NUMERICAL SCHEMES FOR MULTI PHASE QUADRATURE
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ABSTRACT. Inthis work, numerical schemes to approximate the satutfmne
and multi phase quadrature domains are presented. We shatrect a mono-
tone, stable and consistent finite difference method fon boe and two phase
cases, which converges to the viscosity solution of thagatifferential equa-
tion arising from the corresponding quadrature domainrthe®oreover, we
will discuss the numerical implementation of the resultiqgproach and present
computational tests.
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1. Preliminaries

The subject of the quadrature domains, QDs, has been esbnstudied over
the last half-century and most of the papers deal with thepbase case, e.g., see
[10], [12] and [17]. There is a wide range of applications aadrature domains
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in physical problems. For instance, Richardson in [19] hadied the Hele-Shaw
problem involving a moving boundary problem by driving a flbstween two

parallel planes without considering surface tension. Henep a crucial and new
theory which now is a well developed subject. The solutiorthaf Hele-Shaw

problem can be figure out as a one phase quadrature domain.

To the best of our knowledge, most of the authors have stutieatretical as-
pects of this field and there is a few literature on numeripgreach to the quad-
rature domains. The authors have presented some numeieahss to approach
the one phase quadrature domain in [6]. The main contribuwifahis paper is to
investigate different numerical approximations for thes,otwo and multi phase
guadrature domains.

The outline of this paper is as follows

e We will state the problem in Section two and provide the exaten of
the one and the two phase cases and the corresponding péféegntial
equations, PDEs.

e Section three consists of an introduction to the degeneitypéic equation
and the viscosity solutions.

e Section four is devoted to reformulate the problem for the and the two
phase case. We provide two degenerate elliptic equaticthsnaastigate
the relation between their viscosity solutions and the vasditions of the
PDEs.

¢ In Section five we discretize the reformulated problems atrduce our
numerical algorithms based on finite difference methodotigh this sec-
tion we concentrate on a special measure, the Dirac measutesxplain
the schemes for this case.

¢ In the last section we shall examine the algorithms by shglgome nu-
merical examples.

2. Problem Setting

Let yi, i =1,--- ;m be given finite measures with compact supports &ifx) be
non-negative Lipschitz continuous functions. In thisceti we investigate the
following problem.

Problem: Find functionsy; and domaing; := {x € RN|u;(x) > 0} for i =
1,--- ;msuch that supfu) C Q; and

AU = AiXo — Hi N RN,

(2.1) u=0 inQ;j,j#I,
|Oui| = [Oug| onlij :=dQiNaQ;,
|DUi|:0 onin\UFij,

which is understood in the distribution sense. For an ilatgin of the problem
see Figure 1. This problem is related to geometric flows ateral identity in
potential theory.
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Q; = {u >0}

SUpPH K )

FIGURE 1. This figure shows the supports of the measures and
supports of the solution of (2.1) and the correspondingliend-

ary. The points, x; andxs are examples of points with different
multiplicity, see definition 2.2.

The main contribution of this paper is to construct a finitéetdence method to
approximate the solution of (2.1). We also prove that theenioal approximation
converges to the viscosity solution of problem (2.1) forechsesn= 1 andm= 2.
These cases arise from the quadrature domains theory wehiphite well studied
for the one phase case, see for instance [12] and [17] anéfis@nces therein.

2.1. Casan= 1: One phase quadrature domain

Let u be a Radon measure with compact suppoitfa An open connected domain
Q c RN, is calledquadrature domain with respect tqu if

2.2) /hdxz/hdu, vhe LY(Q), supp(k) C Q,
Q

whereSLY(Q) is the space of all subharmonic functions containediif2). There

is a strong relation between the concept of quadrature dwnpbtential theory
and the theory of partial differential equations (PDEs)k&ban [17] has shown
that if Q is a quadrature domain with respectitadhen the paifu,Q) with Q :=
{x€ RN |u(x) > 0} is the unique solution of the following one phase free bounda
problem

Au=xo—H, in RN
(2.3) u>0o, in RY,
u=|0Ou/ =0 in RN\Q.

To ensure this work self contained, we will explain the tlyeof the two phase
case.
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2.2. Casan= 2: Two phase quadrature domain

Emamizadeh, Prajapat and Shahgholian introduced the tasepfuadrature do-
main in [9]. They proved the existence of the solution of Y2 minimization
techniques in the case of= 2. The uniqueness of quadrature domain is a chal-
lenging problem even in the one phase case, but if one corsigle assumption,
see (2.4) then the problem has a unique solution, see [3].

Here we briefly review the definition of the two phase quadetiomain. Be-
fore that we need to introduce some notations.

Suppose tha® ¢ RN. Let

e S7(Q) andS (Q) be the set of all subharmonic and superharmonic func-
tions inQ respectively.
e SL*(Q) be the set of all functions ib* which are inS*(Q).

We note thaBL*(Q) is exactly the same &&.1(Q) in the one phase case.
Definition 2.1. Let Q* be two disjoint subsets dkN and u* be two positive

Radon measures with compact support®in Moreover, suppose that" are two
non-negative Lipschitz continuous functionsult= u™ — u~— and

Athdx— [ A hdx> /hdu, vhe LM QM) na(Q),
Qf Q-
then we say tha® := Q" UQ™ is atwo phase quadrature domain w.r.t u for the
class
SQ) =S (@) NS (@),
and we writeQ € Q(u, S).

Similar to the one phase case we can provide a PDE formul&tiothe two
phase case. Consider the following free boundary probldimeidlistribution sense

— At _ gt _ - T i N
(24) Ali_ )\ XQ+ l‘l ()\ XQ— I’l ) in R )
QF ={+u> 0},

where suppu®) c Q* andu,Q* are unknown. IfQ = QT UQ~ then one can
show thatQ € Q(u, S) if and only if Q is the unique solution of (2.4), see [3] and

[9].

Remark 1. If we setu = u; — up, then the problem (2.4) is a special case of (2.1)
where
up = ut = max(u,0), Uz = U = max—u,0).

Consider problem (2.1) and |& = | J; Q;. We define now multiplicity of a point
and discuss on the multiplicity of one and two phase points.

Definition 2.2. The multiplicity of a pointx € Q, denoted byn(x), is defined by
m(x) = card{i : meas(Q; NB(x,r)) > 0 for allr > 0}.
The interface between two densities is defined as
0QiNJdQ;N{xe Q:m(x) =2}.



5 F. Bozorgnia & M. Bazarganzadeh

Our numerical scheme is based on the following propertidgciware straight-
forward to verify.

Lemma 2.3. Let xp € Q. Then the following holds:

1) If m(Xp) = 0, then thereisar > 0 such that for every i =1,--- . m; yy =01in
B(Xo,r).

2) If m(xg) = 1, then there are i and r > 0 such that

Au; = AiXo, — Wi, uj=0 for j#i, inB(xo,r).
3) If m(xg) = 2, then there are i, j and r > 0 such that for every k i, j we have
uc=0and
AU —uj) = AiXa, — AjXa; — Hi + Hj, inB(Xo,r).

The last part of Lemma 2.3 states that for points with mutigyl two, the prob-
lem locally turns to the two phase case of quadrature donralslgm. For example
in Figure (1), the pointsy,x, andxs have multiplicity 21,0, respectively. Thus
we can find a small baB(xy, €) such that problem (2.1) turns to (2.4)Bx, €).

3. Degenerate elliptic equations and Viscosity Solutions

In this section we recall the definition of a degenerate tidlipquation and a vis-
cosity solution.

Let Q be a bounded open subset®Y andL(x,r,p,M) be a continuous real
valued function defined of x R x RN x .#N where.#N is the space of all sym-
metricN x N matrices. Moreover, suppose that and D?u denote the gradient
and Hessian matrix of functiom respectively.

Definition 3.1. The fully non-linear second order partial differential atjan
(3.1) Lu = L(x,u,Du,D?u) = 0,
is called adegenerate elliptic equation if forry < r, andMy,M, € .ZN with My <
M2

L(x,r1,p,M2) <L(Xr2,p,M1),
whereM; < My, meandM, — M1 is a nonnegative definite symmetric matrix.

For the reader’s convenience we recall the viscosity smutthose importance
and its merits can be seen in the convergence analysis olthental schemes,
for instance see [15]. To have a complete review of this taygcefer to [8] where
Crandall and Lions introduced the viscosity solution fog thist order Hamilton-
Jacobi equation. We also refer the reader to [4] which is atgreference for
viscosity solutions.

Definition 3.2. A continuous functioru is called a

e viscosity sub-solution for the equation (3.1) if for every € C?(Q) and
local maximum poinkg € Q of u— y,

L(xo,u<xO>,Dw<xO>,D2w<xo>) <o,



6 F. Bozorgnia & M. Bazarganzadeh

e viscosity super-solution for the equation (3.1) if for every € C2(Q) and
local minimum pointxg € Q of u— g,

L(xo,u<xO>,Dw<xO>,D2w<xo>) >0

e viscosity solution of (3.1) if and only if it is both viscosity sub and super-
solution.

4. Reformulation of the problem for m=1,2.

In this section we reformulate the one phase and the two pQ&seroblems.

This reformulation enable us to introduce viscosity solusi for these problems.
We show that the viscosity solutions for these degenerdifgielequations are
equivalent to weak solutions of our original QD problems.

4.1. Min-formula for the one phase case

Consider the following one phase QD problem, which was @uoed in subsection
2.1. Find(u,Q) such that

Au=Ax,—u inRN

> inRN
(4.1) u>0 !nR ,
u=1|0Ou=0 inRN\Q,
supp(u) C Q,

whereQ = {u > 0}. From now in this paper, for a given measyreve convolve
p with a mollifier and we work with the regularized measure. Nuve can easily
see that the equation
(4.2) L(x,u,Du,D?u) := min(—Au+A —p,u) =0, inRN
is degenerate elliptic. We refer to (4.2) Mn-formula.
Now we consider the following problem
min(—Au+A —u,u)=0 inRN,
(4.3) u=|0u =0 inRN\ Q,
supp(H) C Q.

By considering maximum principle and Perron’s method we manve that (4.3)
has a unique viscosity solution, see [8]. Next lemma showgehation between
(4.1) and (4.3).

Lemma 4.1. The viscosity solution of (4.3) isa solution of (4.1) and vice versa.

Proof. Suppose thati is a weak solution of (4.1) i = {x|u(x) > 0}. To prove
thatu is a viscosity solution of (4.2) it is sufficient to show thiisi both viscosity
sub and super-solution. We argue by contradiction and sgftatu is not a
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viscosity super-solution, then there exists a p&y¥ Q such thauu— ¢ has local
minimum atxg and

L(x,u(x0), D(x0), DY (%)) = min(—Ay(xo) + A — K, U(x)) < 0.
By positivity assumption ofi we obtain that
F(Y)(%0) == —AY(x) +A —u <0,

and by continuity ofF, we can find a > 0 such that~(y)(x) < 0 for all x €
B(Xo,r). Let
s= inf (u—y)(x) >0,
xedB

and setd) = ¢ + s, then (x) < u(x) for all x € dB,. Moreover,F({) < 0 in
By and comparison principle giveg < u in B;. On the other hand we know that
u(Xo) = Y(xo) then

P(x0) = Y(%0) +5=U(X0) +5> U(X),

which is a contradiction and consequentlig a viscosity super-solution. Similarly,
uis also a viscosity sub-solution, which proves the first pathe lemma.

For the converse part, consider the unique viscosity solutiof (4.2). Ifu >0
thenAu= A — uin Q in the viscosity sense. Then by the uniqueness of the solutio
of (4.1) one getsl as a weak solution for (4.1). O

4.2. Min-Max formula for the two phase case
Suppose that is the solution of (2.4) and let
Qf={x:u(x)>0}, Q ={x:ux)<0} andQ=Q"UQ".

Our objective is to prove thatsatisfies the following non-linear problem

4.4) {min (—Au+)\+ —ut,max—Au—A- +u,u)> =0 in RN,
u=0 in RN\ Q.
The equation
(4.5) Lu:= min(—Au+)\+—u+,max(—Au—)\‘+u‘,u)> =0,
:s calledMin-Max formula and introduced in [2] for the two phase obstacle prob
em.

Remark 2. One can rewrite the equation of the two phase quadrature iddhd)
in another form of Min-Max form as,

min(—Au+A* —u* u)+ max(—Au—A~ +pu - ,u)—u=0.

First, we show that (4.5) is a degenerate elliptic equatimhthen we prove that
its viscosity solution is a weak solution of the correspogdPDE. A similar proof
of the next proposition could also be found in [1].
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Proposition 4.2. Equation (4.5) isa degenerate elliptic equation and problem (4.4)
has a unique viscosity solution.

Proof. Suppose that; < r, andMy,M; € .#N with M; < My, thentrace(M;) <
trace(My). Itis clear that
—AT+u —trace(Mp) < —A~ +u~ —trace(My)
and consequently
max(—A~ +pu~ —trace(Mz),r1) <max(—A~ +pu~ —trace(My),r2).
Similarly
AT —ut —trace(Mp) < AT — ut —trace(M;)
and these inequalities sum up to
L(x,r1,p,M2) < L(Xr2,p,M1),

which shows that (4.5) is a degenerate elliptic equation.

For the second part, suppose thandv are two different viscosity solutions of
(4.5). We consider the following different cases.

First assume that > v > 0. According to what we assumadlis both viscosity
super and sub-solution for the problem. lat (s, € C? such thau— (; has local
maximum atx; andu — (» has local minimum ix,. Therefore by definition

(4.6) L(¢1) (%) = L(x1,u(xa), Dy (x1), D31 (x1)) < O,
and

(4.7) L(¢2)(X2) = L(%2,U(X2), DYia(%2), D?a(x%2)) > O.
Therefore

—Agp+AT —put >0,
which is equivalent to claim thatis a viscosity super-solution of the
(4.8) Au=A"—put.
By the positivity ofu we obtain
max(—Ags — A~ + ", u(x1)) > 0,
and inequality (4.6) implies
—Ag+AT -t <0,
which is equivalent to say thatis also a viscosity sub-solution of
(4.9) Au=A"—put.

Consequently (4.8) and (4.9) yields a viscosity solution oiu= A"+ — ™, where
u>0.

On the other hand all these results are valid/for0, i.e.,vis a viscosity solution
of Av= A" —u*, wherev > 0. Finally we have

A(U—V):O in {U>0}7
(4.10) {u:\,:o ond{u > 0}.
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By applying maximum principle we gei= v = 0 which contradicts our assump-
tion.

For other casesj < v< 0 oru> 0> vone can apply the same techniques and
prove the lemma. O

Lemma 4.3. If u* are Dirac measures then any weak solution of (2.4) isa viscosity
solution of (4.5) and vice versa.

Proof. Suppose that solves (2.4) in the weak sense. We treat the problem in two
cases.

e If xe Q' thenu(x) > 0 and Lemma 2.3 verifies thAu = A" — u™ holds
in a ballB := B(x,ry) for somery > 0. This means that

max—Au—A~"+p ,u)>0 and —Au+AT—put =0,

hold in the viscosity sense B, for details see [11] Section 4. Conse-
quently (4.5) is obtained by similar discussion in the probfemma 4.1.

e If x€ Q7, according to Lemma 2.3 we gati=—-A~ +u~ inaballB:=
B(x,rx) for somery > 0 and therefore

max(—Au—A~ +pu ,u)=0.
On the other hand by the assumptions for the measures one gets
—AU+AT—put=A"—pu +AT—put >0 aeinB,

in the viscosity sense. Then again according to the proofeofina 4.1 it
yields

min(—Au+)\+—u+,max(—Au—)\‘+u‘,u)> =0.

It turns out thau is a viscosity super-solution of (4.5).

Similarly we can prove thatis also a viscosity sub-solution. For the other side we
also consider two cases.

e Suppose thatl > 0 solves the Min-Max formula in the viscosity sense.
We argue by contradiction and assume tha&iu+ A" — u™ > 0 then
max(—Au— A~ 4+ u~,u) = 0 which violates the positivity of.

¢ If u< 0 solves the Min-Max formula in the viscosity sense and if (rau—
AT+u,u)=—-Au—A"+u >0,then—Au+A" —u* =0. Itturns out
thaty™ — AT —A~+pu~ >0. Butitisclearthad* +A~ —u™—u= >0
a.e. inRN.

Henceu solves (2.4) in viscosity sense which is also a weak solwimrording to
the uniqueness of the solution, see [3].
O
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5. Numerical approximation

In this section we will discretize Min and Min-Max formulasdwill build nu-
merical algorithms based on the finite difference methoderilue shall apply the
schemes for Dirac measure.

We define a structured grid” with mesh sizén on a domairD, consisting of a
set of grid pointsg € 4", i =1,--- ,N. Each grid poink; is endowed with a list of
neighborsN(i). A grid function is a real valued function which is defined b t
grid, with valuesy; := u(x;). Usually a finite difference scheme at each grid point
can be written as an equation of the form

Li[u] = Ln[ui, u — uj| i=1,...,N.

j:N(i)]’
In other words, we regard a scheme as an equation that haotdglat; € /", For
having a simple notation from now on, we drband write

L'[u] := Ln[ui, u —uj],

whereu; is the shorthand for the list of neighbaug|;_n). Also by Ti we mean
the average ofij|j_()- Thus a solution for a schente with componentd.!, is a
grid function which satisfiek'[u] =0 foralli =1,...,N.

5.1. Discretization of the Min-formula

Consider the Min formula if2 and suppose thd& is a big enough domain where
Q C D, for existence of such B, see [16]. Let4 be a uniform mesh ob with
the mesh sizé. We discretize the the equation in ( 4.3) ( Min formula) asoiek

min(—ApU+ Ap — tp,u) = 0,

wherepy is an appropriate discretization pfand—Anuis a discretization of Lapla-
cian operator. We remind thatis the regularized measure with compact support.
For instance, in dimension two using standard finite difieeewith five points, we
discretize the Laplacian operator at the pa@ity;) € .4/ as

h2 ’

wheret(x;,y;) = 7 (U(X-1,Yj) +U(X1,Y}) +U(X,Yj-1) +U(X,Yj1)). By simple
calculation we get

—AhU(Xi 7yj) =

(IJh - Ah)(xl 7yJ) hZ
4 ’
Algorithm I.  For the one phase case the numerical algorithm to approgimat
the corresponding quadrature domain is as follows:
(1) Choose a domaib with Q c D, initial guessu® and a toleranc& OL <<
1.
(2) Find a discretizatioq, for .

(5.1) u(x,yj) = max(m(x,y;) + 0).
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(3) Fork > 1 update the values at each grid points by (5.1). More prigcise

(Mn— An) (%, Y))
4
@) If sup [UTL(x,y)) —u¥(x,Yj)| < TOL then stop otherwise skt=k+ 1

(Xiyj)en
and iterate the previous step.

In the next subsection we mainly work with Dirac measure.

UL (%, yj) = max@®(x,yj) + h?,0).

5.1.1. Discretization of Min-formula for Dirac measure

As mentioned before we mainly work with Dirac measure. Tlaeesseveral papers
dealing with differential equations with jump as Dirac fting, e.g., see [18].

In [14] Mayo has considered the discrete version of deltation. Following
his work, consider the delta functia® and letx; andh be the grid points and the
mesh size. We consider two types of the grid points;_If < a < x; then the points
Xi, Xi_1 are calledrregular points, otherwise they aregular points.

In one dimension, by applying Taylor expansion, one carlyeabtain the dis-
cretization form of (4.2) as follows

Ui—1 — 2U; + Ui ~
u//(xi) _ A 1 hzI I+1—d—|—0|(h)+o(h2),

whergp. denotes the error which occurs at the irregular points. l&dsagiven by
& =4"+38 where

5 [ ifx<a<xia
0 otherwise,

and

5 @—h—’;—ﬂ if Xi_1<a<Xx,
0 otherwise.

Itis easy to see that if the source poaris not a grid point, i.ex < a < X1, then
the functiond is nonzero only at the two grid points X;+1. If the the source point
ais a grid point, therd is nonzero only ax;, = a and we havey = % Moreover, if
_ Xip1tX 5 _ 1
a= 5= then_d = 2. ' '
Hence the discrete form of Min-formula is

Ui—1— 2Ui +Ujy1

min( 2 —)\h+§,ui):0,
and by simple calculations we get
1 ~
(5.2) U =max(i + 5 (A — &)h*,0).

In this case the third step @figorithm | for u = d is as follows:
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e Fork > 1 update the values at each grid points by (5.2). More prgcise
U = max(uk + %()\hhz — &h?),0).
Remark 3. One can extend the previous results to find a similar disadin of

Dirac measure in two dimensions. For more details see [18].

5.2. Finite difference discretization for the two phase cas

We will present two methods to simulate the solution of thebfgm (2.4).

5.2.1. First method

Consider the two phases free boundary problem (2.4) and semax{u,0}, u, =
max{—u,0}. Clearlyu; anduy are the solutions of the following one phase free
boundary problems

(5 3) AU1:A+X91—[J+, in Q]_:{Ul >0},
’ u=0 onodQq,

and

(5.4) Auzzz\*xgz—u*, in Qy = {uz > 0},
' U =0 Ol’lsz,

respectively, see [7]. Note thai andu, have disjoint supports, i.el; - up = 0.
Indeed, the gradient af = u; — up vanishes ordQ \ (9Q1 N IdQ,) whereQ =
Q,UQ,. The solutions); andu, are coupled with the condition

|Ouz| = |Oup|  0ondQ1NaQ,

Now consider a domaib such tha C D and let.#” be a uniform mesh ob with
the mesh sizé and(x;,y;) € .#". We use the five stencil points finite difference for
Laplace operator to get

4
(5.5) £z (TL06 Y1) = U (6, Y1) = Ta(%, i) — Ua(X, ¥j)) =
= (An X1 — Hp ) — (A Xa, — Hy ),
We can obtairuy (x;,yj) anduy(x;,y;j) from (5.5) and impose the following condi-
tions
u1(X,Yj) - U2(%,Yj) = 0 anduy (%, yj) > 0, uz(x,yj) > 0.

The iteration method for the grid points in supg ) is set up as follows,

_ _ + _)\+ h2
(56) ulfi_l()(iuyj) = maX<UE(Xi7Yj) - ulé(xhyj) + M’O> )

and

(Hy —Ap)h?
f?o )

67 Ey) = max(u_gm,y,-) _E(yp) +
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whereuﬁf are the discretizations @f*. For other points we have the same iteration
formula withouty;".

Now assume that the measungs$ are Dirac measures located at the source
points X; = (X;;,Yj,) € A andXo = (X,,Yj,) € 4. We can discretize the Dirac
measuregtt = c;0x, andu~ = ¢ 0x,, by

3C1 _ 3C2
+ —
M = e M T e
Therefore we update the values at each grid point due to #8)5.7) as follows:
e For source points

(5.8)

Beu/(T) — Ay

o)

ulil(.+l(xilvyjl) = max(u'{(xil,yjl) - ulé(xihyjl) +

Bea/ (1)~ Ay

U|§+1(X52,yj2) = max(u_lé(xizvyjz) _u_ljl(_(xizvyjz) + 4 0)7
e otherwise
k+1 Tk Tk Ar:rhz
"'IlJr (thj) = max(ulj(_(Xij) - Ulé(xn)/]) - 4 70)7
kil X X Ay P
Uz (%, ¥7) = max (U5 (%, ;) — Ui(x, ;) = —5—,0).

Now we are ready to construct the first algorithm for the twagghquadrature
domain based on the PDE formulation.
This algorithm is constructed as follows using the diseegion formulas (5.6)
and (5.7).
(1) Choose a tolerancBOL << 1 and a big domail and consider a finite
mesh on it.
(2) Find an appropriate discretization for the measyres
(3) By using (5.6) and (5.7) find; andus,.
(4) Foru=u; — Uy, if sup |u1(x,y;) — U¥(x,Yj)| < TOL, then sek =
(x.yj)et
k+ 1 and go to previous step.

5.2.2. Algorithm for the multi phase case

Now consider the problem (2.1) fon> 2. Let us now define, for all
G:=u— ) uj.
2
From here we get
A — ;Uj) =AiXo — Hi— ;(/\jxgj — Hj)-
JF#I JF#
The problems (2.1) is equivalent to the following system
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AU = Ai X, — Hi in RN,

AU = Y jiUj) = AiXo — Hi— Yjzi(AjXo, —Hj)  INRY,
(5.9) J .

u >0 in RN

supp(Li) C Q.

Algorithm II:  For an arbitrarym, the third step of the above algorithm is gen-
eralized for multi phase case. Hoe 1,--- ,mand anyx € .4 we iterate

510) Y00 = max( 000 3 g+ AT o)
2 a

whenx € supg 1 ). Otherwise

D 4

Remark 4. Note that this iterative method is slow since informatiogagates
from the support of the measures.

Lemma 5.1. Assume that yj for i = 1,...,m are Dirac measures. The iterative
method (5.10)and (5.11)for any x € 4" satisfy

k k
309 g’ (x) =0,
forallke Nandq,l € {1,2,...,m},whereq # 1.

Proof. We know that the measurgg have disjoint supports so for the points in
supg 1 ) the proof is obvious. Assume that the potrdoes not belong to supp)
forall 1 <i < m. Observe that from (5.11) it follows that

ul(k+1) (X) >0,
forallke Nandl € {1,2,...,m}. If u*"(x) > 0, then by (5.11) we have
kil _(k A(x)h? _(k
u (%) = (x) - 7(4) = ;up(x).
p

This shows that for everg # | we obtain
A (xX)h?
o () > ;u&” 00-+ 25 > .
p
Thus )
Ag(X)h
w00 < g < 2 > 00,
p7q

and after rearranging the above inequalities we arrive at

Ag(X)h2
o0~ 20— 5 a0 <o
p7q

cl

(5.12)
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In light of (5.12) and (5.10) we derive

Aq(X)h?
g™ (x) = max (U&k) (x) — q(% - ; oy (%), O) =0,
P74

and finally
u|(k+1) (x)- u((qk+1) (X) = 0.

5.2.3. Second method: Discretization of the Min-Max formud

In this part, we construct and implement another numericaése for the two
phase quadrature domain and prove its convergence. Theoosrof this method
are monotonicity, consistency and stability to providedbevergence.

The fundamental result for the convergence of numericarses for fully non-
linear, degenerate equations is Barles-Souganidis Theaee [5].

Theorem 5.2. (Barles-Souganidis, 1991) Consider a degenerate elliptic partial
differential equation for which there exists a unique viscosity solution. A consis-
tent, stable approximation scheme converges uniformly on compact subsets to the
unique viscosity solution provided it is monotone.

5.2.4. Monotonicity, Stability and Consistency

In order to construct convergent numerical schemes, wealafalass of nonlinear
finite difference schemes which are called degeneratdiellip

Definition 5.3. A schemel is calleddegenerate elliptic if each componerit'[u] =
L[u;,u; — uj] is non-decreasing in each variable.

In other words, all the scheme’s components are non-deéogeasictions ofu;
andu; — uj.

It is easy to find the following discretization for Min-Maxgislem (4.5) where
uﬁf are appropriate discretizations jof,

L U] = L[ui,u — Uj]

:min( > (Ui —uj) + (AT — )2,

(5.13) i=N{(i)

max ¥ (u-u) - O - ) ) =0
j=N()

It is easy to see that all components (5.13) are non-deaggsinctions ofu; and

u; — u;j and thereby the schenheis degenerate elliptic.

Lemma 5.4. The scheme (5.13) is degenerate elliptic.

Remark 5. If one deals with the uniform grid then it is clear thilt(i)| is a constant.
For instance, it arisedN(i)| = 4 for the five points discretization of Laplacian in
dimension two.
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Definition 5.5. For a nonlinear equatiobu = 0, the schemé'[u] = L (Ui, Uj—ngiy)
is monotone if it is non-decreasing in the first variable and non-inciregsn the
remaining variables, see [13].

For example it is clear that the scheme (5.13) is monotone.

Definition 5.6. By stability, we mean that for everg > 0, the schemé has a
solutionu,, which is uniformly bounded independently lof

The proof of the next theorem could be found in [15].

Theorem 5.7. A scheme is monotone and stable if and only if it is degenerate
eliptic.

The next corollary is obtained by Theorem 5.7 and Lemma 5.4.
Corollary 5.8. The scheme (5.13) is monotone and stable.

Remark 6. One can easily build monotone numerical schemes which aistadae,
see [15]. It means that elliptic degeneracy is stronger thanotonicity.

Definition 5.9. The schemé! is consistent at; if for all ¢ € C2 which is defined
in a neighborhood af;, we have

LL[w] — L[y](x) whenh — 0.
Lemma 5.10. The approximation scheme (5.13) is consistent.

Proof. Suppose that; is a grid point andp € C?(B), whereB is a ball centered at
X. It is clear that

1
Y W) = Ay Ty AT AP,
j=N()

whenh — 0 and consequently

1 _ _ _ —
max S (Y= g) = Ay Hy,0) = max(—A~ T —AY(x),0)
j=N(i)
Similarly
1

> W) A~y AT T AP,

j=N()
and one can obtain

LL[w](x) = L[g](x), whenh — 0.
]

The proof of the next corollary is obtained by previous lemamal Barles-
Souganidis Theorem.

Corollary 5.11. The scheme (5.13) converges to the unique viscosity solution of
4.5).
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Remark 7. By simple calculation one can derive the following reforatidn of
(5.13) in two dimensions,

. A —ut AT — U-
L'[u] = min <ui —Ti+ hTuhhz,max(ui —T— hT“hhz,ui)>

)\+_ -+ )\*_ -
— min <ui—Ui+ 4uh h2,ui—min(_i+h7“hh2,0)> =0,
which turns to

(5.14) Li[u] =u; — max(UiJr Mhz, min(T; + A"Tphhz,o)) =0.

5.2.5. Second algorithm for the two phase QDs

Algorithm 1ll:  The second numerical algorithm based on Min-Max formutatio
is given by,

(1) Choose a tolerance, TOL.

(2) Choose a big domai and consider a finite mesh on it.

(3) Find an appropriate discretizatiquﬁt for the measureg™.

(4) Apply the finite difference scheme (5.14) and let

_ +_)\+
ukt = max(u}‘Jr Hn 1 h

T
h?, min(uk + =N 4““ h2,0)>.

(5) If |u“"1 — Uk < TOL then stop.

Remark 8. If we consider two Dirac measurgsg, Ll> with two positive densities
C1, C2 at two pointsxy, X, then the third step of the algorithm Il could be as follows:

— 25+ e - 2
max<u}‘+ S/ A 12, min(uk + Mhz,m),
if X =X 0rX = Xo,
. _
max(ur - AThhz, min(uf + AThhz,O)> ,

if X £ X3 andx; # Xo.

Ut = U (%) =

6. Numerical Simulations

In this section, we examine the numerical algorithms in #eecf Dirac measure.

Example 6.1. Suppose thatt = & is the Dirac delta function concentrated at the
origin and sef = 1. Itis well known that the corresponding quadrature donsin
the ball centered at the origin with radius= %T , see [6].

To find a numerical approximation, we consider a uniform nmash

D =[-0.7,0.7] x [-0.7,0.7),
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Numerical Solution
0.6 41 | —©— Exact Solution

0.4r

0.2r

FIGURE 2. The exact and the numerical solution for the one phase
guadrature domain by considering Dirac measure.

with mesh sizéh = 0.01. According to the discretization of Dirac measure, Sub-
section 5.1.1 we sgiy(0) = % We have used\gorithm | and Figure 2 shows
the result.

Example 6.2. In this example we solve a two phase problem by applying both
Algorithm Il andAlgorithm Il . Consider a mesh/’, with sizeh on

D=[-25,25] x [-25,25],

and assume that, X, € .4 are two distinct grid points. Lett™ = ¢10;, and

U~ = C0d,, Wherecy, C; are two positive constants. Figures 3 (a) and 3 (b) are the
numerical solution correspondingAdgorithm Il andAlgorithm IIl . Itis verified
that the second method based on Min-Max is faster than theofies Figure 4
depicts the surface of the numerical approximation.

Example 6.3. We can make a three phase non-symmetric quadrature domain by
chosingA; = 3,1, = 1,A3 = £,¢ = 1 in Algorithm Il . The mesh size is.02 and
the numerical simulation is illustrated in Figure 5.

Example 6.4. Consider four source points with the different intensities
a=1lc= 2,C3 =4,cp= 6,)\1 =Ar = )\3 =M= 1/3

The source points are located on a circle. We Agprithm Il and find the nu-
merical solution which is illustrated in Figure 6.

Example 6.5. In this simulation we have considered five source points wbite
of them, us, is located at the origin and the others are on a ball centatrdide
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(A) Numerical solution by (8) Numerical solution by ap-
applying Algorithm I . plying Algorithm Il .

FIGURE 3. The numerical approximation of the two phase quad-
rature domain w.r.t two Dirac measures where we have applied
Algorithm Il and Algorithm lll. HereA; =0.1, A, =0.1,c; =1
andcy; = 2. The elapsed times, by Algorithm Il ise=1413s
ande = 9144s for Algorithm Il . It is verified that the second
method for the two phase case is faster than the first one.

FIGURE 4. The surface of the two phase quadrature domain with
two Dirac measures in Example 6.2.
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|4

FIGURE 5. A three phase quadrature domain where the Dirac
mass are located on a circle. The solution is derived by using
Algorithm II.

FIGURE 6. A four phase quadrature domain, where the Dirac
masses are located on a circle. The solution is derived mgusi
Algorithm II.

origin. We useAlgorithm Il and Figure 7 shows the approximation. In this
exampleA; =1/3 for 1<i<5andc; =c; =c3=c4 =6 andcs = 5.
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FIGURE 7. A five phase quadrature domain whgyés the origin
andx; for 2 <i <5 are on a circle with the same intensity. Here
CL=Cy=Cz=Cq =6 andcs =5.

Example 6.6. This example depicts a five phase quadrature domain for viheh
source points are located on a circle symmetrically. We Aigerithm 1l and
A = .01 ¢ = 2. Figure 8 shows the numerical approximation.

FIGURE 8. The contour of five phase quadrature domain where
all source points are located on a circle with the same iitiens
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