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Factorizations, Riemann–Hilbert problems and the
corona theorem

M. C. Câmara, C. Diogo, Yu. I. Karlovich and I. M. Spitkovsky

Abstract

The solvability of the Riemann–Hilbert boundary value problem on the real line is described
in the case when its matrix coefficient admits a Wiener–Hopf-type factorization with bounded
outer factors, but rather general diagonal elements of its middle factor. This covers, in particular,
the almost periodic setting, when the factorization multiples belong to the algebra generated by
the functions eλ(x) := eiλx, λ ∈ R. Connections with the corona problem are discussed. Based
on those, constructive factorization criteria are derived for several types of triangular 2 × 2
matrices with diagonal entries e±λ and non-zero off diagonal entry of the form a−e−β + a+eν

with ν, β � 0, ν + β > 0 and a± analytic and bounded in the upper/lower half plane.

1. Introduction

The (vector) Riemann–Hilbert boundary value problem on the real line R can be stated as
follows: find two vector functions φ±, analytic in the upper and lower half planes C± = {z ∈
C : ± Im z > 0}, respectively, satisfying the condition

φ− = Gφ+ + g, (1.1)

imposed on their boundary values on R. Here, g is a given vector function and G is a given
matrix function defined on R, of appropriate sizes. It is well known that various properties of
(1.1) can be described in terms of the (right) factorization of its matrix coefficient G, that is,
a representation of G as a product

G = G−DG−1
+ , (1.2)

where G± and their inverses are analytic in C± and D is a diagonal matrix function with
diagonal entries dj of a certain prescribed structure. An exact definition of the factorization
(1.2) is correlated with the setting of the problem (1.1), that is, the requirements on the
boundary behavior of φ±.

To introduce a specific example, denote by H±
r the Hardy classes in C± and by Lr the

Lebesgue space on R, with r ∈ (0,∞]. Let us also agree, for any set X, to denote by Xn

(Xn×n) the set of all n-vectors (respectively, n× n matrices) with entries in X.
With this notation at hand, recall that the Lp setting of (1.1) is the one for which g ∈ Ln

p and
φ± ∈ (H±

p )n. An appropriate representation (1.2), in this setting with p > 1, is the so-called
Lp factorization of G: the representation (1.2) in which

λ−1
± G± ∈ (H±

p )n×n, λ−1
± G−1

± ∈ (H±
q )n×n and dj = (λ−/λ+)κj . (1.3)
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Here,

1 < p <∞, q =
p

p− 1
, λ±(z) = z ± i,

and the integers κj are called the (right) partial indices of G.
A full solvability picture for the problem (1.1) with Lp factorable G can be extracted from

[14, Chapter 3], see also [12]. The central result in this direction is (the real line version of)
Simonenko’s theorem according to which (1.1) has a unique solution for every right-hand side
g (equivalently, the associated Toeplitz operator TG =: P+G | (H+

p )n is invertible) if and only
if G admits an Lp factorization (1.2) with D = I, subject to the additional condition

G−P+G
−1
− is a densely defined bounded operator on Ln

p . (1.4)

Here, P+ is the projection operator of Lp onto H+
p along H−

p , defined on vector (or matrix)
functions entrywise.

In this paper, we take a particular interest in bounded factorizations for which in (1.2), by
definition,

G±1
+ ∈ (H+

∞)n×n and G±1
− ∈ (H−

∞)n×n. (1.5)

Of course, with dj as in (1.3) a bounded factorization of G is its Lp factorization simultaneously
for all p ∈ (1,∞), and the additional condition (1.4) is satisfied. However, some meaningful
conclusions regarding the problem (1.1) can be drawn from the relation (1.2) satisfying (1.5)
even without any additional information about the diagonal entries of D. This idea for Lp

factorization on closed curves was first discussed in [15]; in Section 2, we give a detailed
account of the bounded factorization version. That includes in particular the interplay between
the factorization problem and the corona theorem.

Section 3 deals with the almost periodic (AP for short) setting, in which the elements of the
matrix function involved belong to the algebra AP generated by the functions

eλ(x) = eiλx, λ ∈ R, (1.6)

the diagonal elements dj being chosen among its generators eλ. In this case, not only do we
consider the solvability of (1.1) when G admits an AP factorization, but also address the
converse question: what information on the existence and the properties of that factorization
can be obtained from a solution to a homogeneous problem

Gφ+ = φ−, φ± ∈ (H±
p )n (1.7)

with p = ∞.
In Sections 4 and 5, we consider classes of matrix functions G for which (1.1) is closely related

with a convolution equation on an interval of finite length. By determining a solution to the
homogeneous Riemann–Hilbert problem (1.7) in H±

∞ and applying the results of the previous
sections, we study the factorability of G and the properties of the related Toeplitz operator TG.
In particular, invertibility conditions for this operator are obtained and a subclass of matrix
functions is identified for which invertibility of TG is (somewhat surprisingly) equivalent to its
semi-Fredholmness.

2. Riemann–Hilbert problems and factorization

We start with the description of the solutions to (1.1), in terms of a bounded factorization (1.2).
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Theorem 2.1. LetG admit a bounded factorization (1.2). Then all solutions of the problem
(1.1) satisfying φ± ∈ (H±

p )n for some p ∈ [1,∞] are given by

φ+ =
∑

j

ψjg
+
j and φ− =

∑
j

djψjg
−
j + g. (2.1)

Here, g±j stands for the jth column of G±:

G− = [g−1 g−2 . . . g−n ] and G+ = [g+
1 g+

2 . . . g+
n ], (2.2)

and ψj is an arbitrary function satisfying

ψj ∈ H+
p , djψj + (G−1

− g)j ∈ H−
p . (2.3)

In other words, the Riemann–Hilbert problem (1.1) with a matrix coefficient G admitting a
bounded factorization can be untangled into n scalar Riemann–Hilbert problems, in the same
Lp setting.

The proof of Theorem 2.1 is standard in the factorization theory, based on a simple change
of unknowns φ± = G±ψ±. We include it here for completeness.

Proof. If (φ+, φ−) is a solution to (1.1) then, defining ψ := (ψj)j=1,...,n = G−1
+ φ+, we

obtain φ+ = G+ψ and φ− = G−Dψ + g, which are equivalent to (2.1), and (2.3) is satisfied.
Conversely, if (2.3) holds for all j = 1, . . . , n, then φ+ = G+ψ ∈ (H+

p )n, φ− = G−Dψ + g ∈
(H−

p )n, and (1.1) holds.

We will say that a function f , defined almost everywhere on R, is of non-negative type if

f ∈ H+
∞ or f−1 ∈ H−

∞. (2.4)

The type is non-positive if

f ∈ H−
∞ or f−1 ∈ H+

∞, (2.5)

(strictly) positive if (2.4) holds while (2.5) does not, and neutral if both (2.4), (2.5) hold.

Lemma 2.2. For dj of positive type, there is at most one function ψj satisfying (2.3).

Proof. It suffices to show that the only function ψ ∈ H+
p satisfying djψ ∈ H−

p is zero.
If the first condition in (2.4) holds for f = dj , then djψ ∈ H+

p simultaneously with ψ itself.
From here and djψ ∈ H−

p , it follows that djψ is a constant. If this constant is non-zero (which
is only possible if p = ∞), then dj is invertible in H+

∞ which contradicts the strict positivity
of its type. On the other hand, the product djψ of two analytic functions may be identically
zero only if one of them is. It cannot be dj (once again, since otherwise the first condition in
(2.5) would hold); thus, ψ = 0.

The second case of (2.4) can be treated in a similar way.

As an immediate consequence we have:

Corollary 2.3. If G admits a bounded factorization with all dj of positive type, then
the homogeneous Riemann–Hilbert problem (1.7) has only the trivial solution φ+ = φ− = 0
for any p ∈ [1,∞].



RIEMANN–HILBERT PROBLEMS 855

If dj is of neutral type, then by definition it is either invertible in H+
∞, or in H−

∞, or is equal
to zero. Disallowing the latter case, and absorbing dj in the column g±j in the former, we may
without loss of generality suppose that all such dj are actually equal 1. With this convention
in mind, the following result holds.

Corollary 2.4. Let G admit a bounded factorization with all dj of non-negative type,
dj �= 0. Then the homogeneous problem (1.7) for 1 � p <∞ has only the trivial solution, and
for p = ∞ all its solutions are given by

φ+ =
∑
j∈J

cjg
+
j and φ− =

∑
j∈J

cjg
−
j . (2.6)

Here, g±j are as in (2.2), cj ∈ C, and j ∈ J if and only if dj is of neutral type.

Proof. From (2.1) and from Lemma 2.2, we have

φ+ =
∑
j∈J

ψjg
+
j and φ− =

∑
j∈J

djψjg
−
j ,

while our convention regarding the neutral type allows us to drop the functions dj in the
expression for φ−. Finally, (2.3) with dj of neutral type and g = 0 means that ψj ∈ H+

p ∩H−
p ,

and thus ψj is a constant (= 0 if p <∞).

Recall that the factorization (1.2) is canonical if the middle factor D of it is the identity
matrix, and can therefore be dropped:

G = G−G−1
+ . (2.7)

The following criterion for bounded canonical factorability is easy to establish, and actually
well known. We state it here, with proof, for the sake of completeness and ease of references.

Lemma 2.5. G admits a bounded canonical factorization (2.7) if and only if problem (1.7)
with p = ∞ has solutions φ±j , j = 1, . . . , n, such that

det[φ±1 . . . φ
±
n ] is invertible in H±

∞. (2.8)

If this is the case, then one of the factorizations is given by

G± = [φ±1 . . . φ
±
n ], (2.9)

and all solutions to (1.7) in H±
∞ are linear combinations of φ±j .

Proof. If (2.7) holds with G± satisfying (1.5), then one may choose φ±j as the jth column
of G±. Conversely, if φ±j satisfy (1.7) and (2.8), then G± given by (2.9) satisfy GG+ = G− and
(1.5). Therefore, (2.7) holds and delivers a bounded canonical factorization of G.

The last statement now follows from Corollary 2.4.

Observe that for G with constant non-zero determinant, the determinants of matrix functions
G± given by (2.9) are also necessarily constant. So, (2.8) holds if and only if the vector functions
φ+

1 (z), . . . , φ+
n (z) (resp., φ−1 (z), . . . , φ−n (z)) are linearly independent for at least one value of

z ∈ C+ (resp., C−).
As it happens, if G admits a bounded canonical factorization, all its bounded factorizations

(with no a priori conditions on dj) are forced to be ‘almost’ canonical. The precise statement
is as follows.
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Theorem 2.6. Let G have a bounded canonical factorization G = G̃−G̃−1
+ . Then all its

bounded factorizations are given by (1.2), where each dj has a bounded canonical factorization

dj = dj−d−1
j+ , j = 1, . . . , n, (2.10)

G± = G̃±ZD−1
± , D± = diag[d1±, . . . , dn±], (2.11)

and Z is an arbitrary invertible matrix in Cn×n.

Proof. Equating two factorizations G̃−G̃−1
+ and G−DG−1

+ yields

D = G−1
− G̃−G̃−1

+ G+ = F−F−1
+ , (2.12)

where F±, F−1
± ∈ (H±

∞)n×n. Consequently, D admits a bounded canonical factorization, and
therefore the Toeplitz operator TD is invertible on (H+

p )n for p ∈ (1,∞). Being the direct sum
of n scalar Toeplitz operators Tdj

, this implies that each of the latter is also invertible, on
H+

p . Thus, each of the scalar functions dj admits a canonical Lp factorization. Let (2.10) be
such a factorization, corresponding† to p = 2. Then, according to (2.12), the elements f±ij of
the matrix functions F± are related as f−ij = djf

+
ij . Due to the invertibility of F±, for each

j the functions f±ij are non-zero for at least one value of i. Choosing such i arbitrarily, and
abbreviating the respective f±ij simply to fj±, we have

fj−d−1
j− = fj+d

−1
j+ .

The left- and right-hand sides of the latter equality are functions in λ−H−
2 and λ+H

+
2 ,

respectively. Hence, each of them is just a scalar (non-zero, due to our choice of i). So,
dj± ∈ H±

∞.
Letting d± =

∏n
j=1 dj±, from here we obtain that detD = d−d−1

+ , with d± ∈ H±
∞. But (2.12)

implies also that detD admits the bounded analytic factorization detF−/detF+. Thus,

d−/detF− = d+/detF+,

with the left/right-hand side lying in H±
∞, respectively. Hence, d± differs from detF± only

by a (clearly, non-zero) scalar multiple, and therefore is invertible in H±
∞. This implies the

invertibility of each multiple dj± in H±
∞, j = 1, . . . , n, so that each representation (2.10) is in

fact a bounded canonical factorization.
With the notation D± as in (2.11), the first equality in (2.12) can be rewritten as

G̃−1
− G−D− = G̃−1

+ G+D+.

Since the left/right-hand side is invertible in (H∓
∞)n×n, each of them is in fact an invertible

constant matrix Z. This implies the first formula in (2.11).

According to (2.11) with D = I, two bounded canonical factorizations of G are related as

G± = G̃±Z where Z ∈ Cn×n, detZ �= 0, (2.13)

a well-known fact.
When n = 2, the results proved above simplify in a natural way. We will state only one such

simplification, once again, for convenience of references.

Theorem 2.7. Let G be a 2 × 2 matrix function admitting a bounded factorization (1.2)
with one of the diagonal entries (say d2) of positive type. Then the problem (1.7) has non-trivial

†The interpolation property of factorization [14, Theorem 3.9] implies that in our setting the canonical Lp

factorization of dj is the same for all p ∈ (1,∞) but this fact has no impact on the reasoning.
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solutions in H±
p for some p ∈ [1,∞] if and only if d1 admits a representation d1 = d1−d−1

1+ with
d1± ∈ H±

p . If this condition holds, then all the solutions of (1.7) are given by

φ+ = ψg+
1 and φ− = d1ψg

−
1 ,

where g±1 is the first column of G± in the factorization (1.2) and ψ ∈ H+
p is an arbitrary

function satisfying d1ψ ∈ H−
p .

Proof. Sufficiency. If d1 = d1−d−1
1+ with d1± ∈ H±

p , then obviously d1+ �= 0 and

φ+ = d1+g
+
1 and φ− = d1−g−1

is a non-trivial solution to (1.7).
Necessity. By Lemma 2.2 and Theorem 2.1 the solution must be of the form φ+ = ψg+

1 ,
φ− = d1ψg

−
1 with ψ ∈ H+

p \ {0}, d1ψ ∈ H−
p . It remains to set d1+ = ψ, d1− = d1ψ.

More interestingly, there is a close relation between factorization and corona problems.
Recall that a vector function ω with entries ω1, . . . , ωn ∈ H+

∞ satisfies the corona condition
in C+ (notation: ω ∈ CP+) if and only if

inf
z∈C+

(|ω1(z)| + · · · + |ωn(z)|) > 0.

The corona condition in C− for a vector function ω ∈ (H−
∞)n and the notation ω ∈ CP− are

introduced analogously.
By the corona theorem, ω ∈ CP± if and only if there exists ω∗ = (ω∗

1 , . . . , ω
∗
n) ∈ (H±

∞)n

such that

ω1ω
∗
1 + · · · + ωnω

∗
n = 1.

Theorem 2.8. If an n× n matrix function G admits a bounded canonical factorization,
then any non-trivial solution of problem (1.7) in (H±

∞)n actually lies in CP±.

Proof. Let G admit a bounded canonical factorization (2.7). By Corollary 2.4, every non-
trivial solution φ± of (1.7) is a non-trivial linear combination of the columns g±j , j = 1, . . . , n.
According to (2.13), any such combination, in turn, can be used as a column of some (perhaps,
different) bounded canonical factorization of G. Being a column of an invertible element of
(H±

∞)n×n, it must lie in CP±.

The following result is a somewhat technical generalization of Theorem 2.8, which will be
used later on.

Theorem 2.9. Let G be an n× n matrix function admitting a bounded factorization (1.2)
in which for all k = 2, . . . , n either dk = d1 �= 0 or d−1

1 dk is a function of positive type. Then
for any pair of non-zero vector functions φ± ∈ (H±

∞)n satisfying Gφ+ = φ−, d1φ+ ∈ (H+
∞)n, in

fact stronger conditions

d1φ+ ∈ CP+, φ− ∈ CP− (2.14)

hold. In order for such pairs to exist, d1 has to be of non-positive type.
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Proof. Let G̃ = d−1
1 G. Then, due to (1.2),

G̃ = G−D̃G−1
+ with D̃ = diag[1, d−1

1 d2, . . . , d
−1
1 dn], (2.15)

which of course is a bounded factorization of G̃.
Condition φ− = Gφ+ implies that φ− = G̃d1φ+, so that the pair d1φ+, φ− is a non-trivial

solution of the homogeneous Riemann–Hilbert problem with the coefficient G̃.
If d1 = d2 = · · · = dn, then (2.15) delivers a bounded canonical factorization of G̃, so that

the desired result follows from Theorem 2.8. If, on the other hand, d−1
1 d2, . . . , d

−1
1 dn are all of

positive type, then d1φ+ and φ− differ only by a (non-zero) constant scalar multiple from the
first column of G+ and G− respectively, according to Corollary 2.4. This again implies (2.14).

Finally, from d1φ+ ∈ CP+ and φ+ ∈ (H+
∞)n it follows that d−1

1 ∈ H+
∞, that is, d1 is of

non-positive type.

The exact converse of Theorem 2.8 is not true. However, a slightly more subtle result holds.

Theorem 2.10. Let G ∈ L2×2
∞ be such that there exists a solution of problem (1.7) in CP±.

Then the Toeplitz operators TG on (H+
p )2 and Tdet G on H+

p are Fredholm only simultaneously,
and their defect numbers coincide.

Proof. The existence of the above-mentioned solutions implies (see, for example, computa-
tions in [3, Section 22.1]) that

G = X−

[
detG 0
∗ 1

]
X+,

where X± is an invertible element of (H±
∞)2×2. From here and elementary properties of block

triangular operators it follows that the respective defect numbers (and thus the Fredholm
behavior) of TG and Tdet G are the same.

According to Theorem 2.10, in the particular case when detG admits a canonical factoriza-
tion, the operator TG is invertible provided that (1.7) has a solution in CP±. For detG ≡ 1,
the latter result was essentially established in [1]. An alternative, and more detailed, proof of
Theorem 2.10 can be found in [6, Theorems 4.1 and 4.4].

Let now B be a subalgebra of L∞ (not necessarily closed in L∞ norm) such that, for any n, a
matrix function G ∈ Bn×n admits a bounded canonical factorization if and only if the operator
TG is invertible in (H+

p )n for at least one (and therefore all) p ∈ (1,∞). There are many classes
satisfying this property, for example, decomposable algebras of continuous functions (see [10,
14]) or the AP Wiener algebra APW considered (and introduced) in Section 3.

Theorem 2.11. LetG ∈ B2×2 with detG admitting a bounded canonical factorization, and
let φ± ∈ (H±

∞)2 be a non-zero solution to (1.7). Then G has a bounded canonical factorization
if and only if φ± ∈ CP±.

Proof. Necessity follows from Theorem 2.8 and sufficiency from Theorem 2.10. The latter
can also be deduced from [1, Theorem 3.4] formulated there for G with constant determinant
but remaining valid if detG merely admits a bounded canonical factorization.
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3. AP factorization

We will now recast the results of the previous section in the framework of AP factorization.
To this end, recall that AP is the uniform closure of all linear combinations

∑
cjeλj

, cj ∈ C,
with eλj

defined by (1.6), while these linear combinations themselves form the set APP of all
almost periodic polynomials. Properties of AP functions are discussed in detail in [11, 13], see
also [3, Chapter 1]. In particular, for every f ∈ AP there exists its mean value

M(f) = lim
T→∞

1
2T

∫T

−T

f(t) dt.

This yields the existence of f̂(λ) := M(e−λf), the Bohr–Fourier coefficients of f . For any given
f ∈ AP, the set

Ω(f) = {λ ∈ R : f̂(λ) �= 0}
is at most countable, and is called the Bohr–Fourier spectrum of f . The formal Bohr–Fourier
series

∑
λ∈Ω(f) f̂(λ)eλ may or may not converge; we will write f ∈ APW if it does converge

absolutely. The algebras AP and APW are inverse closed in L∞; moreover, for an invertible
f ∈ AP there exists an (obviously, unique) λ ∈ R such that a continuous branch of log(e−λf) ∈
AP. This value of λ is called the mean motion of f ; we will denote it κ(f).

Finally, let

AP± = {f ∈ AP: Ω(f) ⊂ R±},
where of course R± = {x ∈ R : ± x � 0}. Denote also

APW± = AP± ∩APW, APP± = AP± ∩ APP.

Clearly,

APP± ⊂ APW± ⊂ AP± ⊂ H±
∞.

An AP factorization of G, by definition, is a representation (1.2) in which G± are subject to
the conditions

G±1
+ ∈ (AP+)n×n, G±1

− ∈ (AP−)n×n, (3.1)

more restrictive than (1.5), and the diagonal entries of D are of the form dj = eδj
, j = 1, . . . , n.

The real numbers δj are called the (right) partial AP indices of G, and by an obvious column
permutation in G± we may assume that they are arranged in a non-decreasing order: δ1 �
δ2 � · · · � δn.

A particular case of AP factorization occurs when conditions (3.1) are changed to more
restrictive ones:

G±1
+ ∈ (APW+)n×n and G±1

− ∈ (APW−)n×n,

or even

G±1
+ ∈ (APP+)n×n and G±1

− ∈ (APP−)n×n.

These are naturally called APW and APP factorization of G, respectively. Of course, G has
to be an invertible element of APn×n (resp., APWn×n, APPn×n) in order to admit an AP
(resp., APW , APP) factorization. Moreover, the partial AP indices of G should then add up
to the mean motion of its determinant:

δ1 + · · · + δn = κ(detG), (3.2)

as can be seen by simply taking determinants of both sides.
All the statements of Section 2 are valid in these settings, and some of them can even be

simplified. For instance, a diagonal element of D is of positive, negative or neutral type (in
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the sense of definitions (2.4) and (2.5)) if and only if the corresponding partial AP index δj is,
respectively, positive, negative or equal to zero.

Corollary 2.4, for example, applies to AP-factorable matrix functions G with non-negative
partial AP indices. Formulas (2.6) imply then that all solutions of (1.7) in (H±

∞)n are
automatically in (AP±)n (and even (APW±)n or (APP±)n, provided that G is, respectively,
APW - or APP-factorable).

Lemma 2.5 takes the following form.

Theorem 3.1. An n× n matrix function G admits a canonical AP (APW ) factorization
if and only if there exist n solutions (ψ+

j , ψ
−
j ) to (1.7) in (AP±)n (resp., (APW±)n), such that

det[ψ±
1 . . . ψ

±
n ] are bounded from zero in C±.

The respective criterion for APP factorization is slightly different, because APP±, as opposed
to AP± and APW±, are not inverse closed in H±

∞. Moreover, the only invertible elements of
APP± are non-zero constants. Therefore, we arrive at the following:

Corollary 3.2. An n× n matrix function G admits a canonical APP factorization if
and only if there exist n solutions (ψ+

j , ψ
−
j ) to (1.7) in (APP±)n with constant non-zero

det[ψ±
1 . . . ψ

±
n ].

Similarly to the case in Section 2, for matrix functions G with constant determinant the
condition on det[ψ±

1 . . . ψ
±
n ] holds whenever at least one of them is non-zero at just one point

of C± ∪ R. All non-trivial solutions to (1.7) are actually in CP±, as guaranteed by Theorem 2.8.
Theorem 2.1 of course remains valid when G admits an AP factorization; the only change

needed is that dj in formulas (2.1) and (2.3) should be substituted by eδj
. For the homogeneous

problem (1.7), this yields the following.

Theorem 3.3. LetG admit an AP factorization (1.2). Then the general solution of problem
(1.7) in (H±

∞)n is given by

φ+ =
∑

j

ψjg
+
j and φ− =

∑
j

eδj
ψjg

−
j , (3.3)

where the summation is with respect to those j for which δj � 0, ψj are constant whenever
δj = 0 and satisfy

ψj ∈ H+
∞ ∩ e−δj

H−
∞ whenever δj < 0. (3.4)

Observe that φ± given by (3.3) belong to APn if and only if condition (3.4) is replaced by a
more restrictive

ψj ∈ AP, Ω(ψj) ⊂ [0,−δj ]
(where by convention ψj = 0 if δj > 0), since

ψ := (ψj) = G−1
+ φ+ = D−1G−1

− φ−. (3.5)

Moreover, if in fact G is APW factorable, then the functions (3.3) are in APWn if and
only if

ψj ∈ APW, Ω(ψj) ⊂ [0,−δj ].
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Solutions of (1.7) in (H±
∞)n are automatically in AP (resp., APW ) if G is AP- (resp., APW -

) factorable with non-negative partial AP indices, since in this case D−1 ∈ APP− and (3.5)
implies that ψ ∈ Cn. On the other hand, if G is APW factorable with at least one negative
partial AP index, then all three classes are distinct. Indeed, for any j corresponding to δj < 0
there is a plethora of functions ψj satisfying (3.4) not lying in AP, as well as functions in
AP \APW with the Bohr–Fourier spectrum in [0,−δj ].

The case of exactly one non-positive partial AP index is of special interest.

Corollary 3.4. Let G admit an AP factorization with the partial AP indices δ1 � 0 <
δ2 � · · · . Then all solutions to (1.7) in (H+

∞)n (resp., APn, APWn) are given by

φ+ = fg+
1 and φ− = eδ1fg

−
1 , (3.6)

where f is an arbitrary H+
∞ function such that eδ1f ∈ H−

∞ (resp., f ∈ AP or f ∈ APW and in
both cases Ω(f) ⊂ [0,−δ1]).

For n = 2, the reasoning of Theorem 2.9 suggests an appropriate modification of (1.7) for
which some solutions are forced to lie in AP. Recall our convention δ1 � δ2 according to which
the condition on d1 and d2 in Theorem 2.9 holds automatically.

Theorem 3.5. Let G be a 2 × 2 AP factorable matrix function with partial indices δ1 and
δ2 (δ1 � δ2). Then any non-zero pair (φ+, φ−) with φ+ ∈ (H+

∞)2 ∩ e−δ1(H
+
∞)2, φ− = Gφ+ ∈

(H−
∞)2 satisfies

φ± ∈ (AP±)2, eδ1φ+ ∈ CP+, φ− ∈ CP−,

and in order for such pairs to exist it is necessary and sufficient that δ1 � 0. If δ2 > δ1, all those
solutions have the form

φ+ = ce−δ1g
+
1 , φ− = cg−1 with c ∈ C \ {0}.

For δ2 = δ1, φ+ and φ− are the same non-trivial linear combinations of the columns of e−δ1G+

and G−.

Of course, Theorem 3.5 holds with AP changed to APW or APP everywhere in its statement.
Recall that a Toeplitz operator with scalar AP symbol f is Fredholm on H+

p for some
(equivalently: all) p ∈ (1,∞) if and only if it is invertible if and only if f is invertible in AP
with mean motion zero. Therefore, Theorem 2.10 implies the following:

Lemma 3.6. Let G ∈ AP2×2 be such that there exists a solution of (1.7) in CP±. Then
the Toeplitz operator TG is invertible on (H+

p )2, 1 < p <∞, if and only if κ(detG) = 0.

Passing to the APW setting, we invoke the result according to which TG with G ∈ APWn×n

is invertible if and only if G admits a canonical AP (or APW ) factorization. Lemma 3.6 then
implies (compare with Theorem 2.11):

Theorem 3.7. Let G ∈ APW 2×2. Then G admits a canonical AP factorization if and only
if κ(detG) = 0 and problem (1.7) has a solution in CP±. If this is the case, then every non-zero
solution of (1.7) is in (APW±)2 ∩ CP±.
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The first part of Theorem 3.7 for G with detG ≡ 1 (so that κ(detG) = 0 automatically) is
in [3] (see Theorem 23.1 there). Essentially, it was proved in [1], with sufficiency following from
Theorems 3.4, 6.1 and necessity from Theorem 3.5 there.

Our next goal is the APW factorization criterion in the not necessarily canonical case.

Theorem 3.8. Let G be a 2 × 2 invertible APW matrix function. Denote δ = κ(detG).
Then G admits an APW factorization if and only if the Riemann–Hilbert problem

e−δ/2Gψ+ = ψ−, ψ± ∈ (APW±)2 (3.7)

admits a solution (ψ+, ψ−) such that

ψ̃+ := e−δ̃ψ+ ∈ CP+ for some δ̃ � 0 and ψ− ∈ CP−. (3.8)

If this is the case, then the partial AP indices of G are δ1 = −δ̃ + δ/2, δ2 = δ̃ + δ/2 and the
factors G± can be chosen in such a way that ψ̃+ is the first column of G+ and ψ− is the first
column of G−.

Proof. If G admits an APW factorization, then δ = δ1 + δ2 due to (3.2). In its turn, ψ+ =
eδ/2−δ1g

+
1 , ψ− = g−1 is a solution of (3.7) if δ/2 − δ1 � 0. It remains to set δ̃ = δ/2 − δ1 in

order to satisfy (3.8) by analogy with Theorem 3.5. Formulas δ1 = δ/2 − δ̃, δ2 = δ/2 + δ̃ for
the partial AP indices then also hold.

Suppose now that (3.7) has a solution for which (3.8) holds. From the corona theorem in the
APW setting (see [3, Chapter 12]), there exist h± = (h1±, h2±) ∈ (APW±)2 such that

ψ1−h1− + ψ2−h2− = 1, e−δ̃(ψ1+h1+ + ψ2+h2+) = 1. (3.9)

In other words, the matrix functions

H+ =
[
e−δ̃ψ1+ −h2+

e−δ̃ψ2+ h1+

]
and H− =

[
ψ1− −h2−
ψ2− h1−

]
(3.10)

have determinants equal to 1 and are therefore invertible in (APW+)2×2 and (APW−)2×2,
respectively. Thus, the matrix functions G1 = H−1

− GH+ and G are only simultaneously APW
factorable, and their partial AP indices coincide.

For the first column of G1, taking (3.9) into account, we have

e−δ̃H
−1
− Gψ+ = eδ/2−δ̃H

−1
− ψ− =

[
eδ/2−δ̃

0

]
.

Thus, the second diagonal entry in G1 must be equal to

eδ̃−δ/2 detG = γ−eδ̃+δ/2γ
−1
+ ,

where
detG = γ−eδγ

−1
+

is a factorization of the scalar APW function detG. Consequently,

G1 =
[
1 0
0 γ−

] [
eδ/2−δ̃ g

0 eδ/2+δ̃

] [
1 0
0 γ+

]−1

(3.11)

with g ∈ APW given by g = [1 0]G1[0 γ+]T . Finally, the middle factor on the right-hand side of
(3.11) is APW factorable with the partial indices δ/2 − δ̃, δ/2 + δ̃ equal to the mean motions
of its diagonal entries:[

eδ/2−δ̃ g

0 eδ/2+δ̃

]
=

[
1 g−
0 1

] [
eδ/2−δ̃ 0

0 eδ/2+δ̃

] [
1 −g+
0 1

]−1

. (3.12)
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The only condition on g± ∈ APW± is

geδ̃−δ/2 = g+ + g−e2δ̃, (3.13)

and it can be satisfied since δ̃ � 0. Clearly, making use of (2.13) we can always choose G± in
such a way that ψ̃+ is the first column of G+ and ψ− is the first column of G−.

The proof of the preceding theorem provides, via (3.10), (3.11)–(3.13), formulas for an APW
factorization ofG = H−1

− G1H+, in terms of the solutions to (3.7) and the corona problems (3.9).

4. Applications to a class of matrices with a spectral gap near zero

We now consider the factorability problem for a class of triangular matrix functions, closely
related to the study of convolution equations on an interval of finite length λ (see, for example,
[3, Section 1.7] and references therein), of the form

G =
[
e−λ 0
g eλ

]
. (4.1)

Throughout this section, we assume that

g = a−e−β + a+eν for some a± ∈ H±
∞ and 0 � ν, β � λ, ν + β > 0. (4.2)

Representation (4.2), when it exists, is not unique. In particular, it can be rewritten as

g = ã−e−β̃ + ã+eν̃

with
ν̃ ∈ [0, ν], β̃ ∈ [0, β], ã+ = a+eν−ν̃ , ã− = a−eβ̃−β . (4.3)

Among all the representations (4.2) choose those with the smallest possible value of

N =
⌈

λ

ν + β

⌉
, (4.4)

where as usual 
x� denotes the smallest integer which is greater than or equal to x ∈ R. Of
course, N � 1 due to the positivity of λ/(ν + β).

Formula (4.4) means that

N − 1 <
λ

ν + β
� N.

Decreasing β and ν as described in (4.3), we may turn the last inequality into an equality. In
other words, without loss of generality we may (and will) suppose that

λ

ν + β
= N (4.5)

is an integer.
We remark that even under condition (4.5) representation (4.2) may not be defined uniquely.
Given N � 1, we denote by Sλ,N the class of functions g satisfying (4.2) and (4.5) for which

b+ := eβ/(N−1)a− ∈ H+
∞, b− := e−ν/(N−1)a+ ∈ H−

∞ if N > 1. (4.6)

By Sλ,N we denote the class of 2 × 2 matrix functions G of the form (4.1) with g ∈ Sλ,N .

Remark 4.1. If g ∈ Sλ,N with N > 1, then necessarily in (4.2) β, ν > 0. Indeed, if say
ν = 0, then (4.6) implies that a+ is a constant. Consequently, g ∈ H−

∞, and setting a− = g,
a+ = 0, β = 0, ν = λ in (4.2) would yield N = 1 — a contradiction with our convention to
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choose the smallest possible value of N . Note also that, due to (4.6), a± are entire functions
when N > 1.

We start by determining a solution to (1.7) for G in Sλ,N .

Theorem 4.2. Let G ∈ Sλ,N , with g given by (4.2). Then

φ1+ = eλ−ν

N−1∑
j=0

((−1)jaN−1−j
+ aj

− e−jλ/N ), φ2+ = −aN
+ , (4.7)

φ1− = e−λφ1+, φ2− = (−1)N−1aN
− (4.8)

deliver a solution φ± = (φ1±, φ2±) to the Riemann–Hilbert problem (1.7).

Proof. A direct computation based on the equality

xN + (−1)N−1yN = (x+ y)
N−1∑
j=0

((−1)jxN−1−j yj)

shows that Gφ+ = φ−. Obviously, φ2± ∈ H±
∞. So, it only remains to prove that φ1± ∈ H±

∞. For
N = 1, this is true because the definition of φ1+ from (4.7) collapses to φ1+ = eβ . The case
N > 1 is slightly more involved.

Namely, for N > 1 from (4.6) it follows that

eβ/(N−1)a− = b+ ∈ H+
∞,

so that

φ1+ =
N−1∑
j=0

((−1)jaN−1−j
+ bj+ eβ−jβ/(N−1) eλ−(j+1)λ/N ) ∈ H+

∞. (4.9)

Analogously, from
e−ν/(N−1)a+ = b− ∈ H−

∞,

we have

φ1− =
N−1∑
j=0

((−1)j bN−1−j
− aj

− e−j(ν/(N−1)+λ/N)) ∈ H−
∞. (4.10)

This theorem, along with Theorem 2.10, allows us to establish sufficient conditions, which
in some cases are also necessary, for invertibility in (H+

p )2, p > 1, of Toeplitz operators with
symbol G ∈ Sλ,N . To invoke Theorem 2.10, however, we need to be able to check when the
pairs (φ1±, φ2±) defined by (4.7), (4.8) belong to CP+ or CP−. The following result from [5]
(see Theorem 2.3 there) will simplify this task.

Theorem 4.3. Let a 2 × 2 matrix function G and its inverse G−1 be analytic and bounded
in a strip

S = {ξ ∈ C : −ε2 < Im ξ < ε1} with ε1, ε2 ∈ [0,+∞[, (4.11)

and let φ± ∈ (H±
∞)2 satisfy (1.7). Then φ+ ∈ CP+ (resp. φ− ∈ CP−) if and only if

inf
C++iε1

(|φ1+| + |φ2+|) > 0
(

resp., inf
C−−iε2

(|φ1−| + |φ2−|) > 0
)

(4.12)
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and one of the following (equivalent) conditions is satisfied:

inf
S

(|φ1+| + |φ2+|) > 0, (4.13)

inf
S

(|φ1−| + |φ2−|) > 0. (4.14)

Here and in what follows, we identify the functions φ1+ and φ2+ (resp., φ1− and φ2− )
with their analytic extensions to C+ − iε2 (resp., C− + iε1) and, for any real-valued function
φ defined on S, abbreviate infζ∈S φ(ζ) to infS φ.

We will see that for G ∈ Sλ,N , N � 1, the behavior of the solutions ‘at infinity’, that
is, condition (4.12) for sufficiently big ε1, ε2 > 0, is not difficult to study. Therefore, due to
Theorem 4.3, we will be left with studying the behavior of φ+ or φ− in a strip of the complex
plane. According to the next result this, in turn, can be done in term of the functions a± from
(4.2) or, equivalently, of g± defined by

g+ = eνa+, g− = eν−λ/Na−.

It should be noted that, for N > 1, a± and g± are entire functions. Moreover, even if the
behavior of a+ and a− in a strip S may be difficult to study, it is clear from (4.7) and (4.8)
that this is in general a much simpler task than that of checking whether (4.12) is satisfied
using the expressions for φ1± and φ2±.

Lemma 4.4. Let G ∈ Sλ,N for some N > 1, and let φ± be given by (4.7), (4.8). Then for
any strip (4.11), we have

inf
S

(|φ1±| + |φ2±|) > 0 ⇐⇒ inf
S

(|a+| + |a−|) > 0 ⇐⇒ inf
S

(|g+| + |g−|) > 0. (4.15)

Proof. Since the last two conditions in (4.15) are obviously equivalent, and (4.13) is
equivalent to (4.14) due to Theorem 4.3, we need to prove only that

inf
S

(|φ1+| + |φ2+|) > 0 ⇐⇒ inf
S

(|a+| + |a−|) > 0.

Suppose first that
inf
ξ∈S

(|a+(ξ)| + |a−(ξ)|) = 0.

Then there is a sequence {ξn}n∈N with ξn ∈ S such that a+(ξn) → 0 and a−(ξn) → 0. Taking
into account the expressions for φ1+ and φ2+ given by (4.7), we must have φ1+(ξn) → 0 and
φ2+(ξn) → 0. Therefore,

inf
ξ∈S

(|φ1+(ξ)| + |φ2+(ξ)|) = 0.

Conversely, if
inf
ξ∈S

(|φ1+(ξ)| + |φ2+(ξ)|) = 0,

then for some sequence {ξn} with ξn ∈ S for all n ∈ N, we have φ1+(ξn) → 0 and φ2+(ξn) →
0. Thus, from the expression for φ2+ given by (4.7), it follows that a+(ξn) → 0. From the
expression for φ1+ in (4.7), we then conclude

aN−1
− = (−1)N−1eν−λ/Nφ1+ + (−1)Neλ(N−1)/N

N−2∑
j=0

((−1)jaN−1−j
+ aj

− e−jλ/N ).

Since φ1+(ξn) → 0 and a+(ξn) → 0, then also a−(ξn) → 0 and therefore

inf
ξ∈S

(|a+(ξ)| + |a−(ξ)|) = 0.
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We can now state the following.

Theorem 4.5. Let G ∈ Sλ,N for some N ∈ N, and let φ± be the solutions to (1.7) given
by (4.7) and (4.8). Then, we have the following.

(i) For N = 1, φ± ∈ CP± if and only if

inf
C++iε1

|a+| > 0, inf
C−−iε2

|a−| > 0 for some ε1, ε2 > 0. (4.16)

(ii) For N > 1, φ± ∈ CP± if and only if, with b+ and b− defined by (4.6),

inf
C++iε1

(|b+| + |a+|) > 0, inf
C−−iε2

(|b−| + |a−|) > 0 for some ε1, ε2 > 0 (4.17)

and, for any S of the form (4.11),

inf
S

(|a+| + |a−|) > 0. (4.18)

Proof. Part (i) follows immediately from the explicit formulas

φ+ = (eβ ,−a+) and φ− = (e−ν , a−). (4.19)

.
(ii) For N > 1, we have, from (4.7)–(4.10),

φ1+ = (−1)N−1bN−1
+ +

N−2∑
j=0

((−1)jaN−1−j
+ bj+e(N−1−j)(λ−ν)/(N−1)), φ2+ = −aN

+ , (4.20)

φ1− = bN−1
− +

N−1∑
j=1

((−1)jaj
−b

N−1−j
− e−j(λ−β)/(N−1)), φ2− = (−1)N−1aN

− . (4.21)

Since ν, β < λ when N > 1, we see that for any sequence {ξn} with ξn ∈ C+ and Im ξn → +∞,

|φ1+ − (−1)N−1bN−1
+ |(ξn) −→ 0, (4.22)

and, for any sequence {ξn} with ξn ∈ C− and Im ξn → −∞,

|φ1− − bN−1
− |(ξn) −→ 0. (4.23)

It follows from (4.20)–(4.23) that (4.17) holds if and only if there exist ε1, ε2 > 0 such that
both inequalities in (4.12) hold. Moreover, by Lemma 4.4, (4.18) is equivalent to (4.13), thus
the result follows from Theorem 4.3.

Note that detG ≡ 1 for all matrix functions of the form (4.1). Therefore, Theorems 2.10,
2.11 and 4.5 combined imply the following.

Corollary 4.6. Let the assumptions of Theorem 4.5 hold. Then condition (4.16) (for
N = 1) and (4.17), (4.18) (for N > 1) imply the invertibility of TG. The converse is also true
(and, moreover, G admits a bounded canonical factorization) provided that G ∈ B2×2.

For N = 1, this result was proved (assuming λ = 1, which amounts to a simple change of
variable) in [7, Theorem 4.1 and Corollary 4.5].

For the particular case when a− (or a+) is just a single exponential function, condition (4.18)
is always satisfied and we can go deeper in the study of the properties of TG. Before proceeding
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in this direction, however, it is useful to establish a more explicit characterization of the classes
Sλ,N under the circumstances. Without loss of generality, let us concentrate on the case when
a− is an exponential.

Lemma 4.7. Given λ > 0, let

g = e−σ + g+, (4.24)

where g+ ∈ H+
∞ is not identically zero, and 0 < σ < λ. Then g ∈ Sλ,N for some N ∈ N if and

only if

e−νg+ ∈ H+
∞, e−νN/(N−1)g+ ∈ H−

∞ (4.25)

for some

ν ∈
[
λ

N
− σ,

λ

N
− N − 1

N
σ

]
(4.26)

(of course, the second condition in (4.25) applies only for N > 1).

Note that conditions (4.25), (4.26) imply

e−λ/N+σg+ ∈ H+
∞, e−λ/(N−1)+σg+ ∈ H−

∞,

and therefore may hold for at most one value of N .

Proof (Necessity). Suppose g ∈ Sλ,N . Comparing (4.2) and (4.24) we see that

a− = eβ−σ ∈ H−
∞ and a+ = e−νg+ ∈ H+

∞. (4.27)

On the other hand, (4.6) takes the form

eβN/(N−1)−σ ∈ H+
∞, e−νN/(N−1)g+ ∈ H−

∞. (4.28)

The first containments in (4.27), (4.28) are equivalent to

N − 1
N

σ � β � σ,

which along with (4.5) yields that ν = λ/N − β satisfies (4.26). The second containments in
(4.27) and (4.28) then imply (4.25).

Sufficiency. Given (4.25) and (4.26), let β = λ/N − ν, and define a± by (4.27). Then (4.2),
(4.5) and (4.6) hold (the latter for N > 1).

Theorem 4.8. Let G be given by (4.1) with g of the form

g = e−σ + eμa+, μ, σ > 0, a+ ∈ H+
∞, (4.29)

where μ+ σ � λ. Then the Toeplitz operator TG is invertible if (and only if, provided that
G ∈ B2×2)

μ+ σ = λ and inf
C++iε

|a+| > 0 for some ε > 0, (4.30)

and TG is not semi-Fredholm if μ+ σ > λ.

Proof. Condition (4.29) implies that g ∈ Sλ,1 with β = σ, ν = λ− σ, and a solution to (1.7)
is given by

φ+ = (eσ,−eμ+σ−λa+) and φ− = (eσ−λ, 1).
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Clearly, φ− ∈ CP−, while φ+ ∈ CP+ if and only if (4.30) holds. The part of the statement
pertinent to the case λ = σ + μ now follows from Theorems 2.10 and 2.11.

For μ+ σ > λ, following the proof of [6, Theorem 5.3] observe that (1 − e−γ(z))φ±(z)/z
deliver a solution to (1.7) in Lp, for any γ between 0 and min{σ, μ+ σ − λ}. Thus, the operator
TG has an infinite-dimensional kernel in (H+

p )2 for any p ∈ (1,∞).
Denote by G−T the transpose of G−1. A direct computation shows that for the matrix under

consideration, due to its algebraic structure,

G−T =
[
0 −1
1 0

]
G

[
0 1
−1 0

]
. (4.31)

Therefore, the operator TG−T also has an infinite-dimensional kernel. But this means (see,
for example, [14, Section 3.1]) that the cokernel of TG is infinite dimensional. Therefore, the
operator TG is not even semi-Fredholm on (H+

p )2, 1 < p <∞.

Theorem 4.9. Let, as in Theorem 4.8, (4.1) and (4.29) hold, but now with

μ ∈
[
λ

N
− σ,

λ

N
− N − 1

N
σ

]
and e−μ/(N−1)a+ ∈ H−

∞

for some integer N > 1. Then TG is invertible if (and only if, for G ∈ B2×2) for some ε > 0 one
of the following three conditions holds:

σ + μ =
λ

N
and inf

C++iε
|a+| > 0, (4.32)

or
N − 1
N

σ + μ =
λ

N
and inf

C−−iε

∣∣e−μ/(N−1)a+

∣∣ > 0, (4.33)

or

inf
C++iε

|a+| > 0, and inf
C−−iε

∣∣e−μ/(N−1)a+

∣∣ > 0.

If, on the other hand,

σ + μ >
λ

N
and eδ−μ/(N−1)a+ ∈ H−

∞ (4.34)

or
N − 1
N

σ + μ <
λ

N
and e−δa+ ∈ H+

∞ (4.35)

for some δ > 0, then TG is not even semi-Fredholm.

Proof. According to Lemma 4.7, G ∈ Sλ,N . Moreover, one can choose in (4.2) ν = μ, β =
λ/N − μ and a− = eλ/N−μ−σ. Then formulas (4.7), (4.8) yield the following solution to (1.7):

φ1+ = eλ−N(μ+σ)+σ

N−1∑
j=0

((−1)jaN−1−j
+ e(N−1−j)(μ+σ)),

φ2+ = −aN
+ ,

φ1− =
N−1∑
j=0

((−1)j(e−μ/(N−1)a+)N−1−je−j(μN/(N−1)+σ)),

φ2− = (−1)N−1eλ−N(σ+μ).

Clearly, (φ1−, φ2−) ∈ CP− if and only if the first condition in (4.32) or the second condition
in (4.33) holds. Similarly, (φ1+, φ2+) ∈ CP+ is equivalent to the first condition in (4.33)



RIEMANN–HILBERT PROBLEMS 869

or the second condition in (4.32). Since the first conditions in (4.32), (4.33) cannot hold
simultaneously, the statement regarding the invertibility of TG now follows from Theorems 2.10
and 2.11.

If (4.34) or (4.35) holds, then φ− = e−δ̃φ̃− or φ+ = eδ̃φ̃+ with δ̃ > 0, φ̃± ∈ (H±
∞)2, respec-

tively. It follows that the kernel of TG is infinite dimensional, as in the proof of Theorem 4.8.
Using (4.31), we in the same manner derive that the cokernel of TG also is infinite dimensional.
So, TG is not semi-Fredholm.

5. AP matrix functions with a spectral gap around zero

The results of the previous section take a particular and, in some sense, more explicit form
when considered in the AP setting. The first natural question is, which functions g ∈ AP belong
to Sλ,N for some N ∈ N, with a± ∈ AP± in (4.2).

According to Remark 4.1, we may have 0 ∈ Ω(g) only if N = 1 and, in addition, g = a− +
a+eλ with 0 ∈ Ω(a−) or g = a−e−λ + a+ with 0 ∈ Ω(a+). In either case the operator TG is
invertible, as can be deduced from the so-called one-sided case, see [3, Section 14.1]. The
easiest way to see that directly, however, is by observing that problem (1.7) has a solution
in CP±: φ+ = (1,−a+), φ− = (e−λ, a−) in the first case, φ+ = (eλ,−a+), φ− = (1, a−) in the
second.

Therefore, in what follows we restrict ourselves to the case 0 /∈ Ω(g). Then

g = g− + g+ with g± ∈ AP±, 0 /∈ Ω(g±) (5.1)

with g± uniquely defined by g. Comparing with (4.2), we have

g+ = a+eν , g− = a−e−β . (5.2)

Let

η1− = − sup Ω(g−), η2− = − inf Ω(g−), (5.3)
η1+ = inf Ω(g+), η2+ = sup Ω(g+). (5.4)

Here, Ω(g+),−Ω(g−) are thought of as subsets of R+ (possibly empty), so that η1±, η2± ∈
[0,+∞] ∪ {−∞}.

Theorem 5.1. Let g be given by (5.1). Then

(i) g ∈ Sλ,1 if and only if η1+ + η1− � λ;
(ii) g ∈ Sλ,N with N > 1 if and only if

N =
⌈

λ

η1− + η1+

⌉
, (5.5)

while

η1− � N − 1
N

η2−, η1+ � N − 1
N

η2+, η2+ + η2− � λ

N − 1
. (5.6)

Under these conditions, any ν satisfying

M := max
{
λ

N
− η1−,

N − 1
N

η2+

}
� ν � min

{
η1+,

λ− (N − 1)η2−
N

}
=: m (5.7)

and

a+ = g+e−ν , β =
λ

N
− ν, a− = g−eβ (5.8)

delivers a representation (4.2).
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Proof. (i) If g ∈ Sλ,1, then from (5.2) with ν + β = λ it follows that η1+ + η1− � λ.
Conversely, setting a± = 0 if g± = 0, a+ = g+e−η1+ , a− = g−eλ−η1+ if g+ �= 0, and a+ =
g+e−λ+η1− , a− = g−eη1− if g− �= 0, we can write g as in (4.2) with ν + β = λ, so that g ∈ Sλ,1.

(ii) Necessity. Formulas for a± in (5.8) follow from the uniqueness of g± in the representation
(5.1). The condition a± ∈ H±

∞ is therefore equivalent to

β � η1−, ν � η1+. (5.9)

Conditions (4.6), in their turn, are equivalent to

β � N − 1
N

η2−, ν � N − 1
N

η2+. (5.10)

Comparing the respective inequalities in (5.9) and (5.10) shows the necessity of the first two
conditions in (5.6). To obtain the third condition there, just add the two inequalities in (5.10):

β + ν � N − 1
N

(η2+ + η2−),

and compare the result with (4.5).
On the other hand, adding the inequalities in (5.9) yields, once again with the use of (4.5),

λ

N
= β + ν � η1+ + η1−.

So,
λ

η1+ + η1−
� N � 1 +

λ

η2+ + η2−
. (5.11)

If at least one of the inequalities η2± > η1± holds, the difference between the right- and left-
hand sides of the inequalities (5.11) is strictly less than 1, and therefore an integer N is
defined by (5.11) uniquely, in accordance with (5.5). Otherwise, η1± = η2±, which means that
g = c1eη1− + c2eη1+ with c1, c2 ∈ C \ {0}. Since by definition N is the smallest possible number
satisfying (4.4) with ν, β such that (4.2) holds, we arrive again at (5.5).

Sufficiency. Let (5.6) hold for N defined by (5.5). Then m and M defined in (5.7) satisfy
M � m, so that ν may indeed be chosen as in (5.7). With such ν, and a± defined by (5.8), we
have (4.2), (4.5) and (4.6).

The results of Theorem 4.5 and Corollary 4.6, combined with Theorem 5.1, yield the
following.

Theorem 5.2. Let g ∈ Sλ,N be written as (5.1), and let ηj± (j = 1, 2) be defined by (5.3)–
(5.4). Then the Toeplitz operator TG with symbol G given by (4.1) is invertible if (and, for
g ∈ APW, only if) one of the following conditions holds:

(i) N = 1 and

η1+ ∈ Ω(g+), −η1− ∈ Ω(g−), η1+ + η1− = λ; (5.12)

(ii) N > 1 and

η1+ ∈ Ω(g+), −η1− ∈ Ω(g−), η1+ + η1− =
λ

N
; (5.13)

(iii) N > 1 and

η1+, η2+ ∈ Ω(g+), η2+ =
N

N − 1
η1+; (5.14)

(iv) N > 1 and

− η1−,−η2− ∈ Ω(g−), η2− =
N

N − 1
η1−; (5.15)
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(v) N > 1 and

η2+ ∈ Ω(g+), −η2− ∈ Ω(g−), η2+ + η2− =
λ

N − 1
; (5.16)

and, whenever N > 1,

inf
S

(|g+| + |g−|) > 0 for any strip S of the form (4.11). (5.17)

Proof. For N = 1, (5.12) is equivalent to (4.16).
For N > 1, setting

a− = eβg− and a+ = e−νg+, (5.18)

where β = λ/N − ν, we deduce from (4.6) that

b− = e−Nν/(N−1)g+ and b+ = e(λ−Nν)/(N−1)g−. (5.19)

Hence

M(a+) �= 0 if and only if η1+ = ν ∈ Ω(g+),

M(b+) �= 0 if and only if − η2− = −λ−Nν

N − 1
∈ Ω(g−),

M(a−) �= 0 if and only if − η1− = ν − λ

N
∈ Ω(g−),

M(b−) �= 0 if and only if η2+ =
Nν

N − 1
∈ Ω(g+).

Thus, the first inequality in (4.17) holds if and only if either η1+ = ν ∈ Ω(g+) or −η2− =
−(λ−Nν)/(N − 1) ∈ Ω(g−), and the second inequality in (4.17) holds if and only if either
−η1− = ν − λ/N ∈ Ω(g−) or η2+ = Nν/(N − 1) ∈ Ω(g+).

Taking now η1+ = ν ∈ Ω(g+) and −η1− = ν − λ/N ∈ Ω(g−), we obtain the equivalence
of (4.17) and (5.13); taking η1+ = ν ∈ Ω(g+) and η2+ = Nν/(N − 1) ∈ Ω(g+), we obtain
the equivalence of (4.17) and (5.14); taking −η2− = −(λ−Nν)/(N − 1) ∈ Ω(g−) and
−η1− = ν − λ/N ∈ Ω(g−), we obtain the equivalence of (4.17) and (5.15); taking −η2− =
−(λ−Nν)/(N − 1) ∈ Ω(g−) and η2+ = Nν/(N − 1) ∈ Ω(g+), we obtain the equivalence of
(4.17) and (5.16). Thus, we see that (4.17) is equivalent to one of the conditions (ii)–(v) of the
theorem being satisfied.

The result now follows from Theorem 4.5, Corollary 4.6 and the second equivalence in (4.15).

From (5.7), it follows that in the case (ii) we have ν = λ/N − η1− = η1+ and therefore

λ � max{Nη1− + (N − 1)η2+, Nη1+ + (N − 1)η2−},
in the case (iii), we have ν = η2+(N − 1)/N = η1+ so that

Nη1+ + (N − 1)η2− � λ � Nη1− + (N − 1)η2+,

in the case (iv), we have ν = λ/N − η1− = λ/N − η2−(N − 1)/N and therefore

Nη1− + (N − 1)η2+ � λ � Nη1+ + (N − 1)η2−,

in the case (v), we have ν = η2+(N − 1)/N = λ/N − η2−(N − 1)/N so that

λ � min{Nη1− + (N − 1)η2+, Nη1+ + (N − 1)η2−}.
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We also note that if λ = Nη1− + (N − 1)η2+, then condition (5.14) is equivalent to

η1+, η2+ ∈ Ω(g+), η1+ + η1− =
λ

N
; (5.20)

while condition (5.15) is equivalent to

− η1−,−η2− ∈ Ω(g−), η2+ + η2− =
λ

N − 1
. (5.21)

If λ = Nη1+ + (N − 1)η2−, then the equalities in (5.14) and (5.21), as well as in (5.15) and
(5.20), are equivalent.

Observe that necessity of conditions (5.12)–(5.16) persists for g ∈ AP without an additional
restriction g ∈ APW . To see that, suppose that TG is invertible in one of the cases (i)–(v)
while the respective condition (5.12)–(5.16) fails. Approximate g by a function in APW with
the same ηj± and so close to g in the uniform norm that the respective Toeplitz operator is
still invertible. This contradicts the necessity of (5.12)–(5.16) in the APW case.

It is not clear, however, whether the condition (5.17) remains necessary in the AP setting.

Remark 5.3. Part (i) of Theorem 5.2 means that, for TG to be invertible in the case when
the length of the spectral gap of g around zero is at least λ, it in fact must equal λ and,
moreover, both endpoints of the spectral gap must belong to Ω(g). In contrast to this, for
N > 1 according to parts (ii)–(v) TG can be invertible when one (or both) of the endpoints of
the spectral gap around zero is missing from Ω(g), and the length of this spectral gap can be
greater than λ/N .

For g ∈ APW, Theorem 5.2 delivers the invertibility criterion of TG, and thus a necessary
and sufficient condition for G to admit a canonical APW factorization. Using Theorem 3.8,
however, will allow us to tackle the non-canonical AP factorability of G as well.

We assume from now on that g ∈ APW is given by (5.1), so that in fact g± ∈ APW±, and
that g ∈ Sλ,N is as described by Theorem 5.1.

In the notation of this theorem, for N = 1 we have η1+ + η1− � λ, the so-called big gap case,
and a solution to (1.7) is given by

φ+ = (eλ−ν ,−e−ν+η1+ g̃+) (5.22)

and

φ− = (e−ν , eλ−ν−η1− g̃−), (5.23)

where

g̃+ = e−η1+g+ (0 = inf Ω(g̃+)) (5.24)
g̃− = eη1−g− (0 = sup Ω(g̃−)), (5.25)

max{0, λ− η1−} � ν � min{η1+, λ}. (5.26)

Knowing these solutions and using Corollary 3.4 with f ∈ APW+ as in (3.6), we will be able
to complete the consideration of AP factorability in the big gap case.

It was shown earlier (see [3, Chapter 14; 8, Theorem 2.2]) that G is APW factorable if, in
addition to the big gap requirement η1+ + η1− � λ, also

η1+ ∈ Ω(g+) or η1+ � λ, −η1− ∈ Ω(g−) or η1− � λ. (5.27)

However, the AP factorability of G if λ > η1+ /∈ Ω(g+) or λ > η1− /∈ −Ω(g−) remained
unsettled. As the next theorem shows, in these cases G does not have an AP factorization.
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Theorem 5.4. Let g ∈ APW be given by (5.1), with η1± defined by (5.3), (5.4) and
satisfying η1+ + η1− � λ. Then the matrix function (4.1) is AP factorable if and only if (5.27)
holds. In this case, G actually admits an APW factorization and its partial indices are ±μ with

μ = min{λ, η1+, η1−, η1+ + η1− − λ}. (5.28)

In particular, the factorization is canonical if and only if η1+ = 0 or η1− = 0 or η1+ + η1− = λ.

Proof. Sufficiency. Although it was established earlier, we give here a (much) shorter and
self-contained proof, based on the results of Theorem 3.8. Namely, if (5.27) is satisfied, then
(5.22)–(5.26) hold with min Ω(g̃+) = 0 if η1+ < λ and max Ω(g̃−) = 0 if η1− < λ. Writing

φ+ = eμ1 ψ̃+ with μ1 = min{λ− ν,−ν + η1+},
φ− = e−μ2 ψ̃− with μ2 = min{ν, η1− + ν − λ},

we see that ψ̃± ∈ APW± ∩ CP± and

Geμ1+μ2 ψ̃+ = ψ̃−,

so that, according to Theorem 3.8, G admits an APW factorization with partial indices
±μ where

μ = μ1 + μ2 = min{λ, η1+, η1−, η1+ + η1− − λ}
(as can be checked straightforwardly).

Necessity. Suppose that Ω(g+) �� η1+ < λ; the case −Ω(g+) �� η1− < λ can be treated
analogously. Then a solution to (1.7) with φ± ∈ (APW±)2 is given by (5.22)–(5.26).

It follows from these formulas that φ2+ = −e−ν+η1+ g̃+, where −ν + η1+ � 0 due to (5.26).
On the other hand, 0 /∈ Ω(g̃+) because η1+ /∈ Ω(g+). Therefore, for any ε > 0 and ν = η1+ there
is yε ∈ R+ such that

inf
C++iyε

|φ2+| = inf
C++iyε

|e−ν+η1+ g̃+| < ε

and

inf
C++iyε

|φ1+| = inf
C++iyε

|eλ−ν | < ε.

Thus, φ+ = (φ1+, φ2+) /∈ CP+ and we conclude from Theorem 3.7 that G cannot have a
canonical AP factorization.

Now, if G admits a non-canonical factorization, which must have partial AP indices ±μ
with μ > 0, then according to Corollary 3.4 we have (3.6) with f ∈ AP+, Ω(f) ⊂ [0, μ].
Denoting g±1 = (g±11, g

±
21), and considering in particular the first component of φ+, we thus

have from (5.22):

eλ−ν = fg+
11. (5.29)

In addition, from the factorization it follows directly that

e−λ+μg
+
11 = g−11.

Consequently, the Bohr–Fourier spectrum of g+
11 also is bounded, and (5.29) therefore holds

everywhere in C. In particular, f and g+
11 do not vanish in C. But then (see [11, Lemma 3.2] or

[13, p. 371]) Ω(f), Ω(g+
11) must each contain the maximum and the minimum element, which

implies that

max Ω(f) + max Ω(g+
11),min Ω(f) + min Ω(g+

11) ∈ Ω(fg+
11) = {λ− ν}.

We conclude that min Ω(f) = max Ω(f) and thus f = eγ for some γ ∈ [0, μ].
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But then, from (5.22) and (3.6),

(g+
11, g

+
21) = (eλ−ν−γ , e−ν+η1+−γ g̃+) ∈ CP+,

which is impossible when Ω(g+) �� η1+ < λ. Indeed, in this case λ− ν − γ > η1+ − ν − γ � 0
and 0 /∈ Ω(g̃+).

Finally, the criterion for the AP factorization of G to be canonical, when it exists, follows
immediately from formulas (5.28).

Remark 5.5. The last statement of Theorem 3.8 implies that the construction in the proof
of Theorem 5.4 delivers not only the partial AP indices but also a first column of G+ and G−.
Namely, they may be chosen equal to ψ̃+ and ψ̃−, respectively.

Now, we move to the case N > 1.
Knowing a solution (4.20), (4.21) of (1.7) and using Theorem 3.8 (with detG ≡ 1, and

therefore δ = 0), we can obtain sufficient conditions for AP factorability of G ∈ Sλ,N , N > 1.

Theorem 5.6. Let g ∈ APW be such that g ∈ Sλ,N , N > 1, as described in Theorem 5.1,
with (5.17) satisfied. Then G admits an APW factorization with partial AP indices ±μ where:

(i) μ = N(η1+ + η1−) − λ if

η1+ ∈ Ω(g+), −η1− ∈ Ω(g−) (5.30)

and

λ � max{Nη1+ + (N − 1)η2−, Nη1− + (N − 1)η2+}; (5.31)

(ii) μ = Nη1+ − (N − 1)η2+ if

η1+, η2+ ∈ Ω(g+) (5.32)

and

Nη1+ + (N − 1)η2− � λ � Nη1− + (N − 1)η2+; (5.33)

(iii) μ = Nη1− − (N − 1)η2− if

− η1−,−η2− ∈ Ω(g−) (5.34)

and

Nη1− + (N − 1)η2+ � λ � Nη1+ + (N − 1)η2−; (5.35)

(iv) μ = λ− (N − 1)(η2+ + η2−) if

η2+ ∈ Ω(g+), −η2− ∈ Ω(g−) (5.36)

and

λ � min{Nη1+ + (N − 1)η2−, Nη1− + (N − 1)η2+}. (5.37)
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Proof. Consider the solution to (1.7) given by (4.20) and (4.21), with a± and b± as in (5.18)
and (5.19). Then we obtain

φ1+ = eλ−Nν

N−1∑
j=0

((−1)jgj
−g

N−1−j
+ )

=
N−1∑
j=0

((−1)jeλ−Nν−jη2−+(N−1−j)η1+(eη2−g−)j(e−η1+g+)N−1−j)

= eλ−Nν−(N−1)η2− φ̃1+,

with φ̃1+ ∈ APW+ where λ−Nν − (N − 1)η2− � 0 due to (5.7) and 0 = inf Ω(φ̃1+) (=
min Ω(φ̃1+) if −η2− ∈ Ω(g−));

φ2+ = −e−Nνg
N
+ = −e−Nν+Nη1+(e−η1+g+)N = e−Nν+Nη1+ φ̃2+,

with φ̃2+ ∈ APW+ where −Nν +Nη1+ � 0 due to (5.7) and 0 = inf Ω(φ̃2+) (= min Ω(φ̃2+) if
η1+ ∈ Ω(g+));

φ1− = e−Nν

N−1∑
j=0

((−1)jgj
−g

N−1−j
+ )

=
N−1∑
j=0

((−1)je−Nν−jη1−+(N−1−j)η2+(eη1−g−)j(e−η2+g+)N−1−j)

= e−Nν+(N−1)η2+ φ̃1−,

with φ̃1− ∈ APW− where −Nν + (N − 1)η2+ � 0 due to (5.7) and 0 = sup Ω(φ̃1−) (=
max Ω(φ̃1−) if η2+ ∈ Ω(g+));

φ2− = (−1)N−1eλ−Nνg
N
− = (−1)N−1eλ−Nν−Nη1−(eη1−g−)N = eλ−Nν−Nη1− φ̃2−,

with φ̃2− ∈ APW− where λ−Nν −Nη1− � 0 due to (5.7) and 0 = sup Ω(φ̃2−) (= max Ω(φ̃2−)
if −η1− ∈ Ω(g−)).

Hence,

G

[
eλ−Nν−(N−1)η2− φ̃1+

e−Nν+Nη1+ φ̃2+

]
=

[
e−Nν+(N−1)η2+ φ̃1−
eλ−Nν−Nη1− φ̃2−

]
. (5.38)

Setting now φ+ = eμ1 ψ̃+ and φ− = e−μ2ψ− where

μ1 = −Nν + min{λ− (N − 1)η2−, Nη1+} � 0,
μ2 = Nν + min{−(N − 1)η2+, Nη1− − λ} � 0,

we infer from (5.38) that Gψ+ = ψ−, with ψ+ = eμψ̃+ and

μ = μ1 + μ2 = min{λ− (N − 1)η2−, Nη1+} + min{−(N − 1)η2+, Nη1− − λ}
= min{N(η1+ + η1−) − λ, Nη1+ − (N − 1)η2+,
Nη1− − (N − 1)η2−, λ− (N − 1)(η2+ + η2−)}. (5.39)

We consider the cases (i)–(iv) separately.
(i) If (5.30) and (5.31) hold, then μ = N(η1+ + η1−) − λ due to (5.39) and

ψ̃+ =
[
eλ−Nη1+−(N−1)η2− φ̃1+

φ̃2+

]
and ψ− =

[
e−λ+Nη1−+(N−1)η2+ φ̃1−

φ̃2−

]
,

whereM(φ̃2+) �= 0 if and only η1+ ∈ Ω(g+), andM(φ̃2−) �= 0 if and only −η1− ∈ Ω(g−). Hence,
by (5.30), ψ̃+ = e−μψ+ ∈ CP+ and ψ− ∈ CP−. The result now follows from Theorem 3.8.
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(ii) If (5.32) and (5.33) hold, then μ = Nη1+ − (N − 1)η2+ due to (5.39) and

ψ̃+ =
[
eλ−Nη1+−(N−1)η2− φ̃1+

φ̃2+

]
and ψ− =

[
φ̃1−

eλ−Nη1−−(N−1)η2+ φ̃2−

]
,

where M(φ̃2+) �= 0 if and only η1+ ∈ Ω(g+), and M(φ̃1−) �= 0 if and only η2+ ∈ Ω(g+). Hence,
by (5.32), ψ̃+ = e−μψ+ ∈ CP+ and ψ− ∈ CP−. The result now follows from Theorem 3.8.

(iii) If (5.34) and (5.35) hold, then μ = Nη1− − (N − 1)η2− due to (5.39) and

ψ̃+ =
[

φ̃1+

e−λ+Nη1++(N−1)η2− φ̃2+

]
and ψ− =

[
e−λ+Nη1−+(N−1)η2+ φ̃1−

φ̃2−

]

where M(φ̃1+) �= 0 if and only −η2− ∈ Ω(g−), and M(φ̃2−) �= 0 if and only −η1− ∈ Ω(g−).
Hence, by (5.34), ψ̃+ = e−μψ+ ∈ CP+ and ψ− ∈ CP−. The result now follows from Theo-
rem 3.8.

(iv) If (5.36) and (5.37) hold, then μ = λ− (N − 1)(η2+ + η2−) due to (5.39) and

ψ̃+ =
[

φ̃1+

e−λ+Nη1++(N−1)η2− φ̃2+

]
and ψ− =

[
φ̃1−

eλ−Nη1−−(N−1)η2+ φ̃2−

]

whereM(φ̃1+) �= 0 if and only −η2− ∈ Ω(g−), andM(φ̃1−) �= 0 if and only η2+ ∈ Ω(g+). Hence,
by (5.36), ψ̃+ = e−μψ+ ∈ CP+ and ψ− ∈ CP−. The result again follows from Theorem 3.8.

Remark 5.7. If λ = Nη1+ + (N − 1)η2− = Nη1− + (N − 1)η2+, then all the numbers

N(η1+ + η1−) − λ, Nη1+ − (N − 1)η2+,
Nη1− − (N − 1)η2−, λ− (N − 1)(η2+ + η2−)

coincide, and therefore μ in Theorem 5.6 is equal to their common value. Analogously, if
λ = Nη1+ + (N − 1)η2−, then

N(η1+ + η1−) − λ = Nη1− − (N − 1)η2−,
λ− (N − 1)(η2+ + η2−) = Nη1+ − (N − 1)η2+,

and if λ = Nη1− + (N − 1)η2+, then

N(η1+ + η1−) − λ = Nη1+ − (N − 1)η2+,
λ− (N − 1)(η2+ + η2−) = Nη1− − (N − 1)η2−.

Hence, in the latter two cases μ = min{N(η1+ + η1−) − λ, λ− (N − 1)(η2+ + η2−)}.

Remark 5.8. The main difficulty in applying Theorem 5.6 lies in verifying whether or not
condition (5.17) holds. In this regard, [5, Theorems 3.1 and 3.4] may be helpful. Also, as was
mentioned before, (5.17) holds if a+ or a− is a single exponential. A class of matrix functions
with such a± was studied in [8], where the APW factorization of G was explicitly obtained.
Naturally, conclusions of [8] match those that can be obtained by applying Theorem 5.6 to the
same class. Furthermore, combining Corollary 3.4 and Theorem 3.5 of the present paper with
the APW factorization obtained in [8], it is possible to characterize completely the solutions
of (1.7) in that case.

Below we give examples of two cases in which condition (5.17) is also not hard to verify.

Example 5.9. Let the off-diagonal entry g ∈ Sλ,N of the matrix (4.1) be given by

g = c−2e−η2− + c−1e−η1− + g+
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with c−2, c−1 ∈ C, 0 � η1− < η2− and g+ ∈ APW+ with Bohr–Fourier spectrum containing
its maximum and minimum points ηj+, j = 1, 2.

If N = 1, which happens in particular if c−1 = c−2 = 0, then G is APW factorable with
partial AP indices given by Theorem 5.4.

If N > 1, then it follows from Theorem 5.6 that G admits an APW factorization with partial
AP indices ±μ, where

μ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(η1+ + η1−) − λ if λ � max{Nη1+ + (N − 1)η2−, Nη1− + (N − 1)η2+},
Nη1+ − (N − 1)η2+ if Nη1+ + (N − 1)η2− � λ � Nη1− + (N − 1)η2+,
Nη1− − (N − 1)η2− if Nη1− + (N − 1)η2+ � λ � Nη1+ + (N − 1)η2−,
λ− (N − 1)(η2+ + η2−) if λ � min{Nη1+ + (N − 1)η2−, Nη1− + (N − 1)η2+},

whenever (5.17) holds. Moreover, the expressions given in the proof of Theorem 5.6 for φ1±, φ2±
in each case also provide, by using Theorem 3.8, one column for the factors G± in an APW
factorization of G.

In its turn, condition (5.17) is satisfied if and only if one of the coefficients c−1, c−2 is zero
or (if c−1c−2 �= 0)

inf
k∈Z

|g+(zk)| > 0, (5.40)

where zk, k ∈ Z, are the zeros of g− = c−2e−η2− + c−1e−η1− , that is,

zk =
1

η2− − η1−

(
arg

(
−c−2

c−1

)
+ 2kπ − i log

∣∣∣∣c−2

c−1

∣∣∣∣
)
.

If, in particular, g+ also is a binomial, that is,

g+ = c1eη1+ + c2eη2+ (c1, c2 ∈ C, 0 � η1+ < η2+),

then (5.40) is satisfied whenever one of the coefficients c1, c2 is zero. On the other hand, for
c1, c2 �= 0 condition (5.40) is equivalent to (cf. [2, Lemma 3.3])∣∣∣∣c1c2

∣∣∣∣
η2−−η1−

�=
∣∣∣∣c−2

c−1

∣∣∣∣
η2+−η1+

if
η2+ − η1+
η2− − η1−

∈ R\Q;

and to (
−c1
c2

)q

�=
(
−c−2

c−1

)p

if
η2+ − η1+
η2− − η1−

=
p

q
, with p, q ∈ N relatively prime.

Example 5.10. Let G ∈ Sλ,N , N > 1, with the off-diagonal entry g ∈ APW of the form
g = g− + g+ where

g+ = cαeαg− + cμeμ,

α, μ > 0, cα, cμ ∈ C, cμ �= 0 and η1±, η2± ∈ Ω(g±) (see (5.3), (5.4)). It is easy to see that (5.17)
holds. Theorem 5.6 implies therefore that G admits an APW factorization with partial AP
indices as indicated in that theorem.

Added in revision. After this paper was submitted for publication, its results were used in [9]
to further develop AP factorization criteria and in [4] to observe that the set of AP factorable
matrix functions is not open.
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