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ABSTRACT. In this work, numerical schemes to approximate the solution of one
and multi phase quadrature domains are presented. We shall construct a mono-
tone, stable and consistent finite difference method for both one and two phase
cases, which converges to the viscosity solution of the partial differential equa-
tion arising from the corresponding quadrature domain theory. Moreover, we
will discuss the numerical implementation of the resultingapproach and present
computational tests.
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1. Preliminaries

The subject of the quadrature domains, QDs, has been extensively studied over
the last half-century and most of the papers deal with the onephase case, e.g., see
[10], [12] and [17]. There is a wide range of applications of quadrature domains

Key words and phrases. Quadrature domain, Free boundary problem, Finite difference method,
Degenerate elliptic equation.

F. Bozorgnia was supported by the UT Austin-Portugal partnership through the FCT
post-doctoral fellowship SFRH/BPD/33962/2009 and grantsPTDC/MAT/114397/2009, UT
Austin/MAT/0057/2008.

1



2 F. Bozorgnia & M. Bazarganzadeh

in physical problems. For instance, Richardson in [19] has studied the Hele-Shaw
problem involving a moving boundary problem by driving a flowbetween two
parallel planes without considering surface tension. He opened a crucial and new
theory which now is a well developed subject. The solution ofthe Hele-Shaw
problem can be figure out as a one phase quadrature domain.

To the best of our knowledge, most of the authors have studiedtheoretical as-
pects of this field and there is a few literature on numerical approach to the quad-
rature domains. The authors have presented some numerical schemes to approach
the one phase quadrature domain in [6]. The main contribution of this paper is to
investigate different numerical approximations for the one, two and multi phase
quadrature domains.

The outline of this paper is as follows

• We will state the problem in Section two and provide the explanation of
the one and the two phase cases and the corresponding partialdifferential
equations, PDEs.

• Section three consists of an introduction to the degenerateelliptic equation
and the viscosity solutions.

• Section four is devoted to reformulate the problem for the one and the two
phase case. We provide two degenerate elliptic equations and investigate
the relation between their viscosity solutions and the weaksolutions of the
PDEs.

• In Section five we discretize the reformulated problems and introduce our
numerical algorithms based on finite difference method. Through this sec-
tion we concentrate on a special measure, the Dirac measure,and explain
the schemes for this case.

• In the last section we shall examine the algorithms by studying some nu-
merical examples.

2. Problem Setting

Let µi, i = 1, · · · ,m be given finite measures with compact supports andλi(x) be
non-negative Lipschitz continuous functions. In this article, we investigate the
following problem.

Problem: Find functionsui and domainsΩi := {x ∈ R
N |ui(x) > 0} for i =

1, · · · ,m such that supp(µi)⊂ Ωi and

(2.1)





∆ui = λiχΩi
−µi in R

N ,

ui = 0 in Ω j, j 6= i,

|∇ui|= |∇u j| on Γi j := ∂Ωi ∩∂Ω j,

|∇ui|= 0 on∂Ωi \
⋃

Γi j,

which is understood in the distribution sense. For an illustration of the problem
see Figure 1. This problem is related to geometric flows and integral identity in
potential theory.
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supp(µ j) Ωi = {ui > 0}
Γi j

supp(µi)

∑ui = 0

Ω j = {u j > 0}

x1

x2

x3

∂ Ωi \
⋃

Γi j

FIGURE 1. This figure shows the supports of the measures and
supports of the solution of (2.1) and the corresponding freebound-
ary. The pointsx1,x2 andx3 are examples of points with different
multiplicity, see definition 2.2.

The main contribution of this paper is to construct a finite difference method to
approximate the solution of (2.1). We also prove that the numerical approximation
converges to the viscosity solution of problem (2.1) for thecasesm = 1 andm = 2.
These cases arise from the quadrature domains theory which is quite well studied
for the one phase case, see for instance [12] and [17] and the references therein.

2.1. Casem = 1: One phase quadrature domain

Let µ be a Radon measure with compact support inR
N . An open connected domain

Ω ⊂R
N , is calledquadrature domain with respect toµ if

(2.2)
∫

Ω
hdx ≥

∫
hdµ , ∀h ∈ SL1(Ω), supp(µ) ⊂ Ω,

whereSL1(Ω) is the space of all subharmonic functions contained inL1(Ω). There
is a strong relation between the concept of quadrature domains, potential theory
and the theory of partial differential equations (PDEs). Sakai in [17] has shown
that if Ω is a quadrature domain with respect toµ then the pair(u,Ω) with Ω :=
{x ∈R

N |u(x)> 0} is the unique solution of the following one phase free boundary
problem

(2.3)





∆u = χΩ −µ , in R
N ,

u ≥ 0, in R
N ,

u = |∇u|= 0 in R
N \Ω.

To ensure this work self contained, we will explain the theory of the two phase
case.
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2.2. Casem = 2: Two phase quadrature domain

Emamizadeh, Prajapat and Shahgholian introduced the two phase quadrature do-
main in [9]. They proved the existence of the solution of (2.1) by minimization
techniques in the case ofm = 2. The uniqueness of quadrature domain is a chal-
lenging problem even in the one phase case, but if one consider sign assumption,
see (2.4) then the problem has a unique solution, see [3].

Here we briefly review the definition of the two phase quadrature domain. Be-
fore that we need to introduce some notations.

Suppose thatΩ ⊂ R
N . Let

• S+(Ω) andS−(Ω) be the set of all subharmonic and superharmonic func-
tions inΩ respectively.

• SL±(Ω) be the set of all functions inL1 which are inS±(Ω).

We note thatSL+(Ω) is exactly the same asSL1(Ω) in the one phase case.

Definition 2.1. Let Ω± be two disjoint subsets ofRN and µ± be two positive
Radon measures with compact supports inΩ±. Moreover, suppose thatλ± are two
non-negative Lipschitz continuous functions. Ifµ = µ+−µ− and

∫

Ω+
λ+ hdx−

∫

Ω−
λ− hdx ≥

∫
hdµ , ∀h ∈ SL+(Ω+)∩SL−(Ω−),

then we say thatΩ := Ω+ ∪Ω− is a two phase quadrature domain w.r.t µ for the
class

S(Ω) := SL+(Ω+)∩SL−(Ω−),

and we writeΩ ∈ Q(µ ,S).

Similar to the one phase case we can provide a PDE formulationfor the two
phase case. Consider the following free boundary problem inthe distribution sense

(2.4)

{
∆u = λ+χ

Ω+ −µ+− (λ−χ
Ω− −µ−) in R

N ,

Ω± = {±u ≥ 0},
where supp(µ±) ⊂ Ω± and u,Ω± are unknown. IfΩ = Ω+ ∪Ω− then one can
show thatΩ ∈ Q(µ ,S) if and only if Ω is the unique solution of (2.4), see [3] and
[9].

Remark 1. If we setu = u1− u2, then the problem (2.4) is a special case of (2.1)
where

u1 = u+ = max(u,0), u2 = u− = max(−u,0).

Consider problem (2.1) and letΩ =
⋃

i Ωi. We define now multiplicity of a point
and discuss on the multiplicity of one and two phase points.

Definition 2.2. The multiplicity of a pointx ∈ Ω, denoted bym(x), is defined by

m(x) = card{i : meas(Ωi ∩B(x,r))> 0 for all r > 0} .
The interface between two densities is defined as

∂Ωi ∩∂Ω j ∩{x ∈ Ω : m(x) = 2}.
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Our numerical scheme is based on the following properties, which are straight-
forward to verify.

Lemma 2.3. Let x0 ∈ Ω. Then the following holds:
1) If m(x0) = 0, then there is a r > 0 such that for every i = 1, · · · ,m; ui ≡ 0 in
B(x0,r).
2) If m(x0) = 1, then there are i and r > 0 such that

∆ui = λiχΩi −µi, u j ≡ 0 for j 6= i, in B(x0,r).

3) If m(x0) = 2, then there are i, j and r > 0 such that for every k 6= i, j we have
uk ≡ 0 and

∆(ui −u j) = λiχΩi −λ jχΩ j −µi +µ j, in B(x0,r).

The last part of Lemma 2.3 states that for points with multiplicity two, the prob-
lem locally turns to the two phase case of quadrature domain problem. For example
in Figure (1), the pointsx1,x2 andx3 have multiplicity 2,1,0, respectively. Thus
we can find a small ballB(x1,ε) such that problem (2.1) turns to (2.4) inB(x1,ε).

3. Degenerate elliptic equations and Viscosity Solutions

In this section we recall the definition of a degenerate elliptic equation and a vis-
cosity solution.

Let Ω be a bounded open subset inRN and L(x,r, p,M) be a continuous real
valued function defined onΩ×R×R

N ×M N whereM N is the space of all sym-
metric N ×N matrices. Moreover, suppose thatDu andD2u denote the gradient
and Hessian matrix of functionu, respectively.

Definition 3.1. The fully non-linear second order partial differential equation

(3.1) Lu = L(x,u,Du,D2u) = 0,

is called adegenerate elliptic equation if forr1 ≤ r2 andM1,M2 ∈ M N with M1 ≤
M2

L(x,r1, p,M2)≤ L(x,r2, p,M1),

whereM1 ≤ M2, meansM2−M1 is a nonnegative definite symmetric matrix.

For the reader’s convenience we recall the viscosity solution whose importance
and its merits can be seen in the convergence analysis of the numerical schemes,
for instance see [15]. To have a complete review of this topicwe refer to [8] where
Crandall and Lions introduced the viscosity solution for the first order Hamilton-
Jacobi equation. We also refer the reader to [4] which is a great reference for
viscosity solutions.

Definition 3.2. A continuous functionu is called a
• viscosity sub-solution for the equation (3.1) if for everyψ ∈ C2(Ω) and

local maximum pointx0 ∈ Ω of u−ψ ,

L

(
x0,u(x0),Dψ(x0),D

2ψ(x0)

)
≤ 0,
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• viscosity super-solution for the equation (3.1) if for everyψ ∈C2(Ω) and
local minimum pointx0 ∈ Ω of u−ψ ,

L

(
x0,u(x0),Dψ(x0),D

2ψ(x0)

)
≥ 0,

• viscosity solution of (3.1) if and only if it is both viscosity sub and super-
solution.

4. Reformulation of the problem for m = 1,2.

In this section we reformulate the one phase and the two phaseQD problems.
This reformulation enable us to introduce viscosity solutions for these problems.
We show that the viscosity solutions for these degenerate elliptic equations are
equivalent to weak solutions of our original QD problems.

4.1. Min-formula for the one phase case

Consider the following one phase QD problem, which was introduced in subsection
2.1. Find(u,Ω) such that

(4.1)





∆u = λ χΩ −µ in R
N ,

u ≥ 0 inR
N ,

u = |∇u|= 0 inR
N \Ω,

supp(µ) ⊂ Ω,

whereΩ = {u > 0}. From now in this paper, for a given measureµ we convolve
µ with a mollifier and we work with the regularized measure. Nowone can easily
see that the equation

(4.2) L(x,u,Du,D2u) := min(−∆u+λ −µ ,u) = 0, in R
N

is degenerate elliptic. We refer to (4.2) asMin-formula.
Now we consider the following problem

(4.3)





min(−∆u+λ −µ ,u) = 0 inR
N ,

u = |∇u|= 0 inR
N \Ω,

supp(µ) ⊂ Ω.

By considering maximum principle and Perron’s method we canprove that (4.3)
has a unique viscosity solution, see [8]. Next lemma shows the relation between
(4.1) and (4.3).

Lemma 4.1. The viscosity solution of (4.3) is a solution of (4.1) and vice versa.

Proof. Suppose thatu is a weak solution of (4.1) inΩ = {x|u(x) > 0}. To prove
thatu is a viscosity solution of (4.2) it is sufficient to show that it is both viscosity
sub and super-solution. We argue by contradiction and suppose thatu is not a
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viscosity super-solution, then there exists a pointx0 ∈ Ω such thatu−ψ has local
minimum atx0 and

L(x,u(x0),Dψ(x0),D
2ψ(x0)) = min(−∆ψ(x0)+λ −µ ,u(x0))< 0.

By positivity assumption ofu we obtain that

F(ψ)(x0) := −∆ψ(x0)+λ −µ < 0,

and by continuity ofF, we can find ar > 0 such thatF(ψ)(x) < 0 for all x ∈
B(x0,r). Let

s = inf
x∈∂Br

(u−ψ)(x)> 0,

and setψ̃ = ψ + s, then ψ̃(x) ≤ u(x) for all x ∈ ∂Br. Moreover,F(ψ̃) < 0 in
Br and comparison principle gives̃ψ ≤ u in Br. On the other hand we know that
u(x0) = ψ(x0) then

ψ̃(x0) = ψ(x0)+ s = u(x0)+ s > u(x0),

which is a contradiction and consequentlyu is a viscosity super-solution. Similarly,
u is also a viscosity sub-solution, which proves the first partof the lemma.

For the converse part, consider the unique viscosity solution u of (4.2). If u > 0
then∆u= λ −µ in Ω in the viscosity sense. Then by the uniqueness of the solution
of (4.1) one getsu as a weak solution for (4.1). �

4.2. Min-Max formula for the two phase case

Suppose thatu is the solution of (2.4) and let

Ω+ = {x : u(x) > 0}, Ω− = {x : u(x) < 0} andΩ = Ω+∪Ω−.

Our objective is to prove thatu satisfies the following non-linear problem

(4.4)





min

(
−∆u+λ+−µ+,max(−∆u−λ−+µ−,u)

)
= 0 in R

N ,

u = 0 in R
N \Ω.

The equation

(4.5) Lu := min

(
−∆u+λ+−µ+,max(−∆u−λ−+µ−,u)

)
= 0,

is calledMin-Max formula and introduced in [2] for the two phase obstacle prob-
lem.

Remark 2. One can rewrite the equation of the two phase quadrature domain (2.4)
in another form of Min-Max form as,

min(−∆u+λ+−µ+,u)+max(−∆u−λ−+µ−,u)−u = 0.

First, we show that (4.5) is a degenerate elliptic equation and then we prove that
its viscosity solution is a weak solution of the corresponding PDE. A similar proof
of the next proposition could also be found in [1].
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Proposition 4.2. Equation (4.5) is a degenerate elliptic equation and problem (4.4)
has a unique viscosity solution.

Proof. Suppose thatr1 ≤ r2 andM1,M2 ∈ M N with M1 ≤ M2, thentrace(M1) ≤
trace(M2). It is clear that

−λ−+µ−− trace(M2)≤−λ−+µ−− trace(M1)

and consequently

max
(
−λ−+µ−− trace(M2),r1

)
≤ max

(
−λ−+µ−− trace(M1),r2

)
.

Similarly
λ+−µ+− trace(M2)≤ λ+−µ+− trace(M1)

and these inequalities sum up to

L(x,r1, p,M2)≤ L(x,r2, p,M1),

which shows that (4.5) is a degenerate elliptic equation.
For the second part, suppose thatu andv are two different viscosity solutions of

(4.5). We consider the following different cases.
First assume thatu > v ≥ 0. According to what we assumed,u is both viscosity

super and sub-solution for the problem. Letψ1,ψ2 ∈C2 such thatu−ψ1 has local
maximum atx1 andu−ψ2 has local minimum inx2. Therefore by definition

(4.6) L(ψ1)(x1) = L(x1,u(x1),Dψ1(x1),D
2ψ1(x1))≤ 0,

and

(4.7) L(ψ2)(x2) = L(x2,u(x2),Dψ2(x2),D
2ψ2(x2))≥ 0.

Therefore

−∆ψ2+λ+−µ+ ≥ 0,

which is equivalent to claim thatu is a viscosity super-solution of the

(4.8) ∆u = λ+−µ+.

By the positivity ofu we obtain

max(−∆ψ1−λ−+µ−,u(x1))> 0,

and inequality (4.6) implies

−∆ψ1+λ+−µ+ ≤ 0,

which is equivalent to say thatu is also a viscosity sub-solution of

(4.9) ∆u = λ+−µ+.

Consequently (4.8) and (4.9) yieldu is a viscosity solution of∆u= λ+−µ+, where
u > 0.

On the other hand all these results are valid forv> 0, i.e.,v is a viscosity solution
of ∆v = λ+−µ+, wherev > 0. Finally we have

(4.10)

{
∆(u− v) = 0 in {u > 0},
u = v = 0 on∂{u > 0}.
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By applying maximum principle we getu = v = 0 which contradicts our assump-
tion.

For other cases,u < v ≤ 0 or u > 0≥ v one can apply the same techniques and
prove the lemma. �

Lemma 4.3. If µ± are Dirac measures then any weak solution of (2.4) is a viscosity
solution of (4.5) and vice versa.

Proof. Suppose thatu solves (2.4) in the weak sense. We treat the problem in two
cases.

• If x ∈ Ω+ thenu(x) > 0 and Lemma 2.3 verifies that∆u = λ+−µ+ holds
in a ballB := B(x,rx) for somerx > 0. This means that

max(−∆u−λ−+µ−,u)> 0 and −∆u+λ+−µ+ = 0,

hold in the viscosity sense inB, for details see [11] Section 4. Conse-
quently (4.5) is obtained by similar discussion in the proofof Lemma 4.1.

• If x ∈ Ω−, according to Lemma 2.3 we get∆u =−λ−+µ− in a ballB :=
B(x,rx) for somerx > 0 and therefore

max(−∆u−λ−+µ−,u) = 0.

On the other hand by the assumptions for the measures one gets

−∆u+λ+−µ+ = λ−−µ−+λ+−µ+ ≥ 0 a.e. in B,

in the viscosity sense. Then again according to the proof of Lemma 4.1 it
yields

min

(
−∆u+λ+−µ+,max(−∆u−λ−+µ−,u)

)
= 0.

It turns out thatu is a viscosity super-solution of (4.5).

Similarly we can prove thatu is also a viscosity sub-solution. For the other side we
also consider two cases.

• Suppose thatu > 0 solves the Min-Max formula in the viscosity sense.
We argue by contradiction and assume that−∆u + λ+ − µ+ > 0 then
max(−∆u−λ−+µ−,u) = 0 which violates the positivity ofu.

• If u< 0 solves the Min-Max formula in the viscosity sense and if max(−∆u−
λ−+µ−,u) =−∆u−λ−+µ− > 0, then−∆u+λ+−µ+ = 0. It turns out
thatµ+−λ+−λ−+µ− > 0. But it is clear thatλ++λ−−µ+−µ− ≥ 0
a.e. inRN .

Henceu solves (2.4) in viscosity sense which is also a weak solutionaccording to
the uniqueness of the solution, see [3].

�
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5. Numerical approximation

In this section we will discretize Min and Min-Max formulas and will build nu-
merical algorithms based on the finite difference method. Then we shall apply the
schemes for Dirac measure.

We define a structured gridN with mesh sizeh on a domainD, consisting of a
set of grid pointsxi ∈ N , i = 1, · · · ,N. Each grid pointxi is endowed with a list of
neighborsN(i). A grid function is a real valued function which is defined on the
grid, with valuesui := u(xi). Usually a finite difference scheme at each grid point
can be written as an equation of the form

Li
h[u] = Lh[ui,ui −u j

∣∣
j=N(i)], i = 1, . . . ,N.

In other words, we regard a scheme as an equation that holds ateachxi ∈ N . For
having a simple notation from now on, we droph and write

Li[u] := Lh[ui,ui −u j],

whereu j is the shorthand for the list of neighborsu j| j=N(i). Also by ui we mean
the average ofu j| j=N(i). Thus a solution for a schemeL, with componentsLi, is a
grid function which satisfiesLi[u] = 0 for all i = 1, . . . ,N.

5.1. Discretization of the Min-formula

Consider the Min formula inΩ and suppose thatD is a big enough domain where
Ω ⊂ D, for existence of such aD, see [16]. LetN be a uniform mesh onD with
the mesh sizeh. We discretize the the equation in ( 4.3) ( Min formula) as follows

min(−∆hu+λh −µh,u) = 0,

whereµh is an appropriate discretization ofµ and−∆hu is a discretization of Lapla-
cian operator. We remind thatµ is the regularized measure with compact support.
For instance, in dimension two using standard finite difference with five points, we
discretize the Laplacian operator at the point(xi,yi) ∈ N as

−∆hu(xi,y j) =
4u(xi,y j)−u(xi,y j)

h2 ,

whereu(xi,y j) =
1
4(u(xi−1,y j)+u(xi+1,y j)+u(xi,y j−1)+u(xi,y j+1)). By simple

calculation we get

(5.1) u(xi,y j) = max(u(xi,y j)+
(µh −λh)(xi,y j)

4
h2,0).

Algorithm I: For the one phase case the numerical algorithm to approximate
the corresponding quadrature domain is as follows:

(1) Choose a domainD with Ω ⊂ D, initial guessu0 and a toleranceTOL <<
1.

(2) Find a discretizationµh for µ .
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(3) Fork ≥ 1 update the values at each grid points by (5.1). More precisely

uk+1(xi,y j) = max(uk(xi,y j)+
(µh −λh)(xi,y j)

4
h2,0).

(4) If sup
(xi,y j)∈N

|uk+1(xi,y j)−uk(xi,y j)|< TOL then stop otherwise setk= k+1

and iterate the previous step.

In the next subsection we mainly work with Dirac measure.

5.1.1. Discretization of Min-formula for Dirac measure

As mentioned before we mainly work with Dirac measure. Thereare several papers
dealing with differential equations with jump as Dirac function, e.g., see [18].

In [14] Mayo has considered the discrete version of delta function. Following
his work, consider the delta functionδa and letxi andh be the grid points and the
mesh size. We consider two types of the grid points. Ifxi−1 ≤ a≤ xi then the points
xi, xi−1 are calledirregular points, otherwise they areregular points.

In one dimension, by applying Taylor expansion, one can easily obtain the dis-
cretization form of (4.2) as follows

u′′(xi) =
ui−1−2ui +ui+1

h2 − δ̃i +OI(h)+O(h2),

whereOI denotes the error which occurs at the irregular points. Hereδ̃i is given by

δ̃i = δ̃+
i + δ̃−

i where

δ̃+
i =

{
(xi+1−a)

h2 if xi ≤ a < xi+1,

0 otherwise,

and

δ̃−
i =

{
(a−xi−1)

h2 if xi−1 < a < xi,

0 otherwise.

It is easy to see that if the source pointa is not a grid point, i.e.,xi < a < xi+1, then
the functionδ̃i is nonzero only at the two grid pointsxi,xi+1. If the the source point
a is a grid point, theñδi is nonzero only atxi = a and we havẽδi =

1
h . Moreover, if

a = xi+1+xi
2 thenδ̃i =

1
2h .

Hence the discrete form of Min-formula is

min(
ui−1−2ui +ui+1

h2 −λh + δ̃i,ui) = 0,

and by simple calculations we get

(5.2) ui = max(ui +
1
2
(λh − δ̃i)h

2,0).

In this case the third step ofAlgorithm I for µ = δ is as follows:
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• For k ≥ 1 update the values at each grid points by (5.2). More precisely

uk+1
i = max(uk

i +
1
2
(λhh2− δ̃ih

2),0).

Remark 3. One can extend the previous results to find a similar discretization of
Dirac measure in two dimensions. For more details see [18].

5.2. Finite difference discretization for the two phase case

We will present two methods to simulate the solution of the problem (2.4).

5.2.1. First method

Consider the two phases free boundary problem (2.4) and setu1 =max{u,0}, u2 =
max{−u,0}. Clearly u1 andu2 are the solutions of the following one phase free
boundary problems

(5.3)

{
∆u1 = λ+χΩ1

−µ+, in Ω1 = {u1 > 0},
u1 = 0 on∂Ω1,

and

(5.4)

{
∆u2 = λ−χΩ2

−µ−, in Ω2 = {u2 > 0},
u2 = 0 on∂Ω2,

respectively, see [7]. Note thatu1 andu2 have disjoint supports, i.e,u1 · u2 = 0.
Indeed, the gradient ofu = u1 − u2 vanishes on∂Ω \ (∂Ω1 ∩ ∂Ω2) whereΩ =
Ω1∪Ω2. The solutionsu1 andu2 are coupled with the condition

|∇u1|= |∇u2| on ∂Ω1∩∂Ω2

Now consider a domainD such thatΩ⊂D and letN be a uniform mesh onD with
the mesh sizeh and(xi,yi)∈N . We use the five stencil points finite difference for
Laplace operator to get

4
h2

(
u1(xi,y j)−u1(xi,y j)−u2(xi,y j)−u2(xi,y j)

)
=(5.5)

= (λ+
h χΩ1 −µ+

h )− (λ−
h χΩ2 −µ−

h ),

We can obtainu1(xi,y j) andu2(xi,y j) from (5.5) and impose the following condi-
tions

u1(xi,y j) ·u2(xi,y j) = 0 andu1(xi,y j)≥ 0, u2(xi,y j)≥ 0.

The iteration method for the grid points in supp(µ±) is set up as follows,

(5.6) uk+1
1 (xi,y j) = max

(
uk

1(xi,y j)−uk
2(xi,y j)+

(µ+
h −λ+

h )h2

4
,0

)
,

and

(5.7) uk+1
2 (xi,y j) = max

(
uk

2(xi,y j)−uk
1(xi,y j)+

(µ−
h −λ−

h )h2

4
,0

)
,
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whereµ±
h are the discretizations ofµ±. For other points we have the same iteration

formula withoutµ±
h .

Now assume that the measuresµ± are Dirac measures located at the source
pointsX1 = (xi1,y j1) ∈ N andX2 = (xi2,y j2) ∈ N . We can discretize the Dirac
measuresµ+ = c1δX1 andµ− = c2δX2, by

(5.8) µ+
h =

3c1

πh2 , µ−
h =

3c2

πh2 .

Therefore we update the values at each grid point due to (5.6)and (5.7) as follows:

• For source points

uk+1
1 (xi1,y j1) = max

(
uk

1(xi1,y j1)−uk
2(xi1,y j1)+

3c1/(πh2)−λ+
h

4
h2,0

)
,

uk+1
2 (xi2,y j2) = max

(
uk

2(xi2,y j2)−uk
1(xi2,y j2)+

3c2/(πh2)−λ−
h

4
h2,0

)
,

• otherwise

uk+1
1 (xi,y j) = max

(
uk

1(xi,y j)−uk
2(xi,y j)−

λ+
h h2

4
,0
)
,

uk+1
2 (xi,y j) = max

(
uk

2(xi,y j)−uk
1(xi,y j)−

λ−
h h2

4
,0
)
.

Now we are ready to construct the first algorithm for the two phase quadrature
domain based on the PDE formulation.

This algorithm is constructed as follows using the discretization formulas (5.6)
and (5.7).

(1) Choose a toleranceTOL << 1 and a big domainD and consider a finite
mesh on it.

(2) Find an appropriate discretization for the measuresµ±.
(3) By using (5.6) and (5.7) findu1 andu2.
(4) For u = u1− u2, if sup

(xi,y j)∈N

|uk+1(xi,y j)− uk(xi,y j)| < TOL, then setk =

k+1 and go to previous step.

5.2.2. Algorithm for the multi phase case

Now consider the problem (2.1) form ≥ 2. Let us now define, for alli

ûi := ui −∑
j 6=i

u j.

From here we get

∆(ui −∑
j 6=i

u j) = λiχΩi
−µi −∑

j 6=i

(λ jχΩ j
−µ j).

The problems (2.1) is equivalent to the following system
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(5.9)





∆ui = λiχΩi
−µi in R

N ,

∆(ui −∑ j 6=i u j) = λiχΩi
−µi −∑ j 6=i(λ jχΩ j

−µ j) in R
N ,

ui ≥ 0 in R
N

supp(µi)⊂ Ωi.

Algorithm II: For an arbitrarym, the third step of the above algorithm is gen-
eralized for multi phase case. Forl = 1, · · · ,m and anyx ∈ N we iterate

(5.10) u(k+1)
l (x) = max

(
u(k)l (x)− ∑

p6=l

u(k)p (x)+
(µl −λl)(x)h2

4
, 0

)
,

whenx ∈ supp(µl). Otherwise

(5.11) u(k+1)
l (x) = max

(
u(k)l (x)− ∑

p6=l

u(k)p (x)− λl(x)h2

4
, 0

)
.

Remark 4. Note that this iterative method is slow since information propagates
from the support of the measures.

Lemma 5.1. Assume that µi for i = 1, . . . ,m are Dirac measures. The iterative
method (5.10)and (5.11)for any x ∈ N satisfy

u(k)l (x) ·u(k)q (x) = 0,

for all k ∈ N and q, l ∈ {1,2, . . . ,m},where q 6= l.

Proof. We know that the measuresµi have disjoint supports so for the points in
supp(µi) the proof is obvious. Assume that the pointx does not belong to supp(µi)
for all 1≤ i ≤ m. Observe that from (5.11) it follows that

u(k+1)
l (x) ≥ 0,

for all k ∈ N andl ∈ {1,2, . . . ,m}. If u(k+1)
l (x)> 0, then by (5.11) we have

u(k+1)
l (x) = u(k)l (x)− λl(x)h2

4
− ∑

p6=l

u(k)p (x).

This shows that for everyq 6= l we obtain

u(k)l (x) > ∑
p6=l

u(k)p (x)+
λl(x)h2

4
≥ u(k)q (x).

Thus

u(k)q (x)< u(k)l (x)≤ λq(x)h2

4
+ ∑

p6=q

u(k)p (x),

and after rearranging the above inequalities we arrive at

(5.12) u(k)q (x)− λq(x)h2

4
− ∑

p6=q

u(k)p (x) < 0.
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In light of (5.12) and (5.10) we derive

u(k+1)
q (x) = max

(
u(k)q (x)− λq(x)h2

4
− ∑

p6=q

u(k)q (x), 0

)
= 0,

and finally
u(k+1)

l (x) ·u(k+1)
q (x) = 0.

�

5.2.3. Second method: Discretization of the Min-Max formula

In this part, we construct and implement another numerical scheme for the two
phase quadrature domain and prove its convergence. The maintools of this method
are monotonicity, consistency and stability to provide theconvergence.

The fundamental result for the convergence of numerical schemes for fully non-
linear, degenerate equations is Barles-Souganidis Theorem, see [5].

Theorem 5.2. (Barles-Souganidis, 1991) Consider a degenerate elliptic partial
differential equation for which there exists a unique viscosity solution. A consis-
tent, stable approximation scheme converges uniformly on compact subsets to the
unique viscosity solution provided it is monotone.

5.2.4. Monotonicity, Stability and Consistency

In order to construct convergent numerical schemes, we define a class of nonlinear
finite difference schemes which are called degenerate elliptic.

Definition 5.3. A schemeL is calleddegenerate elliptic if each componentLi[u] =
L[ui,ui −u j] is non-decreasing in each variable.

In other words, all the scheme’s components are non-decreasing functions ofui

andui −u j.
It is easy to find the following discretization for Min-Max problem (4.5) where

µ±
h are appropriate discretizations ofµ±,

(5.13)

Li[u] = L[ui,ui −u j]

= min

(
∑

j=N(i)

(ui −u j)+ (λ+
h −µ+

h )h2,

max( ∑
j=N(i)

(ui −u j)− (λ−
h −µ−

h )h2,ui)

)
= 0.

It is easy to see that all components (5.13) are non-decreasing functions ofui and
ui −u j and thereby the schemeL is degenerate elliptic.

Lemma 5.4. The scheme (5.13) is degenerate elliptic.

Remark 5. If one deals with the uniform grid then it is clear that|N(i)| is a constant.
For instance, it arises|N(i)| = 4 for the five points discretization of Laplacian in
dimension two.



16 F. Bozorgnia & M. Bazarganzadeh

Definition 5.5. For a nonlinear equationLu = 0, the schemeLi[u] = L(ui,u j=N(i))
is monotone if it is non-decreasing in the first variable and non-increasing in the
remaining variables, see [13].

For example it is clear that the scheme (5.13) is monotone.

Definition 5.6. By stability, we mean that for everyh > 0, the schemeL has a
solutionuh which is uniformly bounded independently ofh.

The proof of the next theorem could be found in [15].

Theorem 5.7. A scheme is monotone and stable if and only if it is degenerate
elliptic.

The next corollary is obtained by Theorem 5.7 and Lemma 5.4.

Corollary 5.8. The scheme (5.13) is monotone and stable.

Remark 6. One can easily build monotone numerical schemes which are not stable,
see [15]. It means that elliptic degeneracy is stronger thanmonotonicity.

Definition 5.9. The schemeLi is consistent atxi if for all ψ ∈C2 which is defined
in a neighborhood ofxi, we have

Li
h[ψ ]→ L[ψ ](xi) whenh → 0.

Lemma 5.10. The approximation scheme (5.13) is consistent.

Proof. Suppose thatxi is a grid point andψ ∈C2(B), whereB is a ball centered at
xi. It is clear that

∑
j=N(i)

1
h2 (ψi −ψ j)−λ−

h +µ−
h →−λ−+µ−−∆ψ(xi),

whenh → 0 and consequently

max( ∑
j=N(i)

1
h2 (ψi −ψ j)−λ−

h +µ−
h ,0)→ max(−λ−+µ−−∆ψ(xi),0).

Similarly

∑
j=N(i)

1
h2 (ψi −ψ j)+λ+

h −µ+
h → λ+−µ+−∆ψ(xi),

and one can obtain

Li
h[ψ ](x)→ L[ψ ](x), whenh → 0.

�

The proof of the next corollary is obtained by previous lemmaand Barles-
Souganidis Theorem.

Corollary 5.11. The scheme (5.13) converges to the unique viscosity solution of
(4.5).
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Remark 7. By simple calculation one can derive the following reformulation of
(5.13) in two dimensions,

Li[u] = min

(
ui −ui +

λ+
h −µ+

h

4
h2,max(ui −ui −

λ−
h −µ−

h

4
h2,ui)

)

= min

(
ui −ui +

λ+−µ+
h

4
h2,ui −min(ui +

λ−
h −µ−

h

4
h2,0)

)
= 0,

which turns to

(5.14) Li[u] = ui −max

(
ui +

µ+
h −λ+

h
4 h2,min(ui +

λ−
h −µ−

h
4 h2,0)

)
= 0.

5.2.5. Second algorithm for the two phase QDs

Algorithm III: The second numerical algorithm based on Min-Max formulation
is given by,

(1) Choose a tolerance, TOL.
(2) Choose a big domainD and consider a finite mesh on it.
(3) Find an appropriate discretizationµ±

h for the measuresµ±.
(4) Apply the finite difference scheme (5.14) and let

uk+1
i = max

(
uk

i +
µ+

h −λ+
h

4
h2,min(uk

i +
λ−

h −µ−
h

4
h2,0)

)
.

(5) If |uk+1
i −uk

i | ≤ TOL then stop.

Remark 8. If we consider two Dirac measuresµ1,µ2 with two positive densities
c1,c2 at two pointsx1,x2 then the third step of the algorithm III could be as follows:

uk+1
i = uk+1(xi) =





max

(
uk

i +
3c1/πh2−λ+

h
4 h2,min(uk

i +
λ−

h −3c2/πh2

4 h2,0)

)
,

if xi = x1 or xi = x2,

max

(
uk

i −
λ+

h
4 h2,min(uk

i +
λ−

h
4 h2,0)

)
,

if xi 6= x1 andxi 6= x2.

6. Numerical Simulations

In this section, we examine the numerical algorithms in the case of Dirac measure.

Example 6.1. Suppose thatµ = δ0 is the Dirac delta function concentrated at the
origin and setλ = 1. It is well known that the corresponding quadrature domainis
the ball centered at the origin with radiusr = 1√

π , see [6].
To find a numerical approximation, we consider a uniform meshon

D = [−0.7,0.7]× [−0.7,0.7],
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FIGURE 2. The exact and the numerical solution for the one phase
quadrature domain by considering Dirac measure.

with mesh sizeh = 0.01. According to the discretization of Dirac measure, Sub-
section 5.1.1 we setµh(0) = 3

πh2 . We have usedAlgorithm I and Figure 2 shows
the result.

Example 6.2. In this example we solve a two phase problem by applying both
Algorithm II andAlgorithm III . Consider a meshN , with sizeh on

D = [−2.5,2.5]× [−2.5,2.5],

and assume thatX1,X2 ∈ N are two distinct grid points. Letµ+ = c1δx1 and
µ− = c2δx2, wherec1,c2 are two positive constants. Figures 3 (a) and 3 (b) are the
numerical solution corresponding toAlgorithm II andAlgorithm III . It is verified
that the second method based on Min-Max is faster than the first one. Figure 4
depicts the surface of the numerical approximation.

Example 6.3. We can make a three phase non-symmetric quadrature domain by
chosingλ1 =

1
2,λ2 =

1
3,λ3 =

1
5,ci = 1 in Algorithm II . The mesh size is 0.02 and

the numerical simulation is illustrated in Figure 5.

Example 6.4. Consider four source points with the different intensities

c1 = 1,c2 = 2,c3 = 4,c4 = 6,λ1 = λ2 = λ3 = λ4 = 1/3.

The source points are located on a circle. We useAlgorithm II and find the nu-
merical solution which is illustrated in Figure 6.

Example 6.5. In this simulation we have considered five source points which one
of them, µ5, is located at the origin and the others are on a ball centeredat the
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(A) Numerical solution by
applying Algorithm II .

(B) Numerical solution by ap-
plying Algorithm III .

FIGURE 3. The numerical approximation of the two phase quad-
rature domain w.r.t two Dirac measures where we have applied
Algorithm II and Algorithm III. Hereλ1 = 0.1, λ2 = 0.1,c1 = 1
andc2 = 2. The elapsed time,e, by Algorithm II is e = 141.3s
ande = 91.44s for Algorithm III . It is verified that the second
method for the two phase case is faster than the first one.

FIGURE 4. The surface of the two phase quadrature domain with
two Dirac measures in Example 6.2.
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FIGURE 5. A three phase quadrature domain where the Dirac
mass are located on a circle. The solution is derived by using
Algorithm II.

FIGURE 6. A four phase quadrature domain, where the Dirac
masses are located on a circle. The solution is derived by using
Algorithm II.

origin. We useAlgorithm II and Figure 7 shows the approximation. In this
exampleλi = 1/3 for 1≤ i ≤ 5 andc1 = c2 = c3 = c4 = 6 andc5 = 5.
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FIGURE 7. A five phase quadrature domain wherex1 is the origin
andxi for 2≤ i ≤ 5 are on a circle with the same intensity. Here
c1 = c2 = c3 = c4 = 6 andc5 = 5.

Example 6.6. This example depicts a five phase quadrature domain for whichthe
source points are located on a circle symmetrically. We useAlgorithm II and
λi = .01,ci = 2. Figure 8 shows the numerical approximation.

FIGURE 8. The contour of five phase quadrature domain where
all source points are located on a circle with the same intensity.
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