sig){

G<-thet*Kin

R<-sig*I

V<-G+R

C<-ginv(t(X)%*%solve(V)%*%X)

#since sig is the usual and not the centered estimate of sigma,

#we have still to center it; if we could get it from the

#regression model it would only be necessary to consider

#C=modelo$variance, but that is not the case here

C1<-(modelo$n/(modelo$n-modelo$rank))*C

return(C1)

}

#we evaluate C for the estimates (modelo$theta[1],modelo$theta[2])

#of (theta,sigma^2) obtained in the regression:

C<-Cfunc(modelo$theta[1],modelo$theta[2])

#we now need to determine the matrix of var/covar of the

#estimated parameters of (theta,sigma), A = - H where H is

#the Hessian matrix corresponding to the second derivatives

#of the likelihood function;

#following Walsh (pp789) Aij=[S^(-1)]ij para i=1,2

#where Sij=1/2tr(V^-1 Vi V^-1 Vj) and where V2=I and V1=Kin

S11<-0.5*sum(diag( solve(V) %*% Kin %*% solve(V) %*% Kin))

S22<-0.5*sum(diag( solve(V) %*% I %*% solve(V) %*% I))

S12<-0.5*sum(diag( solve(V) %*% Kin %*% solve(V) %*% I))

S21<-S12
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S<-matrix(0,2,2);S[1,1]<-S11;S[2,2]<-S22;S[1,2]<-S12;S[2,1]<-S21

A<-matrix(0,2,2)

A[1,1]<-solve(S)[1,1]

A[2,2]<-solve(S)[2,2]

A[1,2]<-solve(S)[1,2]

A[2,1]<-A[1,2]

#we will now perform test t or F depending on the number of

#parameters estimated for the SNP

if(q==2){

L<-matrix(0,q,p)

L[q-1,p-1]<-1

L[q,p]<-1

#computing the test statistic

F<-t(b)%*%t(L)%*%solve(L%*%C%*%t(L))%*%L%*%b/q

#the df of the denominator have to be estimated;

#we will use the WelchSatterthwaite approximation

dec<-eigen(L%*%C%*%t(L)) #spectral decomposition of LCL’=PDP’

d<-dec$values

D<-diag(d)

P<-t(dec$vectors)

PL<-P%*%L #matrix 2xn

v<-vector()

for(j in 1:2){

l<-as.matrix(PL[j,])

fun<-function(x){thet<-x[1];sig<-x[2];t(l)%*%Cfunc(thet,sig)%*%l}

parms<-c(modelo$theta[1],modelo$theta[2])

g<-grad( fun, parms );g<-as.matrix(g)

v[j]<-2*D[j,j]^2/(t(g)%*%A%*%g)

}

bool<-vector();

for(i in 1:2){if(v[i]>2){bool[i]<-1}else{bool[i]<-0}}

vv<-vector();for(i in 1:2){vv[i]<-v[i]/(v[i]-2)*bool[i]}

E<-sum(vv)

if(E>q){

dfF<-2*E/(E-q)
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pv<-1-pf(F,q,dfF)

}else{pv<-0}

}

else{

if(q==1){

L<-vector();

for(i in 1:p){L[i]<-0}

L[p]<-1

L<-as.matrix(L)

T<-t(L)%*%b/sqrt(t(L)%*%C%*%L)

#the df of the t distribution have to be estimated;

#we will use the WelchSatterthwaite approximation

fun<-function(x){thet<-x[1];sig<-x[2];t(L)%*%Cfunc(thet,sig)%*%L}

parms<-c(modelo$theta[1],modelo$theta[2])

g<-grad( fun, parms );g<-as.matrix(g)

dfF<-2*(t(L)%*%C%*%L)^2/(t(g)%*%A%*%g)

pv<-1-pf(T^2,q,dfF)

}

}

teste[w]<-pv

}

C.7 R routine for the example classic multiple-SNP

analysis

#we define the vector of the SNPs declared significant in the single

#SNP analysis and then subset the data set of all SNPs

sigsNames<-c("zagl1.1","PZD00073.5","PZD00006.1","PZD00022.3",

"PZD00073.8","te1.3","ba1.9","zagl1.6","PZB00049.7")

SNPs2<-subset(SNPs,select=sigsNames)

sigsdat<-cbind(Y,PCs,SNPs2)

#we now remove from the data all observations that do not have an

#observable genotype at a SNP and construct the new kinship matrix

#for the new data set
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for(i in 1:dim(SNPs2)[2]){

sigsdat<-sigsdat[!is.na(sigsdat[,i+11]),]

}

plantnames<-rownames(sigsdat)

KS<-KShip[plantnames,plantnames]

#we test if the kinship matrix is or not positive definite

eigenKS<-eigen(KS)$values

if(length(eigenKS[eigenKS<0])>0){

lambda<-abs(eigenKS[length(eigenKS)])+1e-9

KSpd<-(KS+lambda*diag(dim(KS)[1]))/(1+lambda)

rownames(KSpd)<-plantnames

colnames(KSpd)<-plantnames

KS<-KSpd

}

#we define the sets for the multiple regression analysis

Y2<-sigsdat[,1] PCs2<-sigsdat[,2:11]

SNPs2<-sigsdat[,12:dim(sigsdat)[2]] sett<-cbind(PCs2,SNPs2)

teste<-vector()

for(w in 1:dim(SNPs2)[2]){

modelo<-lmekinC(Y2~sett[,1]+sett[,2]+sett[,3]+sett[,4]+sett[,5]+sett[,6]

+sett[,7]+sett[,8]+sett[,9]+sett[,10]+sett[,11]+sett[,12]

+sett[,13]+sett[,14]+sett[,15]+sett[,16]+sett[,17]+sett[,18]

+sett[,19],data=sett,random=~1|plantnames,varlist=list(KS))

#when w=1 we are taking care of the last SNP in the data

#set, i.e, SNP k=dim(SNPs2)[2]-w+1

k<-dim(SNPs2)[2]-w+1

n<-modelo$n #num obs used in the regression == num params

#estimated in the model

plantsused<-names(modelo$coefficients$random) #plants used

#in the analysis

Kin<-KS

p<-dim(modelo$ctable)[1] #num fixed params estimated

q<-length(levels(SNPs2[,k]))-1 #num params estimated for SNPw
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#getting the estimated coefficients and matrix X

u<-modelo$coefficients$random #random params estimates

b<-modelo$coefficients$fixed #fixed params estimates

b<-as.matrix(b)

X<-modelo$X pecification matrix of the fixed component

I<-diag(1,modelo$n,modelo$n) #nxn identity matrix

G<-modelo$theta[1]*Kin #nxn matrix

R<-modelo$theta[2]*I #nxn matrix

modelo$theta[2]==sigma^2

V<-G+R #nxn matrix

Cfunc<-function(thet,sig){

G<-thet*Kin

R<-sig*I

V<-G+R

C<-ginv(t(X)%*%solve(V)%*%X)

return(C)

}

#C function of (theta,sigma^2); we call sig to sigma^2

C<-Cfunc(modelo$theta[1],modelo$theta[2])

#we must calculate the variance/covariance matrix of the estimated theta

#and sigma parameters, A = - H where H is the hessian matrix

#corresponding to the second derivatives of the likelihood function

#also, A12=A21=0, i.e, cov(theta,sigma)=cov(sigma,theta)=0;

#taking delta=(delta1,delta2)=(sigma,theta)

#according to Walsh (pags789) Aii=[S^(-1)]ii para i=1,2

#where Sii=1/2tr(V^-1 V1 V^-1 V1)

#and where V1=I if deltai=sigma and V1=Kin;

S11<-0.5*sum(diag( solve(V) %*% Kin %*% solve(V) %*% Kin))

S22<-0.5*sum(diag( solve(V) %*% I %*% solve(V) %*% I))

S12<-0.5*sum(diag( solve(V) %*% Kin %*% solve(V) %*% I))

S21<-S12

S<-matrix(0,2,2);S[1,1]<-S11;S[2,2]<-S22;S[1,2]<-S12;S[2,1]<-S21
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A<-matrix(0,2,2)

A[1,1]<-solve(S)[1,1]

A[2,2]<-solve(S)[2,2]

A[1,2]<-solve(S)[1,2]

A[2,1]<-A[1,2]

#choosing between the t and the F test

if(q==2){

L<-matrix(0,q,p)

L[q-1,p-1]<-1

L[q,p]<-1

F<-t(b)%*%t(L)%*%solve(L%*%C%*%t(L))%*%L%*%b/q

#estimating the denominator degrees of freedom of the F distribution

#(WelchSatterthwaite equation);

#we begin with the spectral decomposition of LCL’=PDP’

dec<-eigen(L%*%C%*%t(L))

d<-dec$values

D<-diag(d)

P<-t(dec$vectors)

PL<-P%*%L #2 x p matrix

v<-vector()

for(j in 1:2){

l<-as.matrix(PL[j,])

#the next function is a real function of 2 variables, thet and sig

fun<-function(x){thet<-x[1];sig<-x[2];t(l)%*%Cfunc(thet,sig)%*%l}

parms<-c(modelo$theta[1],modelo$theta[2])

#calculating the gradient of fun in (theta,sigma)

g<-grad( fun, parms );g<-as.matrix(g)

v[j]<-2*D[j,j]^2/(t(g)%*%A%*%g)

}

bool<-vector();

for(i in 1:2){if(v[i]>2){bool[i]<-1}else{bool[i]<-0}}

vv<-vector();for(i in 1:2){vv[i]<-v[i]/(v[i]-2)*bool[i]}

E<-sum(vv)

if(E>q){
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dfF<-2*E/(E-q)

pv<-1-pf(F,q,dfF)

}else{pv<-0}

}

else{

if(q==1){

L<-vector();

for(i in 1:p){L[i]<-0}

L[p]<-1

L<-as.matrix(L)

T<-t(L)%*%b/sqrt(t(L)%*%C%*%L)

fun<-function(x){thet<-x[1];sig<-x[2];t(L)%*%Cfunc(thet,sig)%*%L}

parms<-c(modelo$theta[1],modelo$theta[2])

g<-grad( fun, parms );g<-as.matrix(g)

dfF<-2*(t(L)%*%C%*%L)^2/(t(g)%*%A%*%g)

pv<-1-pf(T^2,q,dfF)

}

}

teste[k]<-pv

#we now "rotate" the SNP matrix, putting the last SNP in

#first place; in this way in the next iteration we will

#calculate the p-value for the new last SNP in the SNP data

#set - we have to proceed this way because we are dealing with

#unbalanced data

lixo<-SNPs2[,dim(SNPs2)[2]];lixo<-as.matrix(lixo)

colnames(lixo)<-names(SNPs2)[dim(SNPs2)[2]]

SNPs2<-SNPs2[,-dim(SNPs2)[2]]

SNPs2<-cbind(lixo,SNPs2)

sett<-cbind(PCs2,SNPs2)

}
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