# Riemann-Hilbert problems, Toeplitz operators and $\mathfrak{Q}$-classes 

M.C.Câmara and M.T.Malheiro


#### Abstract

We generalize the notion of $\mathfrak{Q}$-classes $C_{Q_{1}, Q_{2}}$, which was introduced in the context of Wiener-Hopf factorization, by considering very general $2 \times 2$ matrix functions $Q_{1}, Q_{2}$. This allows us to use a mainly algebraic approach to obtain several equivalent representations for each class, to study the intersections of $\mathfrak{Q}$-classes and to explore their close connection with certain non-linear scalar equations. The results are applied to various factorization problems and to the study of Toeplitz operators with symbol in a $\mathfrak{Q}$-class. We conclude with a group theoretic interpretation of some of the main results.


Mathematics Subject Classification (2010). Primary 47A68; Secondary 47B35, 15A24.
Keywords. Riemann-Hilbert problems, Toeplitz operators, factorization, matrix equations.

## 1. Introduction

1.1 We start by introducing some notation.

Let $\left.\left.H_{p}^{ \pm}:=H^{p}\left(\mathbb{C}^{ \pm}\right), p \in\right] 0,+\infty\right]$, denote the Hardy spaces over the halfplanes $\mathbb{C}^{ \pm}([19])$, identified as usual with subspaces of the Lebesgue spaces $L_{p}(\mathbb{R})$. For $\left.p \in\right] 1, \infty\left[\right.$, we have $L_{p}(\mathbb{R})=H_{p}^{+} \oplus H_{p}^{-}$and we denote by $P^{+}$the projection of $L_{p}(\mathbb{R})$ onto $H_{p}^{+}$parallel to $H_{p}^{-}$.

Let $C_{\mu}(\dot{\mathbb{R}})$ denote the Banach algebra of all functions that are continuous and satisfy a Hölder condition with exponent $\mu \in] 0,1[$ on $\dot{\mathbb{R}}$. Let moreover $C_{\mu}^{ \pm}(\dot{\mathbb{R}}):=C_{\mu}(\dot{\mathbb{R}}) \cap H_{\infty}^{ \pm}$.

[^0]Denoting by $\mathcal{R}$ the set of all rational functions with poles off $\dot{\mathbb{R}}$, let $\mathcal{M}_{\infty}^{ \pm}=H_{\infty}^{ \pm}+\mathcal{R}$.

For any set $X$, we denote by $X^{n}$ (resp., $X^{n \times m}$ ) the set of all $n$-vectors (resp., $n \times m$ matrices) with entries in $X$, and for any unital algebra $\mathcal{A}$, let $\mathcal{G A}$ denote the group of invertible elements in $\mathcal{A}$.

We say that $G \in \mathcal{G}\left(L_{\infty}(\mathbb{R})\right)^{2 \times 2}$ admits a bounded factorization (resp., $\mathcal{M}$-bounded factorization) if and only if $G$ admits a representation

$$
\begin{equation*}
G=G_{-} D G_{+}^{-1} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{ \pm} \in \mathcal{G}\left(H_{\infty}^{ \pm}\right)^{2 \times 2} \quad\left(\text { resp. }, G_{ \pm} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{ \pm}\right)^{2 \times 2}\right) \tag{1.2}
\end{equation*}
$$

and $D=\operatorname{diag}\left(d_{1}, d_{2}\right) \in \mathcal{G}\left(L_{\infty}(\mathbb{R})\right)^{2 \times 2}([5])$. When $D=I$ and $G_{ \pm}$satisfy the first condition in (1.2), the representation (1.1) is called a canonical bounded factorization. This is a particular form of the Douglas-Rudin factorization, which is known to exist for every log-integrable $G$ in $\left(L_{\infty}(\mathbb{R})\right)^{2 \times 2}([1,4])$. If $D=I$ and $G_{ \pm} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{ \pm}\right)^{2 \times 2}$, we say that $G$ admits a meromorphic factorization ( $[6,28]$ ). This type of factorization appears naturally, for instance, in the study of certain elastodynamic diffraction problems ([7, 29]).

Representations of the form (1.1) are closely associated with the study of Riemann-Hilbert problems, which can be formulated as follows: for a given matrix function $G$ and a given vector function $g$ defined (a.e.) on $\mathbb{R}$, find two vector functions $\phi_{ \pm}$, analytic in the upper and lower half-planes $\mathbb{C}^{ \pm}$, respectively, satisfying the boundary condition

$$
\begin{equation*}
G \phi_{+}=\phi_{-}+g \tag{1.3}
\end{equation*}
$$

on $\mathbb{R}$. The existence of a bounded factorization for $G$ means that the matrix Riemann-Hilbert (RH) problem (1.3) can be decoupled into scalar RH problems, and several meaningful conclusions regarding the solvability of (1.3) can be drawn from the factorization (1.1), if it exists, even without additional information about the diagonal elements of $D([5])$. More can be said, of course, if some particular form is imposed for the elements of $D$, as it happens in the cases of Wiener-Hopf or almost periodic factorization.

By a (bounded)Wiener-Hopf factorization we mean a bounded factorization (1.1) with $D=\operatorname{diag}\left(r^{k_{1}}, r^{k_{2}}\right.$, where $k_{1}, k_{2} \in \mathbb{Z}$ are called the partial indices and

$$
\begin{equation*}
r(\xi)=\frac{\xi-i}{\xi+i}, \quad \xi \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

( $[16,28,31]$ ). If $G$ admits a meromorphic factorization $G=M_{-} M_{+}$with $M_{ \pm} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{ \pm}\right)^{2 \times 2}$, then it also has a Wiener-Hopf factorization that can be obtained from the former by a finite number of elementary algebraic operations and rational factorization $([7,8,28])$.

By an almost periodic factorization we mean a bounded factorization(1.1) where $D=\operatorname{diag}\left(e_{\mu_{1}}, e_{\mu_{2}}\right)$, with $\mu_{1}, \mu_{2} \in \mathbb{R}$ and $e_{\mu}(\xi):=e^{i \mu \xi}$, and $G_{ \pm} \in A P^{ \pm}$ with $A P^{ \pm}:=A P \cap H_{\infty}^{ \pm}$, where $A P$ denotes the closure of the set of all almost periodic polynomials $\sum_{j} c_{j} e_{\lambda_{j}}$ with $\lambda_{j} \in \mathbb{R}, c_{j} \in \mathbb{C}$, with respect to the uniform norm ([3]).

We use the abbreviations $W H$-factorization for the former and $A P$ factorization for the latter.

From an operator theoretic perspective, factorization of matrix functions and RH problems are also closely connected with the study of Toeplitz operators. Namely, for $G \in\left(L_{\infty}(\mathbb{R})\right)^{2 \times 2}$, the Toeplitz operator $T_{G}$ defined by

$$
\begin{equation*}
T_{G}:\left(H_{p}^{+}\right)^{2} \rightarrow\left(H_{p}^{+}\right)^{2}, \quad T_{G}\left(\phi_{+}\right)=P^{+}\left(G \phi_{+}\right) \tag{1.5}
\end{equation*}
$$

$(1<p<\infty)$ is Fredholm if its symbol $G$ admits a $W H$-factorization; $T_{G}$ is invertible if this factorization is canonical, i.e, the partial indices $k_{j}$ are equal to zero, and in this case $\left(T_{G}\right)^{-1}=G_{+} P^{+}\left(G_{-}\right)^{-1} I_{+}$, where $I_{+}$denotes the identity operator in $\left(H_{p}^{+}\right)^{2}$. On the other hand, the kernel of $T_{G}$ consists of all the functions $\phi_{+} \in\left(H_{p}^{+}\right)^{2}$ satisfying the RH equation

$$
\begin{equation*}
G \phi_{+}=\phi_{-} \tag{1.6}
\end{equation*}
$$

for some $\phi_{-} \in\left(H_{p}^{-}\right)^{2}$.
We say that $T_{G}$ is nearly Fredholm equivalent to $T_{\widetilde{G}}$ if and only if

$$
\begin{equation*}
T_{G} \text { is Fredholm } \Leftrightarrow T_{\widetilde{G}} \text { is Fredholm. } \tag{1.7}
\end{equation*}
$$

If moreover $T_{G}$ and $T_{\widetilde{G}}$ have the same Fredholm index, we say that they are Fredholm equivalent (and strictly Fredholm equivalent when $\operatorname{dim} \operatorname{ker} T_{G}=$ $\left.\operatorname{dim} \operatorname{ker} T_{\widetilde{G}}, \operatorname{dim} \operatorname{coker} T_{G}=\operatorname{dim} \operatorname{coker} T_{\widetilde{G}}\right)([10])$. With this notation, if $G$ admits an $\mathcal{M}$-bounded factorization (1.1), then $T_{G}$ is nearly Fredholm equivalent to $T_{D}$, and if this factorization is a bounded one then $T_{G}$ is strictly Fredholm equivalent to $T_{D}([28,31])$.
1.2 It was pointed out in [15] that every $2 \times 2$ matrix function admitting a $W H$-factorization of the form (1.1) satisfies a relation

$$
\begin{equation*}
G^{T} Q_{1} G=\operatorname{det} G \cdot Q_{2} \tag{1.8}
\end{equation*}
$$

where $Q_{1}$ and $Q_{2}$ are symmetric matrices such that

$$
\begin{gather*}
Q_{1} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{-}\right)^{2 \times 2}, \quad Q_{2} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{+}\right)^{2 \times 2}  \tag{1.9}\\
\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=q \in \mathcal{G} \mathcal{R} \tag{1.10}
\end{gather*}
$$

The class of all $2 \times 2$ invertible matrix functions $G$ satisfying (1.8) was denoted by $C\left(Q_{1}, Q_{2}\right)$, following the notation of [13] where these classes were defined and studied for the first time.

The importance of the relation (1.8) in solving RH problems of the form (1.3) and in the study of a Toeplitz operator with symbol $G$ was put in evidence in $[13,14,15]$. In fact, in the case where $G \in \mathcal{G}\left(C_{\mu}(\dot{\mathbb{R}})\right)$, it provides certain non-linear equations allowing to solve those problems, as shown in [13], as well as an equivalence between the matrix RH problem (1.3) in the complex plane and a scalar RH problem in a Riemann surface $\Sigma$ uniquely associated to the class $C\left(Q_{1}, Q_{2}\right)$, as shown in [14, 15]. In the latter case, an appropriate factorization for scalar functions defined on a contour in $\Sigma$ can be used to solve (1.3) and, consequently, to study some properties of the Toeplitz operator $T_{G}([9,14,15])$.

Although the results of [15] represent a significant step forward in the study of RH problems and some properties of Toepliz operators, a number of questions were left open. Namely, given a $2 \times 2$ matrix $G$ with entries in $C_{\mu}(\dot{\mathbb{R}})$, how to determine a pair $\left(Q_{1}, Q_{2}\right)$ such that (1.8) holds? And, since $G$ may belong to two different classes $C\left(Q_{1}, Q_{2}\right)$ and $C\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right)$, can we have two associated Riemann surfaces, with different genuses? Furthermore, is it possible to extend the results to factorization problems that are not of Wiener-Hopf type? We address these and other questions in the present paper.

In the past, the classes $C\left(Q_{1}, Q_{2}\right)$ have been studied only for matrix functions $G$ admitting a $W H$-factorization. We will be interested in studying them in a more general context, and hence we will give up the restrictions (1.9) and (1.10). We define here $C_{Q_{1}, Q_{2}}$ as consisting of all $G \in \mathcal{G}\left(L_{\infty}(\mathbb{R})\right)^{2 \times 2}$ satisfying (1.8), where we assume only that $Q_{1}$ and $Q_{2}$ are symmetric and invertible in $\left(L_{\infty}(\mathbb{R})\right)^{2 \times 2}$, with $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}$.

Several reasons make it natural, and convenient, to study these classes of matrix functions in a more abstract context. On the one hand, by taking advantage of the mainly algebraic nature of their definition and properties, this approach provides a unified treatment of various problems in different settings, allows us to obtain new results, and yields a better understanding of the existing ones. On the other hand, it enables us to give a group theoretic perspective of the results, which is presented here for the first time to the authors' knowledge.

The paper is organized as follows.
In Section 2 we introduce the $\mathfrak{Q}$-classes $C_{Q_{1}, Q_{2}}$ and present some of their properties. The main result in this section is Theorem 2.6, which gives different equivalent representations of the matrix functions belonging to a given class $C_{Q_{1}, Q_{2}}$. In Section 3 we study the intersections of $\mathfrak{Q}$-classes and we show that a matrix function $G$ may belong to two different classes, whose intersection consists of scalar multiples of $G$. Section 4 deals with the socalled product equation ([13]), a non-linear scalar equation associated with each $C_{Q_{1}, Q_{2}}$. It is shown that it can be used to address a major problem related to the use of the relation (1.8) to solve RH problems, which is how to determine a pair $\left(Q_{1}, Q_{2}\right)$ such that (1.8) holds for a given $G$. In Section 5 we study the factorization of matrices in $C_{Q_{1}, Q_{2}}$ with factors belonging to certain $\mathfrak{Q}$-classes. It is shown that, for every $Q_{3}, G \in C_{Q_{1}, Q_{2}}$ can be represented as a product of two matrices, in $C_{Q_{1}, Q_{3}}$ and $C_{Q_{3}, Q_{2}}$ respectively, which can be determined from a solution to the associated equation $G \phi=\psi$. In Section 6 the results of the previous sections are applied to several problems regarding bounded factorization of $2 \times 2$ matrix functions and Toeplitz operators. It is shown, in particular, that the results of sections 3 and 4 can be used to describe the kernel of a Toeplitz operator, obtain conditions for its invertibility and determine an explicit Wiener-Hopf factorization for its symbol by simple algebraic methods, instead of the much more complicated approach suggested in [15]. Finally, in Section 7, we show that $C_{Q_{1}, Q_{2}}$, endowed with
an operation $*$ which reduces to the usual multiplication of matrices when $Q_{1}=Q_{2}$, is a group. Several results of the previous sections can thus be elegantly translated into group theoretic terms. How to take advantage of this formulation to advance the study of RH problems and Toeplitz operators is an open and very interesting question.

## 2. The $\mathfrak{Q}$-classes $C_{Q_{1}, Q_{2}}$

In what follows, we abbreviate $L_{\infty}(\mathbb{R})$ to $L_{\infty}$. Let $Q \in \mathcal{G} L_{\infty}^{2 \times 2}$ be a symmetric matrix function of the form

$$
Q=\left[\begin{array}{ll}
q_{1} & q_{2}  \tag{2.1}\\
q_{2} & q_{3}
\end{array}\right]
$$

and let

$$
\begin{equation*}
q:=-\operatorname{det} Q . \tag{2.2}
\end{equation*}
$$

Let $\rho \in \mathcal{G} L_{\infty}$ be such that $\rho^{2}=q$, choosing $\rho=q_{2}$ if $q_{1} q_{3}=0$. Assume also that either $q_{1} \in \mathcal{G} L_{\infty}$ or $q_{1}=0$ (as in [15]).

We denote by $\mathfrak{Q}$ the class of all matrices $Q$ satisfying the above conditions.

To each $Q \in \mathfrak{Q}$ we associate

$$
\begin{gather*}
S_{Q}=\left[\begin{array}{cc}
q_{1} & q_{2}+\rho \\
1 & \frac{q_{3}}{q_{2}+\rho}
\end{array}\right],  \tag{2.3}\\
H_{\rho}=\left[\begin{array}{cc}
1 & 1 \\
\rho^{-1} & -\rho^{-1}
\end{array}\right],  \tag{2.4}\\
D_{q}=\operatorname{diag}(1,-q) . \tag{2.5}
\end{gather*}
$$

Remark that, with our assumptions,

$$
\begin{equation*}
\frac{q_{3}}{q_{2}+\rho} \in \mathcal{G} L_{\infty} \tag{2.6}
\end{equation*}
$$

since $q_{3} /\left(q_{2}+\rho\right)=\left(q_{2}-\rho\right) / q_{1}$ if $q_{1} \in \mathcal{G} L_{\infty}$, and $\rho=q_{2} \in \mathcal{G} L_{\infty}$ if $q_{1}=0$. Thus $S_{Q}, H_{\rho}$ and $D_{q}$ are in $\mathcal{G} L_{\infty}^{2 \times 2}$. We have

$$
\begin{equation*}
\operatorname{det} S_{Q}=-2 \rho, \quad \operatorname{det} H_{\rho}=-2 \rho^{-1}, \quad \operatorname{det} D_{q}=-q=\operatorname{det} Q . \tag{2.7}
\end{equation*}
$$

For $Q=D_{q}$,

$$
S_{D_{q}}=\left[\begin{array}{cc}
1 & \rho  \tag{2.8}\\
1 & -\rho
\end{array}\right]=2 H_{\rho}^{-1}
$$

Defining

$$
I=\left[\begin{array}{ll}
1 & 0  \tag{2.9}\\
0 & 1
\end{array}\right], \widetilde{I}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], J=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \widetilde{J}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

we have

$$
\begin{equation*}
\widetilde{I} J=\widetilde{J}=-J \widetilde{I}, \quad \widetilde{I} \widetilde{J}=J=-\widetilde{J} \widetilde{I} \quad J \widetilde{J}=\widetilde{I}=-\widetilde{J} J . \tag{2.10}
\end{equation*}
$$

It is easy to see that the following equalities hold:

$$
\begin{align*}
& H_{\rho}^{-1}=\frac{1}{2} \rho \widetilde{I} H_{\rho}^{T} \widetilde{J} \quad, \quad H_{\rho} \widetilde{I} H_{\rho}^{-1}=-\rho^{-1} J D_{q}  \tag{2.11}\\
& H_{\rho}^{T} D_{q} H_{\rho}=2 \widetilde{J} \quad, \quad H_{\rho}^{T} \widetilde{J} H_{\rho}=2 \rho^{-1} \widetilde{I}  \tag{2.12}\\
& S_{Q}^{T} \widetilde{J} S_{Q}=2 Q \quad, \quad J S_{Q}^{T} \widetilde{J}=-2 \rho S_{Q}^{-1} \widetilde{I} \tag{2.13}
\end{align*}
$$

Definition 2.1. We denote by $\mathfrak{Q}^{(2)}$ the set of all pairs $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{2}$ with $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}$.

We now introduce the classes whose study will be the central topic in this paper. In what follows, we use the notation

$$
Q_{j}=\left[\begin{array}{ll}
q_{j 1} & q_{j 2} \\
q_{j 2} & q_{j 3}
\end{array}\right]
$$

Definition 2.2. For each pair $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{(2)}$, let

$$
C_{Q_{1}, Q_{2}}=\left\{G \in \mathcal{G} L_{\infty}^{2 \times 2}: G^{T} Q_{1} G=\operatorname{det} G \cdot Q_{2}\right\}
$$

The classes $C_{Q_{1}, Q_{2}}$ will be called $\mathfrak{Q}$-classes and, if $Q_{1}=Q_{2}=Q$, we abbreviate $C_{Q_{1}, Q_{2}}$ to $C_{Q}$.

Several well known classes of functions are $\mathfrak{Q}$-classes. In particular,

$$
\begin{gather*}
C_{\widetilde{J}}=\mathcal{D}:=\left\{D \in \mathcal{G} L_{\infty}^{2 \times 2}: D \text { is diagonal }\right\}  \tag{2.14}\\
C_{I}=\left\{G \in \mathcal{G} L_{\infty}^{2 \times 2}: G^{T}=\operatorname{adj} G\right\} \tag{2.15}
\end{gather*}
$$

where adj $G$ denotes the adjugate of $G$. In particular, $C_{I}$ includes all invertible anti-symmetric and all $\mathrm{SO}_{2}$-valued matrix functions.

We present now some simple properties of these classes.
Proposition 2.3. The following relations hold:
(i). $C_{Q_{1}, Q_{2}} \cdot C_{Q_{2}, Q_{3}} \subset C_{Q_{1}, Q_{3}}$;
(ii). $G \in C_{Q_{1}, Q_{2}} \Leftrightarrow G^{-1} \in C_{Q_{2}, Q_{1}} \Leftrightarrow G^{T} \in C_{Q_{2}^{-1}, Q_{1}^{-1}}$;
(iii). $C_{Q_{1}, Q_{2}}=C_{f Q_{1}, f Q_{2}}$ for all $f \in \mathcal{G} L_{\infty}$;
(iv). $G \in C_{Q_{1}, Q_{2}} \Rightarrow f G \in C_{Q_{1}, Q_{2}}$ for all $f \in \mathcal{G} L_{\infty}$.

As an immediate consequence of (2.12)-(2.13), we have:

$$
\begin{align*}
& H_{\rho} \in C_{D_{q},-\rho \widetilde{J}} \cap C_{\widetilde{J},-\widetilde{I}} \\
& S_{Q} \in C_{-\rho \widetilde{J}, Q} \tag{2.16}
\end{align*}
$$

It is also easy to see that every $\mathfrak{Q}$-class is non-empty. In fact, if $\left(Q_{1}, Q_{2}\right) \in$ $\mathfrak{Q}^{(2)}$ with $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=-q$, defining

$$
\begin{equation*}
X_{Q_{1}, Q_{2}}:=S_{Q_{1}}^{-1} S_{Q_{2}}, \quad Y_{Q_{1}, Q_{2}}:=\rho S_{Q_{1}}^{-1} \widetilde{I} S_{Q_{2}} \tag{2.17}
\end{equation*}
$$

and abbreviating $X_{Q_{1}, Q_{2}}$ and $Y_{Q_{1}, Q_{2}}$ to $X$ and $Y$, respectively, whenever the corresponding pair $\left(Q_{1}, Q_{2}\right)$ is clear, we have:
Theorem 2.4. $X, Y \in C_{Q_{1}, Q_{2}}$, and the following relations hold:

$$
\begin{gather*}
Y X^{-1} Y=q X  \tag{2.18}\\
Q_{1}=J Y X^{-1}, \quad Q_{2}=q J Y^{-1} X \tag{2.19}
\end{gather*}
$$

Proof. By (2.13), and observing that $\operatorname{det} X=1$, $\operatorname{det} Y=-q$, we have

$$
X^{T} Q_{1} X=S_{Q_{2}}^{T}\left(S_{Q_{1}}^{-1}\right)^{T} Q_{1} S_{Q_{1}}^{-1} S_{Q_{2}}=\frac{1}{2} S_{Q_{2}}^{T} \widetilde{J} S_{Q_{2}}=Q_{2}
$$

so that $X \in C_{Q_{1}, Q_{2}}$, and analogously

$$
Y^{T} Q_{1} Y=\frac{\rho^{2}}{2} S_{Q_{2}}^{T} \widetilde{I} \widetilde{J} \widetilde{I} S_{Q_{2}}=-\frac{q}{2} S_{Q_{2}}^{T} \widetilde{J} S_{Q_{2}}=-q Q_{2}
$$

where we took (2.10) into account. The equality (2.18) is straightforward, and (2.19) follows from (2.10) and (2.13).

We define moreover, for each $Q \in \mathfrak{Q}$,

$$
\begin{equation*}
\widetilde{S}_{Q}=\frac{1}{2} \tilde{q}_{1}^{-1} H_{\rho} \operatorname{diag}\left(1, \tilde{q}_{1}\right) S_{Q} \tag{2.20}
\end{equation*}
$$

where

$$
\tilde{q}_{1}=q_{1} \text { if } q_{1}^{-1} \in L_{\infty}, \quad \tilde{q}_{1}=1 \text { if } q_{1}=0
$$

We have

$$
\begin{gather*}
\tilde{S}_{Q}=q_{1}^{-1}\left[\begin{array}{cc}
q_{1} & q_{2} \\
0 & 1
\end{array}\right], \text { if } q_{1}^{-1} \in L_{\infty},  \tag{2.21}\\
\widetilde{S}_{Q}=\frac{1}{2}\left[\begin{array}{cc}
1 & q_{2}\left(2+\frac{q_{3}}{2 q_{2}^{2}}\right) \\
-q_{2}^{-1} & 2-\frac{q_{3}}{2 q_{2}^{2}}
\end{array}\right], \text { if } q_{1}=0 \tag{2.22}
\end{gather*}
$$

(remark that, if $q_{1}=0$, then $Q \in \mathcal{G} L_{\infty}^{2 \times 2}$ implies that $q_{2} \in \mathcal{G} L_{\infty}$ ), and in both cases

$$
\operatorname{det} \widetilde{S}_{Q}=\tilde{q}_{1}^{-1}
$$

From (2.13), using (2.12), we obtain

$$
\begin{equation*}
Q=\tilde{q}_{1} \widetilde{S}_{Q}^{T} D_{q} \widetilde{S}_{Q} \tag{2.23}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\widetilde{S}_{Q} \in C_{D_{q}, Q} \tag{2.24}
\end{equation*}
$$

From (2.13) and (2.23) we see that $S_{Q}^{T}\left(\tilde{q}_{1}^{-1} \widetilde{J}\right) S_{Q}=2 \widetilde{S}_{Q}^{T} D_{Q} \widetilde{S}_{Q}$. This is a particular case of the following relation, which can be checked straightforwardly by using the definition (2.20) and the relation (2.12).

Proposition 2.5. For any $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{(2)}$,

$$
S_{Q_{1}}^{T}\left[\begin{array}{cc}
0 & \tilde{q}_{11}^{-1} \\
\tilde{q}_{21}^{-1} & 0
\end{array}\right] S_{Q_{2}}=2 \widetilde{S}_{Q_{1}}^{T} D_{q} \widetilde{S}_{Q_{2}}
$$

with $q=-\operatorname{det} Q_{1}=-\operatorname{det} Q_{2}$.
Using these results we can now obtain various descriptions for the matrix functions belonging to a given $\mathfrak{Q}$-class.

Theorem 2.6. Let $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{(2)}$. Then the following are equivalent:
(i). $G \in C_{Q_{1}, Q_{2}}$
(ii). $G=S_{Q_{1}}^{-1} D S_{Q_{2}}$ for some diagonal matrix $D \in \mathcal{G} L_{\infty}^{2 \times 2}$
(iii). $G=\widetilde{S}_{Q_{1}}^{-1} \hat{G} \widetilde{S}_{Q_{2}}$ with $\hat{G} \in C_{D_{q}}$
(iv). $G=\alpha X+\beta Y$ with $\alpha, \beta \in L_{\infty}$ such that $\alpha^{2}-q \beta^{2} \in \mathcal{G} L_{\infty}$.

Proof. (i) $\Rightarrow$ (ii) Let $D:=S_{Q_{1}} G S_{Q_{2}}^{-1}$; by (2.16) and Proposition 2.3, we have $D \in C_{-\rho \widetilde{J}}=C_{\widetilde{J}}$, therefore $D$ is a diagonal matrix belonging to $\mathcal{G} L_{\infty}^{2 \times 2}$ (see (2.14)). Conversely, if $D \in C_{\widetilde{J}}$ then $S_{Q_{1}}^{-1} D S_{Q_{2}} \in C_{Q_{1}, Q_{2}}$. The equivalence (i) $\Leftrightarrow$ (iii) can be proved analogously, taking (2.24) into account. On the other hand, if $D=\operatorname{diag}\left(d_{1}, d_{2}\right)$ then we can write

$$
\begin{equation*}
D=\alpha I+\beta \rho \widetilde{I} \tag{2.25}
\end{equation*}
$$

with $\alpha=\frac{d_{1}+d_{2}}{2}, \beta=\frac{d_{1}-d_{2}}{2 \rho}$, so that $\alpha^{2}-q \beta^{2}=d_{1} d_{2}=\operatorname{det} D=\operatorname{det} G \in$ $\mathcal{G} L_{\infty}^{2 \times 2}$, and

$$
\begin{equation*}
G=S_{Q_{1}}^{-1} D S_{Q_{2}}=\alpha X+\beta Y \tag{2.26}
\end{equation*}
$$

Conversely, it is clear that if $G$ takes the form (2.26) with $\alpha^{2}-q \beta^{2} \in \mathcal{G} L_{\infty}$, then $G \in \mathcal{G} L_{\infty}^{2 \times 2}$ with

$$
\begin{equation*}
G^{-1}=\frac{1}{\alpha^{2}-q \beta^{2}}\left(\alpha X^{-1}-q \beta Y^{-1}\right) \in C_{Q_{2}, Q_{1}} \tag{2.27}
\end{equation*}
$$

and $G \in C_{Q_{1}, Q_{2}}$ by Proposition 2.3, (ii). Thus (ii) is equivalent to (iv).
It is easy to see that the representations (ii)-(iv) in Theorem 2.6 are unique, for each $G$ and each pair $\left(Q_{1}, Q_{2}\right)$. We call $\hat{G}$ the normal form of $G$ (with respect to $C_{Q_{1}, Q_{2}}$ ) if the relation (iii) of Theorem 2.6 holds; $G$ is said to be of normal form if $G \in C_{D_{q}}$, for some $q \in \mathcal{G} L_{\infty}$, i.e.,

$$
G=\alpha I+\beta R, \quad \text { with } R=Y_{D_{q}}=\left[\begin{array}{cc}
0 & q  \tag{2.28}\\
1 & 0
\end{array}\right]
$$

The case where $Q_{1}=Q_{2}=Q$ is of particular interest. The well-known class of Daniele-Khrapkov matrix functions ( $[17,26]$ ) is of this type; these matrices appear in problems from the areas of diffraction theory, acoustics, elastodynamics and integrable systems and have attracted a fair amount of interest in the literature ( $[8,9,11,12,13,15,20,21,22,24,27,29,30,32]$ ). In this case $X=I, Y=-J Q, \operatorname{tr} Y=0$ and $Y^{2}=q I$, and the results of Theorem 2.6 yield:

Corollary 2.7. Let $Q \in \mathfrak{Q}$. Then the following are equivalent:

$$
\begin{align*}
& G \in C_{Q} \\
& G=S_{Q}^{-1} D S_{Q} \text { for some diagonal } D \in \mathcal{G} L_{\infty}^{2 \times 2}  \tag{2.29}\\
& G=\widetilde{S}_{Q}^{-1} \hat{G} \widetilde{S}_{Q} \text { with } \hat{G} \in C_{D_{q}}  \tag{2.30}\\
& G=\alpha I+\beta Y \text { with } \alpha, \beta \in L_{\infty} \text { such that } \alpha^{2}-q \beta^{2} \in \mathcal{G} L_{\infty} \tag{2.31}
\end{align*}
$$

It is clear from (2.31) that, defining

$$
\begin{equation*}
\mathcal{I}=\left\{\alpha I: \alpha \in \mathcal{G} L_{\infty}\right\} \tag{2.32}
\end{equation*}
$$

we have $\mathcal{I} \varsubsetneqq C_{Q}$, for all $Q \in \mathfrak{Q}$. The following result shows that no other diagonal matrices belong to $C_{Q}$, unless $Q$ has a particular form.

Theorem 2.8. Let $G \in \mathcal{G} L_{\infty}^{2 \times 2}$ be diagonal, $G \notin \mathcal{I}$. Then $G \in C_{Q}$ if and only if $Q=q_{2} \widetilde{J}$ with $q_{2} \in \mathcal{G} L_{\infty}$.

Proof. Let $G=\operatorname{diag}(a, b) \in C_{Q}$, with $a \neq b$. Then, for $Q$ given by (2.1), the relation $G^{T} Q G=\operatorname{det} G \cdot Q$ implies that

$$
\left[\begin{array}{cc}
a^{2} q_{1} & a b q_{2} \\
a b q_{2} & b^{2} q_{3}
\end{array}\right]=a b\left[\begin{array}{ll}
q_{1} & q_{2} \\
q_{2} & q_{3}
\end{array}\right],
$$

so that we must have $a q_{1}(a-b)=0$ and $b q_{3}(a-b)=0$. Since $a \neq b$, $a \neq 0, b \neq 0$ a.e., we must have $q_{1}=q_{3}=0$ and, taking into account that $\operatorname{det} Q=-q_{2}^{2} \in \mathcal{G} L_{\infty}$, it follows that $Q=q_{2} \widetilde{J}$ with $q_{2} \in \mathcal{G} L_{\infty}$. Conversely, if $Q=q_{2} \widetilde{J}$, then $G \in C_{Q}$ by (2.14) and Proposition 2.3(iii).
$C_{Q}$ is also related with the space of solutions of the equation

$$
\begin{equation*}
L^{T} Q+Q L=0 \tag{2.33}
\end{equation*}
$$

which is relevant in the study of Lie algebras and is studied in some recent papers ([18, 25]).

We have the following.
Theorem 2.9. Let $\mathcal{L} \subset L_{\infty}^{2 \times 2}$ be the space of solutions of (2.33) for a given $Q \in \mathfrak{Q}$. Then $\exp \mathcal{L} \subset C_{Q}$. If, in addition, $L \in \mathcal{G} L_{\infty}^{2 \times 2}$, then $L \in C_{Q}$.

Proof. Let (2.33) hold. Then $Q L$ is a skew-symmetric matrix function, i.e., $Q L=a J$ for some $a \in L_{\infty}$. On the other hand, from the equality

$$
\begin{equation*}
A J A^{T}=\operatorname{det} A \cdot J, \tag{2.34}
\end{equation*}
$$

valid for any $2 \times 2$ matrix $A$, we have $q^{-1} J Q J=Q^{-1}$, so that

$$
L=Q^{-1}(Q L)=-q^{-1} a J Q
$$

and, for all $n \in \mathbb{N}$,

$$
L^{2 n}=q^{-n} a^{2 n} I, \quad L^{2 n+1}=-q^{-n} a^{2 n+1} J Q
$$

Thus,

$$
\begin{gathered}
\exp L=\sum_{n=0}^{\infty} \frac{L^{n}}{n!}=\sum_{n=0}^{\infty} \frac{q^{-n} a^{2 n}}{(2 n)!} I-\sum_{n=0}^{\infty} \frac{q^{-n-1} a^{2 n+1}}{(2 n+1)!} J Q \\
=\cosh \left(\rho^{-1} a\right) I+\rho^{-1} \sinh \left(\rho^{-1} a\right) Y
\end{gathered}
$$

which is of the form (2.31) with $\alpha^{2}-q \beta^{2}=1 \in \mathcal{G} L_{\infty}$. Thus, by Corollary 2.7, $\exp L \in C_{Q}$.

Since $Q L=a J$ and $L^{T} J=\operatorname{det} L \cdot J L^{-1}$ by (2.34), for $L \in \mathcal{G} L_{\infty}^{2 \times 2}$, we have $L^{T} Q L=\operatorname{det} L \cdot Q$; thus $L \in C_{Q}$.

Remark 2.10. Matrix functions belonging to a family of exponentials of rational matrices, of the form $\exp (t L)$ with $t \in \mathbb{R}$ and $L \in \mathcal{R}^{2 \times 2}$ satisfying an equality of the form (2.33), appear in the study of finite dimensional integrable systems defined by certain Lax equations, see for instance [14, 15].

## 3. Intersection and equality of $\mathfrak{Q}$-classes

It is clear from Proposition 2.3 (iii) that different pairs $\left(Q_{1}, Q_{2}\right)$ and $\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right)$ belonging to $\mathfrak{Q}^{(2)}$ may define equal classes $C_{Q_{1}, Q_{2}}$ and $C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$. A natural question is whether two $\mathfrak{Q}$-classes corresponding to different pairs $\left(Q_{1}, Q_{2}\right)$ and $\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right)$, for which there exists no $f \in \mathcal{G} L_{\infty}$ such that $Q_{j}=f \widetilde{Q}_{j}$, $j=1,2$, may be equal and, if not, how to describe their intersection.

These questions were addressed, and partially answered, in [15]. If $Q_{1}=$ $Q_{2}$ and $\widetilde{Q}_{1}=\widetilde{Q}_{2}$, we have the following.
Theorem 3.1. ([15]) For any $Q, \widetilde{Q} \in \mathfrak{Q}$, the classes $C_{Q}$ and $C_{\widetilde{Q}}$ are not disjoint. We have $\mathcal{I} \subset C_{Q} \cap C_{\widetilde{Q}}$, and either $C_{Q} \cap C_{\widetilde{Q}}=\mathcal{I}$ or $C_{Q}=C_{\widetilde{Q}}$. The latter equality holds if and only if $Q=f \widetilde{Q}$ with $f \in \mathcal{G} L_{\infty}$.

Thus a matrix function cannot belong to two different classes $C_{Q}$ and $C_{\widetilde{Q}}$, unless it is a scalar multiple of the identity. This situation changes when we consider $C_{Q_{1}, Q_{2}}$ with $Q_{1} \neq Q_{2}$. To prove this we use the following result.

Theorem 3.2. ([13]) Let $G_{0}$ be any element of $C_{Q_{1}, Q_{2}}$. Then $C_{Q_{1}, Q_{2}}=C_{Q_{1}}$. $G_{0}=G_{0} \cdot C_{Q_{2}}$.

Theorem 3.3. Let $\left(Q_{1}, Q_{2}\right)$ and $\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right) \in \mathfrak{Q}^{(2)}$. Then one and only one of the following propositions is true:
(i). $C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}=\emptyset$;
(ii). There exists $G_{0} \in \mathcal{G} L_{\infty}^{2 \times 2}$ such that $C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}=\left\{f G_{0}: f \in\right.$ $\left.\mathcal{G} L_{\infty}\right\}$;
(iii). $C_{Q_{1}, Q_{2}}=C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$.

Proof. Suppose that (i) is not true, and there exists $G_{0} \in C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$. Then, by Theorem 3.2,

$$
\begin{aligned}
& C_{Q_{1}, Q_{2}}=C_{Q_{1}} \cdot G_{0}=G_{0} \cdot C_{Q_{2}} \\
& C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}=C_{\widetilde{Q}_{1}} \cdot G_{0}=G_{0} \cdot C_{\widetilde{Q}_{2}} .
\end{aligned}
$$

Thus, if $\widetilde{G}_{0}$ is any element of $C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$, by Proposition 2.3 we have

$$
\widetilde{G}_{0} G_{0}^{-1} \in C_{Q_{1}} \cap C_{\widetilde{Q}_{1}}, \quad G_{0}^{-1} \widetilde{G}_{0} \in C_{Q_{2}} \cap C_{\widetilde{Q}_{2}}
$$

It follows from Theorem 3.1 that either $\widetilde{G}_{0}$ is of the form $\widetilde{G}_{0}=f G_{0}$ with $f \in \mathcal{G} L_{\infty}$ and (ii) holds, or we have $Q_{1}=f_{1} \widetilde{Q}_{1}, Q_{2}=f_{2} \widetilde{Q}_{2}$ with $f_{1}, f_{2} \in \mathcal{G} L_{\infty}$. In the latter case, the relations

$$
G_{0}^{T} Q_{1} G_{0}=\operatorname{det} G_{0} \cdot Q_{2} \quad, \quad G_{0}^{T} \widetilde{Q}_{1} G_{0}=\operatorname{det} G_{0} \cdot \widetilde{Q}_{2}
$$

imply that $f_{1}=f_{2}$, and it follows from Proposition 2.3, (iii) that $C_{Q_{1}, Q_{2}}=$ $C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$. On the other hand, (i) obviously cannot hold simultaneously with either (ii) or (iii), while (ii) and (iii) cannot hold simultaneously because $X, Y \in C_{Q_{1}, Q_{2}}$ (cf. Theorem 2.4) and $X, Y$ cannot be both of the form $f G_{0}$ with $f \in \mathcal{G} L_{\infty}$, for the same matrix function $G_{0}$.

The following example shows that, if $Q_{1} \neq Q_{2}$ or $\widetilde{Q}_{1} \neq \widetilde{Q}_{2}$, we can indeed have $C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}=\emptyset$ as in Theorem 3.3 (i). Take $Q_{1}$ and $Q_{2}$ such that $S_{Q_{1}} S_{Q_{2}}^{-1} \notin \mathcal{D}$, where we denote by $\mathcal{D}$ the class of all diagonal matrices in $\mathcal{G} L_{\infty}$. Then

$$
G \in C_{Q_{1}} \cap C_{Q_{1}, Q_{2}} \Leftrightarrow G=S_{Q_{1}}^{-1} D S_{Q_{1}}=S_{Q_{1}}^{-1} \widetilde{D} S_{Q_{2}}
$$

with $D, \widetilde{D} \in \mathcal{D}$ by Theorem 2.6. It follows that $D^{-1} \widetilde{D}=S_{Q_{1}} S_{Q_{2}}^{-1}$, which is impossible because $S_{Q_{1}} S_{Q_{2}}^{-1} \notin \mathcal{D}$ by assumption. Therefore $C_{Q_{1}}$ and $C_{Q_{1}, Q_{2}}$ must be disjoint.

From Theorem 3.3 we now obtain necessary and sufficient conditions for two $\mathfrak{Q}$-classes to be equal.
Theorem 3.4. If $\left(Q_{1}, Q_{2}\right)$ and $\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right)$ belong to $\mathfrak{Q}^{(2)}$, then the following are equivalent:
(i). $C_{Q_{1}, Q_{2}}=C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$
(ii). $X_{Q_{1}, Q_{2}}, Y_{Q_{1}, Q_{2}} \in C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$
(iii). there exist $G, \widetilde{G} \in C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$ with $G^{-1} \widetilde{G} \notin \mathcal{I}$
(iv). $\widetilde{Q}_{1}^{-1} Q_{1}=\widetilde{Q}_{2}^{-1} Q_{2}=f I$ with $f \in \mathcal{G} L_{\infty}$.

Proof. From Theorem 2.6, (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii). Conversely, if (iii) holds, then by Theorem 3.2 we have

$$
\begin{equation*}
C_{Q_{2}}=G^{-1} \cdot C_{Q_{1}, Q_{2}}, \quad C_{\widetilde{Q}_{2}}=G^{-1} \cdot C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}} \tag{3.1}
\end{equation*}
$$

By Proposition 2.3 (i), $G^{-1} \widetilde{G} \in C_{Q_{2}} \cap C_{\widetilde{Q}_{2}}$ and, since $G^{-1} \widetilde{G} \notin \mathcal{I}$, we have $C_{Q_{2}}=C_{\widetilde{Q}_{2}}$ by Theorem 3.1. Thus we conclude from (3.1) that $C_{Q_{1}, Q_{2}}=$ $C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$, i.e., $(\mathrm{iii}) \Rightarrow(\mathrm{i})$. On the other hand, (iv) $\Rightarrow$ (i) by Proposition 2.3, (iii), and we can show that (i) $\Rightarrow$ (iv) as follows. $Y_{Q_{1}, Q_{2}} X_{Q_{1}, Q_{2}}^{-1}=-J Q_{1} \notin \mathcal{I}$, but $Y_{Q_{1}, Q_{2}} X_{Q_{1}, Q_{2}}^{-1} \in C_{Q_{1}} \cap C_{\widetilde{Q}_{1}}$, so that $C_{Q_{1}}=C_{\widetilde{Q}_{1}}$ and $Q_{1}=f_{1} \widetilde{Q}_{1}$ with $f_{1} \in \mathcal{G} L_{\infty}$ by Theorem 3.1. We conclude analogously that $Q_{2}=f_{2} \widetilde{Q}_{2}$ with $f_{2} \in \mathcal{G} L_{\infty}$. Following the same reasoning as in the proof of Theorem 3.3, with $G_{0}$ replaced by $Y_{Q_{1}, Q_{2}} X_{Q_{1}, Q_{2}}^{-1}$, we conclude that $f_{1}=f_{2}$.

Remark that, given two pairs $\left(Q_{1}, Q_{2}\right)$ and $\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right)$ in $\mathfrak{Q}^{(2)}$ such that $C_{Q_{1}, Q_{2}} \neq C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$, the intersection $C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$ can be determined using (ii) in Theorem 2.6. In fact, using the notation

$$
A_{1}=S_{\widetilde{Q}_{1}} S_{Q_{1}}^{-1}=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad \widetilde{A}=S_{\widetilde{Q}_{2}} S_{Q_{2}}^{-1}=\left[\begin{array}{cc}
\tilde{a}_{11} & \tilde{a}_{12} \\
\tilde{a}_{21} & \tilde{a}_{22}
\end{array}\right]
$$

the elements of $C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$ are determined by the solutions $D, \widetilde{D} \in \mathcal{D}$ of

$$
\begin{equation*}
S_{Q_{1}}^{-1} D S_{Q_{2}}=S_{\widetilde{Q}_{1}}^{-1} \widetilde{D} S_{\widetilde{Q}_{2}} \tag{3.2}
\end{equation*}
$$

For $D=\operatorname{diag}\left(d_{1}, d_{2}\right)$ and $\widetilde{D}=\operatorname{diag}\left(\widetilde{d}_{1}, \widetilde{d}_{2}\right)$, and taking $d_{1}, d_{2}, \tilde{d}_{1}, \tilde{d}_{2}$ as unknowns, we have then

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & -\tilde{a}_{11}-\tilde{a}_{12} & 0 \\
a_{21} & a_{22} & 0 & -\tilde{a}_{21}-\tilde{a}_{22} \\
a_{11} & 0 & -\tilde{a}_{11} & 0 \\
0 & a_{22} & 0 & -\tilde{a}_{22}
\end{array}\right]\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\tilde{d}_{1} \\
\tilde{d}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right],
$$

which is equivalent to

$$
\begin{gathered}
{\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=A_{1}^{-1}\left[\begin{array}{cc}
\tilde{a}_{11}+\tilde{a}_{12} & 0 \\
0 & \tilde{a}_{21}+\tilde{a}_{22}
\end{array}\right]\left[\begin{array}{l}
\tilde{d}_{1} \\
\tilde{d}_{2}
\end{array}\right]} \\
\left(\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right] A_{1}^{-1}\left[\begin{array}{cc}
\tilde{a}_{11}+\tilde{a}_{12} & 0 \\
0 & \tilde{a}_{21}+\tilde{a}_{22}
\end{array}\right]-\left[\begin{array}{cc}
\tilde{a}_{11} & 0 \\
0 & \tilde{a}_{22}
\end{array}\right]\right)\left[\begin{array}{l}
\tilde{d}_{1} \\
\tilde{d}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
\end{gathered}
$$

## 4. $C_{Q_{1}, Q_{2}}$ and the product equation

It was shown in [13] that if $G \in C_{Q_{1}, Q_{2}}$ then we have

$$
\begin{equation*}
\operatorname{det} G \cdot\left(\phi_{+}\right)^{T} Q_{2} \phi_{+}=\left(\phi_{-}\right)^{T} Q_{1} \phi_{-} \tag{4.1}
\end{equation*}
$$

for any $\phi_{+}, \phi_{-}$such that $G \phi_{+}=\phi_{-}$. The equality (4.1) was called product equation, since it could be obtained by multiplying both sides of two equalities that were derived using the representation (ii) of Theorem 2.6, and it was used in $[9,11,12,13]$ to study several factorization and RH problems.

We will prove here that (4.1), considered in a more general setting, is in fact a necessary and sufficient condition for $G$ to belong to $C_{Q_{1}, Q_{2}}$, showing through examples that it can indeed be used to answer the question of how to characterize $\mathfrak{Q}$-classes containing a given matrix function $G$.
Theorem 4.1. $G \in C_{Q_{1}, Q_{2}}$ if and only if the equality

$$
\begin{equation*}
\operatorname{det} G \cdot \phi^{T} Q_{2} \phi=\psi^{T} Q_{1} \psi \tag{4.2}
\end{equation*}
$$

holds for every $(\phi, \psi)$ such that

$$
\begin{equation*}
G \phi=\psi \tag{4.3}
\end{equation*}
$$

Proof. If $G \in C_{Q_{1}, Q_{2}}$ then, for all $(\phi, \psi)$ such that (4.3) holds,

$$
\psi^{T} Q_{1} \psi=\phi^{T} G^{T} Q_{1} G \phi=\operatorname{det} G \cdot \phi^{T} Q_{2} \phi
$$

Conversely, suppose that (4.2) holds for every $(\phi, \psi)$ such that (4.3) holds. We have $G \cdot \operatorname{adj} G=\operatorname{det} G \cdot I$ so that, denoting by $\Phi_{1}$ and $\Phi_{2}$ the two columns of $\operatorname{adj} G$,

$$
G \Phi_{1}=\operatorname{det} G \cdot \Psi_{1}, \quad G \Phi_{2}=\operatorname{det} G \cdot \Psi_{2}
$$

with $\Psi_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, \Psi_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$. Thus $G\left(\Phi_{1}+\Phi_{2}\right)=\operatorname{det} G \cdot\left(\Psi_{1}+\Psi_{2}\right)$ and, taking $\phi=\Phi_{1}+\Phi_{2}$ and $\psi=\operatorname{det} G \cdot\left(\Psi_{1}+\Psi_{2}\right)$ in (4.2), we have

$$
\operatorname{det} G \cdot\left(\Psi_{1}+\Psi_{2}\right)^{T} Q_{1}\left(\Psi_{1}+\Psi_{2}\right)=\left(\Phi_{1}+\Phi_{2}\right)^{T} Q_{2}\left(\Phi_{1}+\Phi_{2}\right)
$$

which, taking into account that we also have, from (4.3),

$$
\begin{equation*}
\operatorname{det} G \cdot \Psi_{1}^{T} Q_{1} \Psi_{1}=\Phi_{1}^{T} Q_{2} \Phi_{1}, \quad \operatorname{det} G \cdot \Psi_{2}^{T} Q_{1} \Psi_{2}=\Phi_{2}^{T} Q_{2} \Phi_{2} \tag{4.4}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\operatorname{det} G \cdot\left(\Psi_{1}^{T} Q_{1} \Psi_{2}+\Psi_{2}^{T} Q_{1} \Psi_{1}\right)=\Phi_{1}^{T} Q_{2} \Phi_{2}+\Phi_{2}^{T} Q_{2} \Phi_{1} \tag{4.5}
\end{equation*}
$$

Now, $\Psi_{1}^{T} Q_{1} \Psi_{2}$ is scalar and $Q_{1}$ is symmetric, so $\Psi_{1}^{T} Q_{1} \Psi_{2}=\Psi_{2}^{T} Q_{1} \Psi_{1}$ and, analogously, $\Phi_{1}^{T} Q_{2} \Phi_{2}=\Phi_{2}^{T} Q_{2} \Phi_{1}$. Thus, it follows from (4.5) that

$$
\begin{equation*}
\operatorname{det} G \cdot \Psi_{1}^{T} Q_{1} \Psi_{2}=\Phi_{1}^{T} Q_{2} \Phi_{2}=\Phi_{2}^{T} Q_{2} \Phi_{1}=\operatorname{det} G \cdot \Psi_{2}^{T} Q_{1} \Psi_{1} \tag{4.6}
\end{equation*}
$$

Recalling that $\left[\Psi_{1} \Psi_{2}\right]=I$ and $\left[\Phi_{1} \Phi_{2}\right]=\operatorname{adj} G$, we have from (4.4)-(4.6): $\operatorname{det} G \cdot Q_{1}=\operatorname{det} G \cdot\left[\Psi_{1} \Psi_{2}\right]^{T} Q_{1}\left[\Psi_{1} \Psi_{2}\right]=\operatorname{det} G \cdot\left[\begin{array}{cc}\Psi_{1}^{T} Q_{1} \Psi_{1} & \Psi_{1}^{T} Q_{1} \Psi_{2} \\ \Psi_{2}^{T} Q_{1} \Psi_{1} & \Psi_{2}^{T} Q_{1} \Psi_{2}\end{array}\right]=$

$$
=\left[\begin{array}{cc}
\Phi_{1}^{T} Q_{2} \Phi_{1} & \Phi_{1}^{T} Q_{2} \Phi_{2} \\
\Phi_{2}^{T} Q_{2} \Phi_{1} & \Phi_{2}^{T} Q_{2} \Phi_{2}
\end{array}\right]=(\operatorname{adj} G)^{T} Q_{2}(\operatorname{adj} G)
$$

Therefore $\operatorname{det} G \cdot Q_{1}=(\operatorname{det} G)^{2}\left(G^{-1}\right)^{T} Q_{2} G^{-1}$, i.e. $G^{T} Q_{1} G=\operatorname{det} G \cdot Q_{2}$.
Example. Take, for example,

$$
G=\left(\begin{array}{cc}
1 & -s  \tag{4.7}\\
s^{-1} & 1
\end{array}\right)
$$

with $s=i s_{-} r^{k+\frac{m}{2}} s_{+}$, where

$$
\begin{equation*}
k \in \mathbb{Z}, m \in\{0,1\}, s_{-}^{ \pm 1} \in H_{\infty}^{-}, s_{+}^{ \pm 1} \in H_{\infty}^{+} \tag{4.8}
\end{equation*}
$$

and $r$ is given by (1.4). Matrix functions of this form were studied, for instance in $[12,24,27]$.

It is clear, by (2.28), that

$$
\begin{equation*}
G \in C_{D_{q}} \quad \text { with } q=-s^{2} . \tag{4.9}
\end{equation*}
$$

On the other hand, for $\phi=\left(\phi_{1}, \phi_{2}\right)$ and $\psi=\left(\psi_{1}, \psi_{2}\right)$,

$$
G \phi=\psi \Leftrightarrow\left\{\begin{array} { c } 
{ \phi _ { 1 } - s \phi _ { 2 } = \psi _ { 1 } } \\
{ s ^ { - 1 } \phi _ { 1 } + \phi _ { 2 } = \psi _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\phi_{1}-s \phi_{2}=\psi_{1} \\
s_{+}^{-1}\left(\phi_{1}+s \phi_{2}\right)=i r^{k+\frac{m}{2}} s_{-} \psi_{2}
\end{array}\right.\right.
$$

Multiplying the last two equations we obtain

$$
\begin{equation*}
i r^{k+\frac{m}{2}} s_{-} \psi_{1} \psi_{2}=s_{+}^{-1}\left(\phi_{1}^{2}-s^{2} \phi_{2}^{2}\right) \tag{4.10}
\end{equation*}
$$

which is equivalent to

$$
\psi^{T}\left(i r^{k+\frac{m}{2}} s_{-} \widetilde{J}\right) \psi=\operatorname{det} G \cdot \phi^{T}\left(s_{+}^{-1} \widetilde{I} D_{q}\right) \phi
$$

taking into account that $s^{2}=-q$ and $\operatorname{det} G=2$. Thus we also have, from Theorem 4.1,

$$
\begin{equation*}
G \in C_{Q_{1}, Q_{2}} \quad \text { with } Q_{1}=i r^{k+\frac{m}{2}} s_{-} \widetilde{J}, Q_{2}=s_{+}^{-1} \widetilde{I} D_{q} \tag{4.11}
\end{equation*}
$$

Remarking that $G \phi=\psi \Leftrightarrow \phi=G^{-1} \psi$ and $G^{-1}=\frac{1}{2} \widetilde{I} G \widetilde{I}$, we have moreover, replacing $\phi$ by $\widetilde{I} \psi$ and $\psi$ by $2 \widetilde{I} \phi$ in (4.3),

$$
\begin{align*}
G \phi=\psi & \Leftrightarrow G \widetilde{I} \psi=2 \widetilde{I} \phi \\
& \Leftrightarrow \phi^{T}\left(2 r^{k+\frac{m}{2}} s_{-} \widetilde{I} \widetilde{J} \widetilde{I}\right) \phi=\psi^{T}\left(-i s_{+}^{-1} \widetilde{I} \widetilde{I} D_{q} \widetilde{I}\right) \psi \\
& \Leftrightarrow \psi^{T}\left(s_{-}^{-1} \widetilde{I} D_{q}\right) \psi=\operatorname{det} G \cdot \phi^{T}\left(-i r^{k+\frac{m}{2}} s_{+} \widetilde{J}\right) \phi \tag{4.12}
\end{align*}
$$

so that

$$
\begin{equation*}
G \in C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}, \quad \text { with } \widetilde{Q}_{1}=s_{-}^{-1} \widetilde{I} D_{q}, \widetilde{Q}_{2}=-i r^{k+m / 2} s_{+} \widetilde{J} \tag{4.13}
\end{equation*}
$$

Thus, from (4.9), (4.11) and (4.13),

$$
G \in C_{D_{q}} \cap C_{Q_{1}, Q_{2}} \cap C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}
$$

Remark that, for any pair $\mathcal{C}_{1}, \mathcal{C}_{2}$ of elements in the set $\left\{C_{D_{q}}, C_{Q_{1}, Q_{2}}, C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}\right\}$, we have $\mathcal{C}_{1} \cap \mathcal{C}_{2} \neq \emptyset$ and $\mathcal{C}_{1} \neq \mathcal{C}_{2}$ (since (iv) in Theorem 3.4 obviously doesn't hold). Therefore we conclude by Theorem 3.3 that $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\left\{f G: f \in \mathcal{G} L_{\infty}\right\}$ (note that the same result would be obtained by solving (3.2)).

## 5. The $\mathfrak{Q}$-classes and factorization

We now study several possible representations of the elements of a $\mathfrak{Q}$-class as products, having in mind the factorization theory in the context of which this study arose.

We begin with a simple but fundamental relation.
Theorem 5.1. Let $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{(2)}$ and $G \in C_{Q_{1}, Q_{2}}$. Then

$$
\begin{equation*}
G J Q_{2}=J Q_{1} G \in C_{Q_{1}, Q_{2}} \tag{5.1}
\end{equation*}
$$

Proof. By Theorems 2.4 and 2.6,

$$
G J Q_{2}=(\alpha X+\beta Y) J\left(q J Y^{-1} X\right)=-q \alpha X Y^{-1} X-\beta q X=-\alpha Y-\beta q X
$$

Analogously,

$$
J Q_{1} G=J\left(J Y X^{-1}\right)(\alpha X+\beta Y)=-\alpha Y-\beta Y X^{-1} Y=-\alpha Y-\beta q X
$$

Corollary 5.2. For all $Q \in \mathfrak{Q}$, we have

$$
\begin{equation*}
\widetilde{S}_{Q} J Q=J D_{q} \widetilde{S}_{Q} \tag{5.2}
\end{equation*}
$$

$\underset{\sim}{\text { Proof. This is a direct consequence of Theorem 5.1, taking into account that }}$ $\widetilde{S}_{Q} \in C_{D_{q}, Q}$ by (2.24).

Corollary 5.3. Let $G \in C_{Q_{1}, Q_{2}}$ and let $G \phi=\psi$. Then

$$
\begin{equation*}
G\left(J Q_{2} \phi\right)=J Q_{1} \psi \tag{5.3}
\end{equation*}
$$

Thus, if we have two $2 \times 1$ vector functions $\phi, \psi$ such that $G \phi=\psi$, then we can write

$$
G\left[\phi-J Q_{2} \phi\right]=\left[\psi-J Q_{1} \psi\right]
$$

Let

$$
\begin{equation*}
M_{\phi}^{Q_{2}}:=\left[\phi-J Q_{2} \phi\right], \quad M_{\psi}^{Q_{1}}:=\left[\psi-J Q_{1} \psi\right] . \tag{5.4}
\end{equation*}
$$

Using the relation (2.34), valid for any $2 \times 2$ matrix, and taking into account that, if $A_{1}$ and $A_{2}$ are two columns in $A$,

$$
A_{1}^{T} J A_{2}=-A_{2}^{T} J A_{1}=\operatorname{det} A, \quad A_{1}^{T} J A_{1}=A_{2}^{T} J A_{2}=0
$$

we obtain

$$
\begin{align*}
& \operatorname{det}\left(M_{\phi}^{Q_{2}}\right)=\phi^{T} J\left(-J Q_{2} \phi\right)=\phi^{T} Q_{2} \phi  \tag{5.5}\\
& \operatorname{det}\left(M_{\psi}^{Q_{1}}\right)=\psi^{T} J\left(-J Q_{1} \psi\right)=\psi^{T} Q_{1} \psi \tag{5.6}
\end{align*}
$$

Furthermore, we have the following:
Theorem 5.4. For every $G \in C_{Q_{1}, Q_{2}}$, there exists a solution to

$$
\begin{equation*}
G \phi=\psi \tag{5.7}
\end{equation*}
$$

with $\phi, \psi \in\left(L_{\infty}\right)^{2}$, such that

$$
\begin{equation*}
\alpha:=\psi^{T} Q_{1} \psi=\operatorname{det} G \cdot \phi^{T} Q_{2} \phi \in \mathcal{G} L_{\infty} \tag{5.8}
\end{equation*}
$$

Proof. From (2.23) we have

$$
\left(\widetilde{S}_{Q_{1}}^{-1}\right)^{T} Q_{1} \widetilde{S}_{Q_{1}}^{-1}=\widetilde{q}_{1} D_{q}
$$

so taking $\psi$ equal to the first column of $\widetilde{S}_{Q_{1}}^{-1}$, we have $\alpha=\psi^{T} Q_{1} \psi=\tilde{q}_{1} \in \mathcal{G} L_{\infty}$ and, for $\phi=G^{-1} \psi$, we see that (5.7) and (5.8) are satisfied.

Theorem 5.5. If $G \in C_{Q_{1}, Q_{2}}$ and $\phi, \psi$ satisfy (5.7) and (5.8), then

$$
G=M_{\psi}^{Q_{1}}\left(M_{\phi}^{Q_{2}}\right)^{-1}
$$

where $M_{\psi}^{Q_{1}}$ and $M_{\phi}^{Q_{2}}$ are given by (5.4) and

$$
M_{\psi}^{Q_{1}} \in C_{Q_{1}, D_{q}}, \quad M_{\phi}^{Q_{2}} \in C_{Q_{2}, D_{q}}
$$

Proof. Let $G_{01}:=\widetilde{S}_{Q_{1}} M_{\psi}^{Q_{1}}, G_{02}:=\widetilde{S}_{Q_{2}} M_{\phi}^{Q_{2}}$. We have $\widetilde{S}_{Q_{1}} M_{\psi}^{Q_{1}}=\left[\widetilde{S}_{Q_{1}} \psi-\right.$ $\left.J D_{q} \widetilde{S}_{Q_{1}} \psi\right]$ from Corollary 5.2. On the other hand, if $\widetilde{S}_{Q_{1}} \psi=\left(s_{1}, s_{2}\right)$ then

$$
\left[\widetilde{S}_{Q_{1}} \psi-J D_{q} \widetilde{S}_{Q_{1}} \psi\right]=s_{1} I+s_{2} R
$$

with $R=-J D_{q}$. Therefore $G_{01} \in C_{D_{q}}$ by (2.28). We conclude that $G_{02} \in$ $C_{D_{q}}$ analogously.

Since $G_{01} \in C_{D_{q}}$ and $\widetilde{S}_{Q_{1}} \in C_{D_{q}, Q_{1}}$, we have $M_{\psi}^{Q_{1}} \in C_{Q_{1}, D_{q}}$ by Proposition 2.3 and, similarly, $M_{\phi}^{Q_{2}} \in C_{Q_{2}, D_{q}}$. The factorization for $G$ now follows from (5.1), (5.3) and (5.5)-(5.8).

From this we conclude that, not only $C_{Q_{1}, D_{q}} \cdot C_{D_{q}, Q_{2}} \subset C_{Q_{1}, Q_{2}}$, as it follows from Proposition 2.3, but also the converse inclusion is true, i.e.

$$
C_{Q_{1}, Q_{2}}=C_{Q_{1}, D_{q}} \cdot C_{D_{q}, Q_{2}}
$$

Moreover, since for every $Q_{3} \in \mathfrak{Q}$ such that $\operatorname{det} Q_{3}=-q=\operatorname{det} Q_{j}(j=1,2)$ we have $\widetilde{S}_{Q_{3}} \in C_{D_{q}, Q_{3}}$, we see that every $G \in C_{Q_{1}, Q_{2}}$ can be represented as a product

$$
\begin{equation*}
G=\left(M_{\psi}^{Q_{1}} \widetilde{S}_{Q_{3}}\right)\left(\widetilde{S}_{Q_{3}}^{-1}\left(M_{\phi}^{Q_{2}}\right)^{-1}\right) \tag{5.9}
\end{equation*}
$$

with $M_{\psi}^{Q_{1}} \widetilde{S}_{Q_{3}} \in C_{Q_{1}, Q_{3}}$ and $\widetilde{S}_{Q_{3}}^{-1}\left(M_{\phi}^{Q_{2}}\right)^{-1} \in C_{Q_{3}, Q_{2}}$. We have thus proved the following.

Theorem 5.6. Let $Q_{1}, Q_{2}, Q_{3} \in \mathfrak{Q}$ be such that $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=\operatorname{det} Q_{3}$. Then every $G \in C_{Q_{1}, Q_{2}}$ admits a factorization (5.9) with $M_{\psi}^{Q_{1}} \widetilde{S}_{Q_{3}} \in C_{Q_{1}, Q_{3}}$ and $\widetilde{S}_{Q_{3}}^{-1}\left(M_{\phi}^{Q_{2}}\right)^{-1} \in C_{Q_{3}, Q_{2}}$, and we have

$$
\begin{equation*}
C_{Q_{1}, Q_{2}}=C_{Q_{1}, Q_{3}} \cdot C_{Q_{3}, Q_{2}} \tag{5.10}
\end{equation*}
$$

Finally, we present here a factorization result whose meaningfulness will become apparent in section 7 .

Theorem 5.7. Every $G \in C_{Q_{1}, Q_{2}}$ admits a factorization

$$
G=\left(M_{\psi}^{Q_{1}} H_{\rho} S_{Q_{2}}\right) X^{-1}\left(M_{\phi}^{Q_{2}} H_{\rho} S_{Q_{1}}\right)^{-1}
$$

with $M_{\psi}^{Q_{1}} H_{\rho} S_{Q_{2}},\left(M_{\phi}^{Q_{2}} H_{\rho} S_{Q_{1}}\right)^{-1} \in C_{Q_{1}, Q_{2}}$ and

$$
\begin{equation*}
C_{Q_{1}, Q_{2}}=C_{Q_{1}, Q_{2}} \cdot X^{-1} \cdot C_{Q_{1}, Q_{2}} \tag{5.11}
\end{equation*}
$$

Proof. We have from (5.9)

$$
\begin{aligned}
G= & \left(M_{\psi}^{Q_{1}} H_{\rho} S_{Q_{2}}\right)\left(S_{Q_{2}}^{-1} S_{Q_{1}}\right)\left(M_{\phi}^{Q_{2}} H_{\rho} S_{Q_{1}}\right)^{-1}= \\
& =\left(M_{\psi}^{Q_{1}} H_{\rho} S_{Q_{2}}\right) X^{-1}\left(M_{\phi}^{Q_{2}} H_{\rho} S_{Q_{1}}\right)^{-1}
\end{aligned}
$$

and, since $M_{\psi}^{Q_{1}} H_{\rho} S_{Q_{2}},\left(M_{\phi}^{Q_{2}} H_{\rho} S_{Q_{1}}\right)^{-1} \in C_{Q_{1}, Q_{2}}$, (5.11) holds.

## 6. M1Q-classes and applications

Having in mind the application of the results of the previous sections to the study of RH problems - either of vectorial or of $2 \times 2$ matricial type, such as (1.6) and (1.1), respectively - and to the study of Toeplitz operators, we now consider $Q_{1}$ and $Q_{2}$ with entries in some concrete spaces of analytic or meromorphic functions. In what follows we assume that, unless stated otherwise,

$$
\begin{array}{ll}
Q_{1} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{-}\right)^{2 \times 2}, & \text { with } q_{11} \in \mathcal{G} \mathcal{M}_{\infty}^{-} \text {or } q_{11}=0 \\
Q_{2} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{+}\right)^{2 \times 2}, & \text { with } q_{21} \in \mathcal{G} \mathcal{M}_{\infty}^{+} \text {or } q_{21}=0 \tag{6.2}
\end{array}
$$

$\mathfrak{Q}$-classes $C_{Q_{1}, Q_{2}}$ with $Q_{1}, Q_{2}$ satisfying those conditions are called $\mathfrak{M Q}$ classes.

In this case, from (2.21) and (2.22) we also have

$$
\begin{equation*}
\widetilde{S}_{Q_{1}} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{-}\right)^{2 \times 2}, \quad \widetilde{S}_{Q_{2}} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{+}\right)^{2 \times 2} \tag{6.3}
\end{equation*}
$$

and (cf. (2.2))

$$
\begin{equation*}
q \in \mathcal{R} \tag{6.4}
\end{equation*}
$$

since $q=-\operatorname{det} Q_{1}=-\operatorname{det} Q_{2}$ with $\operatorname{det} Q_{1} \in \mathcal{M}_{\infty}^{-}$and $\operatorname{det} Q_{2} \in \mathcal{M}_{\infty}^{+}$. Clearly, we will moreover have $S_{Q_{1}} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{-}\right)^{2 \times 2}, S_{Q_{2}} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{+}\right)^{2 \times 2}$ if $s=$ $q^{1 / 2} \in \mathcal{R}$.
Theorem 6.1. Let $G \in C_{Q_{1}, Q_{2}}$, with $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=-s^{2} \in \mathcal{R}$. Then the representation $G=S_{Q_{1}}^{-1} D S_{Q_{2}}$ of Theorem 2.6 (ii) is an $\mathcal{M}$-bounded factorization for $G$ and $T_{G}$ is nearly Fredholm equivalent to $T_{D}$.

Proof. It follows from (6.1), (6.2) and (2.3) that $S_{Q_{1}} \in \mathcal{G}\left(\mathcal{M}_{\infty}^{-}\right)^{2 \times 2}, S_{Q_{2}} \in$ $\mathcal{G}\left(\mathcal{M}_{\infty}^{+}\right)^{2 \times 2}$; thus $G=S_{Q_{1}}^{-1} D S_{Q_{2}}$ is an $\mathcal{M}$-bounded factorization. Now from Theorem 3.10 in [28] (see also [20]), we conclude that $T_{G}$ is nearly Fredholm equivalent to $T_{D}$.

Daniele-Khrapkov matrices $G \in C_{Q}$ with $\operatorname{det} Q=-s^{2}, s \in \mathcal{R}([20,22$, $30,32]$ ) satisfy the conditions of this theorem, and a meromorphic factorization for these matrix functions can easily be obtained by (scalar) WHfactorization of the diagonal elements in $D$. Remark, however, that Theorem 6.1 can also be applied in cases where $G$ may not admit a $W H$-factorization, as shown in the following examples.

Example. Let

$$
G=\left[\begin{array}{cc}
d_{1} & q_{+} d_{1}+q_{-} d_{2}  \tag{6.5}\\
0 & d_{2}
\end{array}\right]
$$

with $d_{1}, d_{2} \in \mathcal{G} L_{\infty}, q_{ \pm} \in H_{\infty}^{ \pm}$.
Since any solution to $G \phi=\psi$, with $\phi=\left(\phi_{1}, \phi_{2}\right)$ and $\psi=\left(\psi_{1}, \psi_{2}\right)$ satisfies the product equation

$$
\begin{equation*}
d_{1} d_{2}\left(\phi_{1}+q_{+} \phi_{2}\right) \phi_{2}=\left(\psi_{1}-q_{-} \psi_{2}\right) \psi_{2} \tag{6.6}
\end{equation*}
$$

which is equivalent to (4.2) with

$$
Q_{1}=\left[\begin{array}{cc}
0 & \frac{1}{2}  \tag{6.7}\\
\frac{1}{2} & -q_{-}
\end{array}\right], \quad Q_{2}=\left[\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & q_{+}
\end{array}\right]
$$

we see that $G \in C_{Q_{1}, Q_{2}}$ with $Q_{1} \in \mathcal{G}\left(H_{\infty}^{-}\right)^{2 \times 2}, Q_{2} \in \mathcal{G}\left(H_{\infty}^{+}\right)^{2 \times 2}$ (cf. Theorem 4.1). It follows from Theorem 2.6 (ii) that

$$
G=\left[\begin{array}{cc}
q_{-} & 1  \tag{6.8}\\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
d_{2} & 0 \\
0 & d_{1}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & q_{+}
\end{array}\right]
$$

which is an $\mathcal{M}$-bounded factorization of $G$.
It is worth noting that, if $d_{1}=e_{\lambda}, d_{2}=e_{-\lambda}$ with $\lambda \in \mathbb{R}$, the Toeplitz operator $T_{G}$ is equivalent, or at least closely related, to a finite interval convolution operator, $\lambda$ being the length of the corresponding interval ( $[3,23])$. More generally, if $d_{1}, d_{2} \in A P$ and additionally $q_{ \pm} \in A P^{ \pm}$, then (6.8) reduces the $A P$-factorization of $G$ to that of $d_{1}$ and $d_{2}$.

We can see moreover, as a consequence of Theorem 2.6 (ii), that (6.5) gives the general form of all matrix functions in $C_{Q_{1}, Q_{2}}$ with $Q_{1}, Q_{2}$ satisfying (6.1) and such that $q_{11}=q_{21}=0$ as in (6.7).

Example. Let $G=\alpha D+\beta A$, where $\alpha, \beta \in L_{\infty}$ with $\alpha^{2}+\beta^{2} \in \mathcal{G} L_{\infty}$, and $D$ and $A$ are diagonal and anti-diagonal, respectively, of the form

$$
D=\left[\begin{array}{cc}
d_{1} & 0  \tag{6.9}\\
0 & d_{2}
\end{array}\right], \quad A=\left[\begin{array}{cc}
0 & -d_{1} d_{2} \\
1 & 0
\end{array}\right]
$$

for some $d_{1}, d_{2} \in \mathcal{G} L_{\infty}$ (see [13], section 3). The class of all matrices of this form includes the Daniele-Khrapkov subclass $C_{D_{q}}$ with $q \in \mathcal{G} \mathcal{R}$ (take $d_{1}=d_{2}$ and $d_{1}^{2}=q$ ).

Assume moreover that $d_{1} \in \mathcal{G} \mathcal{M}_{\infty}^{-}, d_{2} \in \mathcal{G} \mathcal{M}_{\infty}^{+}$. Then we have $G \in$ $C_{Q_{1}, Q_{2}}$ with $Q_{j}=\operatorname{diag}\left(d_{j}^{-1}, d_{j}\right), j=1,2$ where $Q_{1}$ and $Q_{2}$ satisfy (6.1). Remark that $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=1$. From Theorem 2.6 (ii),

$$
G=\frac{1}{2}\left[\begin{array}{cc}
d_{1} & 1  \tag{6.10}\\
-i & i d_{1}^{-1}
\end{array}\right]\left[\begin{array}{cc}
(\alpha+i \beta) d_{2} & 0 \\
0 & (\alpha-i \beta) d_{1}
\end{array}\right]\left[\begin{array}{cc}
d_{2}^{-1} & i \\
1 & -i d_{2}
\end{array}\right]
$$

which yields an $\mathcal{M}$-bounded factorization for $G$.
The product representation of Theorem 2.6, (iii),

$$
\begin{equation*}
G=\widetilde{S}_{Q_{1}}^{-1} \hat{G} \widetilde{S}_{Q_{2}}, \quad \text { with } \hat{G} \in D_{q} \tag{6.11}
\end{equation*}
$$

also attains a new significance in this setting. It associates to each $G \in$ $C_{Q_{1}, Q_{2}}$ a Daniele-Khrapkov matrix, the normal form $\hat{G} \in D_{q}$. The latter can be considered as being of the simplest kind preserving the function $q$ $\left(q=-\operatorname{det} Q_{1}=-\operatorname{det} Q_{2}=-\operatorname{det} D_{q}\right)$ and some properties of the associated Toeplitz operators. We have the following theorem, which generalizes some results of [8], Section 4.

Theorem 6.2. If $G \in C_{Q_{1}, Q_{2}}$ and $\hat{G} \in C_{D_{q}}$ is its normal form with respect to $\left(Q_{1}, Q_{2}\right)$, given by Theorem 2.6 (iii), then $T_{G}$ is nearly Fredholm equivalent to $T_{\hat{G}}$; the two Toeplitz operators are strictly Fredholm equivalent if

$$
\begin{equation*}
q_{11} \in \mathcal{G} H_{\infty}^{-}, q_{12} \in H_{\infty}^{-} \quad \text { or } \quad q_{11}=0, q_{12}, q_{13} \in H_{\infty}^{-} \tag{6.12}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{21} \in \mathcal{G} H_{\infty}^{+}, q_{22} \in H_{\infty}^{+} \quad \text { or } \quad q_{21}=0, q_{22}, q_{23} \in H_{\infty}^{+} \tag{6.13}
\end{equation*}
$$

Proof. From Theorem 2.6 (iii) and (6.2), it follows that (1.7) holds ([28], Theorem 3.10). If (6.12) and (6.13) are satisfied, then $\widetilde{S}_{Q_{1}} \in \mathcal{G}\left(H_{\infty}^{-}\right)^{2 \times 2}$ and $\widetilde{S}_{Q_{2}} \in \mathcal{G}\left(H_{\infty}^{+}\right)^{2 \times 2}$, implying that indeed $T_{G}$ and $T_{\hat{G}}$ are strictly Fredholm equivalent.
Remark 6.3. Transformations of the form $G \mapsto \hat{G}=U G V$, with $U \in$ $\mathcal{G} \mathcal{M}_{\infty}^{-}, V \in \mathcal{G M}_{\infty}^{+}$, as in (6.11), play an important role in the study of WH-factorization and, more generally, $\Phi$ - factorization ([20, 28]). A systematic study of transformations of this type, with an emphasis on the case where $U$ and $V$ are invertible rational matrix functions, is undertaken in
[20]. Such transformations are taken as a basis for a classification scheme for a very large class of $2 \times 2$ matrix functions and a description of their normal forms. The authors study in particular the problem of determining those $2 \times 2$ matrix functions which can be transformed into Daniele-Khrapkov matrix functions, as in (6.11), and the existence of some significant invariants under those transformations, such as the so-called deviator polynomial ( $[30,32]$ ) corresponding, in the setting of this paper, to the function $q$.

Remark 6.4. If (6.12) and (6.13) are satisfied, the operators $T_{G}$ and $T_{\hat{G}}$ satisfy in fact a much stronger equivalence relation than strict Fredholm equivalence. Namely they are (algebraically and topologically) equivalent, in the sense that there are invertible operators in $\left(H_{p}^{+}\right)^{2}, E=T_{\widetilde{S}_{Q_{1}}^{-1}}$ and $F=T_{\widetilde{S}_{Q_{2}}}$, such that $T_{G}=E T_{\hat{G}} F$ (see [2]).

The results of Sections 4 and 5 now yield the following theorem, which is a direct consequence of Theorem 5.4 and shows that it is enough to determine one solution to the RH problem $G \phi_{+}=\phi_{-}$satisfying certain conditions, in order to obtain a meromorphic factorization of $G$. A $W H$-factorization can then be obtained from the latter, as previously mentioned.

Theorem 6.5. Let $G \phi_{+}=\phi_{-}$, with $\phi_{ \pm} \in\left(\mathcal{M}_{\infty}^{ \pm}\right)^{2}$ such that $\phi_{-}^{T} Q_{1} \phi_{-} \in \mathcal{G} \mathcal{M}_{\infty}^{-}$ and $\phi_{+}^{T} Q_{2} \phi_{+} \in \mathcal{G} \mathcal{M}_{\infty}^{+}$. Then $G$ admits a meromorphic factorization $G=$ $M_{-}\left(M_{+}\right)^{-1}$ with $M_{-}=M_{\phi_{-}}^{Q_{1}}, M_{+}=M_{\phi_{+}}^{Q_{2}}$, defined by (5.4).

Note that the product equation (4.2) corresponds in this case to the relation $\operatorname{det} M_{-}=\operatorname{det} G$. $\operatorname{det} M_{+}$. Remark also that it is possible to take advantage of the fact that $G$ can belong to different $\mathfrak{M Q}$-classes, as shown in Section 3, to choose a pair $\left(Q_{1}, Q_{2}\right)$ corresponding to "simple" meromorphic factors $M_{\phi_{-}}^{Q_{1}}, M_{\phi_{+}}^{Q_{2}}$. This will be illustrated in an example at the end of this section.

If $Q_{1}=Q_{2}=Q$, writing $G=\left(M_{-} \widetilde{S}_{Q}\right)\left(\widetilde{S}_{Q}^{-1} M_{+}^{-1}\right)$ and taking into account that in this case $Q, \widetilde{S}_{Q} \in \mathcal{G} \mathcal{R}^{2 \times 2}$ and $M_{ \pm} \widetilde{S}_{Q} \in C_{Q}$ (cf. (5.9)), we also have:

Corollary 6.6. If $G \in C_{Q}$, then $G$ admits a meromorphic factorization with factors belonging to $C_{Q}$.

Finally we discuss here the relations of the results of the previous sections with the equivalence of the RH problem on $\mathbb{R}$

$$
\begin{equation*}
G \phi_{+}=\phi_{-}, \tag{6.14}
\end{equation*}
$$

with $\phi_{ \pm}$belonging to certain spaces of functions analytic in $\mathbb{C}^{ \pm}$(such as $\left.\left(C_{\mu}^{ \pm}\right)^{2}\right)$, respectively, to a scalar RH problem with respect to a contour on an associated Riemann surface $\Sigma$. This equivalence was established in [15], Proposition 2.19, assuming $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=-q$ with $q$ of the form

$$
\begin{equation*}
q=q_{0}^{2} p \tag{6.15}
\end{equation*}
$$

where $q_{0} \in \mathcal{R}$ and $p$ is a polynomial of degree $2(g+1), g \geq 0$, with simple roots none of which on $\mathbb{R}$. In this case $\Sigma$ is the Riemann surface of genus $g$ described by the algebraic equation $\mu^{2}=p(\lambda)$.

Since a given $2 \times 2$ matrix function $G$ may belong to two different $\mathfrak{M Q}$-classes $C_{Q_{1}, Q_{2}}$ and $C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$ with $\operatorname{det} Q_{1}=\operatorname{det} Q_{2}=-q$ and $\operatorname{det} \widetilde{Q}_{1}=$ $\operatorname{det} \widetilde{Q}_{2}=-\tilde{q}$, where $q$ and $\tilde{q}$ are associated, via (6.15), to polynomials $p$ and $\tilde{p}$ of different degrees, $G$ can be associated to Riemann surfaces of different genuses.

Example. An example illustrating this situation is given by the class of matrix functions considered in the example of Section 4, see (4.7)-(4.8). In fact we have, from (4.9), (4.11) and (4.13), assuming for simplicity that $k=m=0$ :

$$
\begin{equation*}
\operatorname{det} D_{q}=s^{2}, \quad \operatorname{det} Q_{1}=\operatorname{det} Q_{2}=-s_{-}^{2}, \quad \operatorname{det} \widetilde{Q}_{1}=\operatorname{det} \widetilde{Q}_{2}=-s_{+}^{2} \tag{6.16}
\end{equation*}
$$

Assume that $s^{2}$ is the quotient of two polynomials with non-common and simple zeroes, and $s_{+}^{2}$ is a quotient of two polynomials of the first degree with different zeroes. Then, considering that $G \in C_{\widetilde{Q}_{1}, \widetilde{Q}_{2}}$, we see from the last equality in (6.16) that the RH problem (6.14) is equivalent to a scalar RH problem on the Riemann sphere, while considering that $G \in C_{D_{q}}$ leads to formulating an equivalent RH problem on a Riemann surface of higher genus $g$, depending on the number of zeroes and poles of $s^{2}$.

This raises the question whether other problems formulated on a Riemann surface of genus $g$ using the results of [15] might have an equivalent, but simpler, formulation as RH problems on a Riemann surface of smaller genus, taking into account that the same $2 \times 2$ matrix function $G$ may belong to different $\mathfrak{Q}$-classes.

The fact that $G$ may belong to two different $\mathfrak{M Q}$-classes has yet another consequence which is, to the authors' knowledge, mentioned here for the first time. It consists in the possibility of solving RH problems of the form (6.14) by simple algebraic methods, directly using different product equations associated to the same matrix $G$. We illustrate this possibility with the following example.

Taking again $G$ given by (4.7)-(4.8) as in the example of Section 4, with $s^{2} \in \mathcal{G} \mathcal{R}$ having simple zeroes and poles, consider the RH problem

$$
\begin{equation*}
G \phi_{+}=\phi_{-}, \quad \phi_{ \pm} \in\left(H_{2}^{ \pm}\right)^{2} \tag{6.17}
\end{equation*}
$$

whose solutions characterize the kernel of the Toeplitz operator $T_{G}$. We have the following.

Theorem 6.7. Let $G$ satisfy (4.7)-(4.8) with $s^{2} \in \mathcal{G \mathcal { R }}$ having simple zeroes and poles. If in one of the half-planes $\mathbb{C}^{+}$or $\mathbb{C}^{-}$there are no more than two points which are zeroes or poles of $s^{2}$, then $\operatorname{ker} T_{G}=\{0\}$.
Proof. Let us assume that $s^{2}$ has $z_{+}$zeroes and $p_{+}$poles in the upper-half plane, with $z_{+}+p_{+} \leq 2$. In this case, $s^{2}$ admits a Wiener-Hopf factorization $s^{2}=r_{+} r^{\tilde{k}} r_{-}$with $r_{ \pm} \in \mathcal{G}\left(\mathcal{R} \cap H_{\infty}^{ \pm}\right), \tilde{k}=z_{+}-p_{+}$.

Suppose that $\tilde{k} \geq 0\left(z_{+} \geq p_{+}\right)$. We have

$$
\begin{align*}
s & =i r^{m / 2} s_{-} r^{k} s_{+}, \text {with } s_{ \pm} \in \mathcal{G} H_{\infty}^{ \pm}  \tag{6.18}\\
k & =\frac{\tilde{k}}{2}, m=0, \text { if } \tilde{k} \text { is even, }  \tag{6.19}\\
k & =\frac{\tilde{k}-1}{2}, m=1, \text { if } \tilde{k} \text { is odd. } \tag{6.20}
\end{align*}
$$

We may choose for $G$ the product equation (4.10) associated with the class $C_{Q_{1}, Q_{2}}$ defined by (4.11). Thus, for every solution of (6.17), we have

$$
\begin{equation*}
\frac{1}{(\xi+i)^{m / 2}} s_{+}^{-1}\left(\phi_{1+}^{2}-s^{2} \phi_{2+}^{2}\right)=\frac{i}{(\xi-i)^{m / 2}} r^{k+m} s_{-} \phi_{1-} \phi_{2-}=r_{1} \in \mathcal{R} \cap L_{1}(\mathbb{R}) \tag{6.21}
\end{equation*}
$$

where $r_{1}$ has at most a pole of order $k+m$ at $-i$ and $p_{+}$poles in $\mathbb{C}^{+}$(at the points which are poles of $s^{2}$ in $\mathbb{C}^{+}$).

On the other hand, every solution of (6.17) must also satisfy the product equation associated with the class $C_{D_{q}}$ defined by (4.9):

$$
\begin{equation*}
2\left(\phi_{1+}^{2}+s^{2} \phi_{2+}^{2}\right)=\left(\phi_{1-}^{2}+s^{2} \phi_{2-}^{2}\right) . \tag{6.22}
\end{equation*}
$$

Taking into account that $\tilde{k} \geq 0$, the following situations may occur: either

$$
\begin{equation*}
p_{+}=0, \tilde{k}=z_{+} \in\{0,1,2\}, \tag{6.23}
\end{equation*}
$$

and in this case

$$
\begin{align*}
& \tilde{k}=0 \Rightarrow z_{+}=p_{+}=0 \Rightarrow k=m=0 \Rightarrow r_{1}=0  \tag{6.24}\\
& \tilde{k}=1 \Rightarrow z_{+}=1 \Rightarrow k=0, m=1 \Rightarrow r_{1}=0  \tag{6.25}\\
& \tilde{k}=2 \Rightarrow z_{+}=2 \Rightarrow k=1, m=0 \Rightarrow r_{1}=0 \tag{6.26}
\end{align*}
$$

or

$$
\begin{equation*}
p_{+}=1, \tilde{k}=0 \tag{6.27}
\end{equation*}
$$

and in this case $k=m=0$ and $r_{1}=0$.
Since $r_{1}=0$, it follows from (6.21) that $\phi_{1+}^{2}=s^{2} \phi_{2+}^{2}$ and either $\phi_{1-}=0$ or $\phi_{2-}=0$. If $\phi_{1-}=0$, then from (6.22) we have $4 \phi_{2+}^{2}=\phi_{2-}^{2}$ so that $\phi_{2+}=\phi_{2-}=0$ and $\operatorname{ker} T_{G}=0$. If $\phi_{2-}=0$, we conclude analogously that $\operatorname{ker} T_{G}=0$. Finally, the case when $\tilde{k}<0$ can be treated analogously using (6.22) and the product equation (4.12) associated with $C_{\tilde{Q}_{1}, \tilde{Q}_{2}}$.

Corollary 6.8. With the same assumptions as in Theorem 6.7, if $s$ is continuous in $\dot{\mathbb{R}}$, then $T_{G}$ is invertible.

Proof. Since $s^{2} \in \mathcal{G} \mathcal{R}$, if $s$ is continuous in $\dot{\mathbb{R}}$ then we have $s \in \mathcal{G} C_{\mu}(\dot{\mathbb{R}})$ and $G \in\left(C_{\mu}(\dot{\mathbb{R}})\right)^{2 \times 2}$; since $\operatorname{det} G=2$ and $T_{G}$ is injective, it follows that $G$ admits a canonical WH-factorization and $T_{G}$ is invertible ([31]).

Remark that, if the assumptions of Corollary 6.8 are satisfied, then $G$ admits a canonical $W H$-factorization $G=G_{-}\left(G_{+}\right)^{-1}$ which can also be obtained by using the different product equations associated with $G$. This is illustrated in the following example.

Example. Let $G$ satisfy the conditions of Theorem 6.7 , with $s^{2}(\xi)=-\frac{(\xi-i)(\xi-2 i)}{(\xi+i)(\xi+2 i)}$. In this case, $s=i s_{-} r s_{+}$, where $s_{-}(\xi)=\sqrt{(\xi-2 i) /(\xi-i)}$ and $s_{+}(\xi)=$ $\sqrt{(\xi+i) /(\xi+2 i)}, k=1$ and $m=0$ (as in (6.26)). The factorization of matrix functions of this form has been obtained in [11, 24]; the method that we use here to obtain it is considerably simpler.

We start by determining a solution to the RH problem

$$
\begin{equation*}
G \phi_{+}=\phi_{-}, \quad \phi_{ \pm} \in\left(C_{\mu}^{ \pm}\right)^{2} \tag{6.28}
\end{equation*}
$$

such that $\phi_{2-}(-i)=0$. From (4.11) it follows that $\phi_{ \pm}$satisfy the product equation

$$
\begin{equation*}
s_{+}^{-1}\left(\phi_{1+}^{2}-s^{2} \phi_{2+}^{2}\right)=i s_{-} r \phi_{1-} \phi_{2-}=K \tag{6.29}
\end{equation*}
$$

with $K \in \mathbb{C}$. On the other hand, from (4.9) we have

$$
\begin{equation*}
2\left(\phi_{1+}^{2}+s^{2} \phi_{2+}^{2}\right)=\phi_{1-}^{2}+s^{2} \phi_{2-}^{2}=\frac{A_{1} \xi+A_{0}}{\xi+2 i} \tag{6.30}
\end{equation*}
$$

with $A_{1}, A_{0} \in \mathbb{C}$. In addition, from (4.13) we have

$$
\begin{equation*}
-4 i s_{+} r \phi_{1+} \phi_{2+}=s_{-}^{-1}\left(\phi_{1-}^{2}-s^{2} \phi_{2-}^{2}\right)=\frac{B_{1} \xi+B_{0}}{\xi+2 i} \tag{6.31}
\end{equation*}
$$

with $B_{1}, B_{0} \in \mathbb{C}$. From (6.29), (6.30) and (6.31), taking the condition $\phi_{2-}(-i)=$ 0 into account, we obtain

$$
\begin{align*}
& \phi_{1+}=\sqrt{\frac{K K_{1}}{2}\left(\frac{\xi+i \sqrt{2}}{\xi+2 i}\right)\left[1+\frac{\sqrt{(\xi+i)(\xi+2 i)}}{K_{1}(\xi+i \sqrt{2})}\right]}  \tag{6.32}\\
& \phi_{2+}=-s^{-1} \sqrt{\frac{K K_{1}}{2}\left(\frac{\xi+i \sqrt{2}}{\xi+2 i}\right)\left[1-\frac{\sqrt{(\xi+i)(\xi+2 i)}}{K_{1}(\xi+i \sqrt{2})}\right]}  \tag{6.33}\\
& \phi_{1-}=\sqrt{K K_{1}\left(\frac{\xi+i \sqrt{2}}{\xi+2 i}\right)\left[1+\frac{\sqrt{(\xi-i)(\xi-2 i)}}{K_{2}(\xi+i \sqrt{2})}\right]}  \tag{6.34}\\
& \phi_{2-}=-i \sqrt{K K_{1}\left(\frac{(\xi+i \sqrt{2})(\xi+i)}{(\xi-2 i)(\xi-i)}\right)\left[1-\frac{\sqrt{(\xi-i)(\xi-2 i)}}{K_{2}(\xi+i \sqrt{2})}\right]} \tag{6.35}
\end{align*}
$$

with $K \in \mathbb{C}$ (we can take $K=1$ ), $K_{1}=2 \sqrt{3}-\sqrt{6}$ and $K_{2}=-(2 \sqrt{3}+\sqrt{6})$. By Theorem 6.5, and using the relation (4.13), we obtain the meromorphic factorization $G=M_{-}\left(M_{+}\right)^{-1}$ with $M_{-}=M_{\phi_{-}}^{\widetilde{Q}_{1}}, M_{+}=M_{\phi_{+}}^{\widetilde{Q}_{2}}$ :

$$
\begin{gathered}
M_{-}=\left[\begin{array}{cc}
\phi_{1-} & -B_{1}^{-1} \frac{\sqrt{(\xi-2 i)(\xi-i)}}{\xi+i} \phi_{2-} \\
\phi_{2-} & B_{1}^{-1} \frac{\xi+2 i}{\sqrt{(\xi-2 i)(\xi-i)}} \phi_{1-}
\end{array}\right] \\
M_{+}=\left[\begin{array}{cc}
\phi_{1+} & i B_{1}^{-1} s_{+}^{-1} \phi_{1+} \\
\phi_{2+} & -i B_{1}^{-1} s_{+}^{-1} \phi_{2+}
\end{array}\right]
\end{gathered}
$$

with $B_{1}=2(2 \sqrt{2}-3)$.

Due to our choice of the relation (4.13), we have obtained $M_{ \pm} \in \mathcal{G}\left(H_{\infty}^{ \pm}\right)^{2 \times 2}$, thus $G=M_{-}\left(M_{+}\right)^{-1}$ is a canonical $W H$-factorization for $G$.

## 7. Q-classes as groups

Let $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{(2)}$ and let $X$ and $Y$ be given by (2.17). Defining

$$
\begin{equation*}
\mathcal{A}=\left\{\alpha X+\beta Y: \alpha, \beta \in L_{\infty}(\mathbb{R})\right\} \tag{7.1}
\end{equation*}
$$

let $*$ be the operation defined in $\mathcal{A}$ by

$$
\begin{equation*}
G_{1} * G_{2}=G_{1} X^{-1} G_{2} \tag{7.2}
\end{equation*}
$$

for $G_{1}, G_{2} \in \mathcal{A}$. From (2.18) we have

$$
(\alpha X+\beta Y) *(\tilde{\alpha} X+\tilde{\beta} Y)=(\alpha \tilde{\alpha}+q \beta \tilde{\beta}) X+(\alpha \tilde{\beta}+\tilde{\alpha} \beta) Y
$$

The operation $*$ is commutative and associative, with identity element $X$. Remark that, by Theorem 2.6, $C_{Q_{1}, Q_{2}} \subset \mathcal{A}$ and $C_{Q_{1}, Q_{2}}$ is closed under the operation $*$, by Theorem 2.6 (iv) and Proposition 2.3 (ii), (iii). We have then the following:

Theorem 7.1. $\left(C_{Q_{1}, Q_{2}}, *\right)$ is a commutative group with identity $X$. The inverse of $G$ in this group is

$$
\begin{equation*}
(G)_{*}^{-1}:=X G^{-1} X \tag{7.3}
\end{equation*}
$$

where $G^{-1}$ denotes the usual inverse of $G$.
Choosing a notation similar to that used for the inverse in (7.3), we also define

$$
\begin{equation*}
(G)_{*}^{2}:=G * G, \tag{7.4}
\end{equation*}
$$

and analogously for $\left(G_{*}\right)^{n}$, with $n \in \mathbb{Z}$. By (2.18) we have

$$
\begin{equation*}
(Y)_{*}^{2}=q X \tag{7.5}
\end{equation*}
$$

If $G=\alpha X+\beta Y \in C_{Q_{1}, Q_{2}}$, then by Theorem 2.6 (iv) we have $\alpha^{2}-q \beta^{2} \in \mathcal{G} L_{\infty}$ and it is easy to see from (7.5) that

$$
\begin{equation*}
(G)_{*}^{-1}=\frac{1}{\alpha^{2}-q \beta^{2}}(\alpha X-\beta Y) \tag{7.6}
\end{equation*}
$$

In particular, $(Y)_{*}^{-1}=q^{-1} Y$. Of course, if $Q_{1}=Q_{2}=Q$, then $X=I$, $Y=-J Q$ and the operation $*$ reduces to the usual multiplication of matrices, meaning that $C_{Q}$ is a group with the usual product.

Defining

$$
\begin{align*}
& a_{l}: C_{Q_{1}} \times C_{Q_{1}, Q_{2}} \rightarrow C_{Q_{1}, Q_{2}}  \tag{7.7}\\
& a_{l}\left(G_{l}, G\right)=G_{l} G \tag{7.8}
\end{align*}
$$

it follows from (5.10) that (7.7) defines a map such that

$$
\begin{aligned}
& a_{l}\left(G_{l_{1}} G_{l_{2}}, G\right)=a_{l}\left(G_{l_{1}}, a_{l}\left(G_{l_{2}}, G\right)\right) \\
& a_{l}(I, G)=G
\end{aligned}
$$

for all $G_{l_{1}}, G_{l_{2}} \in C_{Q_{1}}$ and $G \in C_{Q_{1}, Q_{2}}$. Thus (7.7) defines a (left) group action of $C_{Q_{1}}$ on $C_{Q_{1}, Q_{2}}$. We can define analogously a right group action of $C_{Q_{2}}$ on $C_{Q_{1}, Q_{2}}$. Since $C_{Q_{1}}$ is non-empty and, for any two elements $G_{1}, G_{2}$ in $C_{Q_{1}, Q_{2}}$, there exists a unique $A \in C_{Q_{1}}$ such that $A G_{1}=G_{2}\left(A=G_{2} G_{1}^{-1}\right)$ we have the following:

Theorem 7.2. The group $C_{Q_{1}}$ acts on $C_{Q_{1}, Q_{2}}$ on the left by $a_{l}$. This left action is regular (transitive and free, therefore faithful), and $C_{Q_{1}, Q_{2}}$ is a principal homogeneous space for $C_{Q_{1}}$. The orbit space $C_{Q_{1}, Q_{2}} / C_{Q_{1}}$ is a unit set; $C_{Q_{1}, Q_{2}}$ is the orbit of $X$ (or any other element of $C_{Q_{1}, Q_{2}}$ ) under the action of $C_{Q_{1}}$.

The results of Section 3 can thus be interpreted in terms of orbits. Let $\mathcal{O}$ denote the set of all $\mathfrak{Q}$-classes and let us call any element of $\mathcal{O}$ an orbit.

Theorem 7.3. If $O_{1}, O_{2}$ are two orbits in $\mathcal{O}$, then one and only one of the following propositions is true:
(i) $O_{1}$ and $O_{2}$ are disjoint
(ii) $O_{1}=O_{2}$
(iii) There exist some $G \in \mathcal{G}\left(L_{\infty}\right)^{2 \times 2}$ such that

$$
O_{1} \cap O_{2}=\left\{f G, f \in \mathcal{G} L_{\infty}\right\}
$$

The results of Section 5 can also be seen as connected to the question of existence of non trivial factorizations of $G \in C_{Q_{1}, Q_{2}}$ in the group ( $C_{Q_{1}, Q_{2}}, *$ ). In particular, from Theorem 5.6, we have the following.
Theorem 7.4. Given $\left(Q_{1}, Q_{2}\right) \in \mathfrak{Q}^{(2)}$, every $G \in C_{Q_{1}, Q_{2}}$ admits a factorization

$$
\begin{equation*}
G=G_{1} * G_{2} \tag{7.9}
\end{equation*}
$$

with $G_{1}, G_{2} \in C_{Q_{1}, Q_{2}}$. In particular (7.9) holds with

$$
G_{1}=M_{\psi}^{Q_{1}} H_{\rho} S_{Q_{2}}, \quad G_{2}=\left(M_{\phi}^{Q_{2}} H_{\rho} S_{Q_{1}}\right)^{-1}
$$

with $M_{\psi}^{Q_{1}}$ and $M_{\phi}^{Q_{2}}$ defined by (5.4), for any $\phi, \psi$ satisfying (5.7)-(5.8).

## Acknowledgment

A. F. dos Santos was the first one (in 2001) to hint at a group structure for the classes $C_{Q_{1}, Q_{2}}$ with $Q_{1} \neq Q_{2}$. We thank the anonymous referee for several useful suggestions.

## References

[1] Barclay, Steven: A solution to the Douglas-Rudin problem for matrix-valued functions. Proc. Lond. Math. Soc. (3) 99 (2009), no. 3, 757-786.
[2] Bart, H.; Tsekanovskii, V. E.: Matricial coupling and equivalence after extension. Operator Theory Advances and Applications, 59, 143-160 Birkhäuser Verlag, Basel, 1991.
[3] Böttcher, Albrecht; Karlovich, Yuri I., Spitkovsky, Ilya M.: Convolution operators and factorization of almost periodic matrix functions. Operator Theory: Advances and Applications, 131. Birkhäuser Verlag, Basel, 2002.
[4] Bourgain, J.: A problem of Douglas and Rudin on factorization. Pacific J. Math. 121 (1986), no. 1, 47-50.
[5] Câmara, M. C., Diogo, C., Karlovich, Yu. I., Spitkovsky, I. M.: Factorizations, Riemann-Hilbert problems and the corona theorem. J. Lond. Math. Soc. (2) 86 (2012), no. 3, 852-878.
[6] Câmara, M. C.; Lebre, A. B., Speck, F.-O.: Meromorphic factorization, partial index estimates and elastodynamic diffraction problems. Math. Nachr. 157 (1992), 291-317.
[7] Câmara, M. C., Lebre, A. B., Speck, F.-O.: Generalised factorisation for a class of Jones form matrix functions. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 3, 401-422.
[8] Câmara, M. C., Malheiro, M. T.: Meromorphic factorization revisited and application to some groups of matrix functions. Complex Anal. Oper. Theory 2 (2008), no. 2, 299-326.
[9] Câmara, M. C., Malheiro, M. T.: Factorization in a torus and Riemann-Hilbert problems. J. Math. Anal. Appl. 386 (2012), no. 1, 343 - 363.
[10] Câmara, M. C.; Rodman, L., Spitkovsky, I.: One sided invertibility of matrices over commutative rings, corona problems, and Toeplitz operators with matrix symbols. Preprint, 2013.
[11] Câmara, M. C., dos Santos, A. F., Bastos, M.A.: Generalized factorization for Daniele-Khrapkov matrix functions-partial indices. J. Math. Anal. Appl. 190 (1995), no. 1, 142-164.
[12] Câmara, M. C., dos Santos, A. F., Bastos, M.A.: Generalized factorization for Daniele-Khrapkov matrix functions-explicit formulas. J. Math. Anal. Appl. 190 (1995), no. 2, 295-328.
[13] Câmara, M. C., dos Santos, A. F., Carpentier, M. P.: Explicit Wiener-Hopf factorization and nonlinear Riemann-Hilbert problems. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 1, 45-74.
[14] Câmara, M.C., dos Santos, A.F.; dos Santos, P.F.: Lax equations, factorization and Riemann-Hilbert problems. Port. Math. (N.S.) 64 (2007), no. 4, 509-533.
[15] Câmara, M.C., dos Santos, A. F., dos Santos, P. F.: Matrix Riemann-Hilbert Problems and Factorization on Riemann Surfaces. J. Funct. Anal. 255 (2008), no. 1, 228-254.
[16] Clancey, K., Gohberg, I.: Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser, 1981.
[17] Daniele, V. G.: On the solution of two coupled Wiener-Hopf equations. SIAM J. Appl. Math. 44 (1984), no. 4, 667-680.
[18] De Terán, Fernando, Dopico, Froilán M.: The solution of the equation $X A+$ $A X^{T}=0$ and its application to the theory of orbits. Linear Algebra Appl. 434 (2011), no. 1, 44-67.
[19] Duren, P. L.: Theory of $H^{p}$ spaces, Academic Press, 1970.
[20] Ehrhardt, T.; Speck, F.-O.: Transformation techniques towards the factorization of non-rational 22 matrix functions. Linear Algebra Appl. 353 (2002), 53-90.
[21] Feldman, I., Gohberg, I., Krupnik, N.: A method of explicit factorization of matrix functions and applications. Integral Equations Operator Theory 18 (1994), no. 3, 277-302.
[22] Feldman, I., Gohberg, I., Krupnik, N.: On explicit factorization and applications. Integral Equations Operator Theory 21 (1995), no. 4, 430-459.
[23] Feldman, I.; Gohberg, I.; Krupnik, N.: Convolution equations on finite intervals and factorization of matrix functions. Integral Equations Operator Theory 36 (2000), no. 2, 201211.
[24] Feldman, I., Gohberg, I., Krupnik, N.: An Explicit Factorization Algorithm. Integral Equations and Operator Theory 49 (2004), 149-164.
[25] Garcia, Stephan Ramon, Shoemaker, Amy L.: On the matrix equation XA+ $A X^{T}=0$. Linear Algebra Appl. 438 (2013), no. 6, 2740-2746.
[26] Khrapkov, A. A. The first basic problem for a notch at the apex of an infinite wedge. (French, German summary) Internat. J. Fracture Mech. 7 (1971), 373 382.
[27] Lebre, A. B., dos Santos, A. F.: Generalized factorization for a class of nonrational $2 \times 2$ matrix functions. Integral Equations Operator Theory 13 (1990), no. 5, 671-700.
[28] Litvinchuk, G. S.; Spitkovskii, I. M.: Factorization of measurable matrix functions. Operator Theory: Advances and Applications, 25. Birkhäuser, Basel, 1987.
[29] Meister, Erhard, Speck, Frank-Olme: Matrix factorization for canonical Wiener-Hopf problems in elastodynamic scattering theory. Proceedings of the 9th Conference on Problems and Methods in Mathematical Physics (9.TMP) (Karl-Marx-Stadt, 1988), 175 - 184, Teubner-Texte Math., 111, Teubner, Leipzig, 1989.
[30] Meister, E., Speck, F.-O.: Wiener-Hopf factorization of certain nonrational matrix functions in mathematical physics. The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), 385-394, Oper. Theory Adv. Appl., 41, Birkhauser, Basel, 1989.
[31] Mikhlin, S., Prössdorf, S.: Singular Integral Operators, Springer, 1986.
[32] Prössdorf, S., Speck, F.-O.: A factorisation procedure for two by two matrix functions on the circle with two rationally independent entries. Proc. Roy. Soc. Edinburgh Sect. A 115 (1-2) (1990) 119-138.

## M.C.Câmara

Center for Mathematical Analysis, Geometry, and Dynamical Systems
Departamento de Matemática
Instituto Superior Técnico
1049-001 Lisboa
Portugal
e-mail: ccamara@math.ist.utl.pt
M.T.Malheiro

Departamento de Matemática e Aplicações
Universidade do Minho
Campus de Azurém - 4800 Guimarães
Portugal
e-mail: mtm@math.uminho.pt


[^0]:    This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT/Portugal), through Project PTDC/MAT/121837/2010 and Project EstC/MAT/UI0013/2011. The first author was also supported by the Center for Mathematical Analysis, Geometry, and Dynamical Systems and the second author was also supported by the Centre of Mathematics of the University of Minho through the FEDER Funds Programa Operacional Factores de Competitividade COMPETE.

