Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007 5ª Aula Prática

Soluções e algumas resoluções abreviadas

- 1. $u_n = \frac{(-1)^{n+1}}{n}$ limitada, $-\frac{1}{2} \le u_n \le 1$; convergente lim $\frac{(-1)^{n+1}}{n} = 0$. $v_n = \frac{n^{n+1}}{n^n+1}$ não majorada, não convergente. $w_n = u_n v_n$ limitada, não convergente, $u_n v_n = \frac{(-1)^{n+1} n^{n+1}}{n(n^n+1)} = \frac{(-1)^{n+1} n^n}{n^n+1}$
- tem dois sublimites diferentes, 1, -1.
- 2. $u_n = \cos(n!\pi)$: como, para n > 1, n! é um número natural par, temos $\cos(n!\pi) = 1$, para qualquer n > 1. Logo, (u_n) é convergente, com $\lim u_n = 1$,

 $v_n = \frac{n\cos(n\pi)}{2n+1}$: temos $\cos(n\pi) = (-1)^n$ e $\frac{n}{2n+1} \to \frac{1}{2}$, logo (v_n) terá dois sublimites diferentes, $\frac{1}{2}$ e $-\frac{1}{2}$, e não é convergente.

 $w_n=\frac{1+a^n}{1+a^{2n}}\quad (a\in\mathbb{R}).$ Tem-se $\lim w_n=1$ se |a|<1 ou a=1, não tem limite se a=-1, lim $w_n=0$ se |a|>1.

- 3. a) 0; b) não existe, a sucessão tem dois sublimites diferentes, 0 e 2; c) não existe, a sucessão não é limitada; d) 2; e) $\frac{1}{2}$; f) não existe, a sucessão tem dois sublimites diferentes, e = -e (note que $\left(-1 \frac{1}{n}\right)^n = (-1)^n \left(1 + \frac{1}{n}\right)^n$).
- 4. Se (u_n) é convergente, com $\lim u_n = a$, serão também as suas subsucessões (u_{2n}) e (u_{2n+1}) , com $\lim u_{2n} = \lim u_{2n+1} = a$. Por outro lado,

$$u_{2n} \in]0,1[\Rightarrow a \in [0,1],$$

 $u_{2n+1} \in \mathbb{R} \setminus [0, 1[=] - \infty, 0] \cup [1, +\infty[\Rightarrow a \in] - \infty, 0] \cup [1, +\infty[$. Logo, $a \in \{0, 1\}$.

- 5. Seja (u_n) tal que $u_1 = a$, para $a \in \mathbb{R}$, e $u_{n+1} = (-1)^n u_n + \frac{u_n}{n+1}$. Se (u_n) é convergente, com $\lim u_n = l$, temos que
 - $\frac{u_n}{n+1}$ é convergente, com $\lim \frac{u_n}{n+1} = \lim u_n \cdot \frac{1}{n+1} = l \cdot 0 = 0$
 - (u_{n+1}) é convergente, uma vez que é uma subsucessão de (u_n) , com $\lim u_{n+1} = \lim u_n = l$.

Logo, $(-1)^n u_n = u_{n+1} - \frac{u_n}{n+1}$ é também convergente. Mas, considerando as subsucessão dos termos pares e dos termos ímpares, temos $(-1)^{2n}u_{2n} = u_{2n} \to l$ e $(-1)^{2n+1}u_{2n+1} = -u_{2n+1} \to -l$. Como $(-1)^n u_n$ converge, tem-se $l = -l \Leftrightarrow 2l = 0 \Leftrightarrow l = 0$, como queríamos mostrar.

- 6. (a) $S = \{-2, 2\}$ em \mathbb{R} e em $\overline{\mathbb{R}}$;
 - (b) $S = \{0\}$ em \mathbb{R} , $S = \{0, +\infty\}$ em $\overline{\mathbb{R}}$;
 - (c) $S = \emptyset$ em \mathbb{R} , $S = \{+\infty\}$ em $\overline{\mathbb{R}}$;
 - (d) $S = \mathbb{N}_1 \text{ em } \mathbb{R}, S = \mathbb{N}_1 \cup \{+\infty\} \text{ em } \overline{\mathbb{R}}.$

Sim, por exemplo, (b). Não, se os sublimites e a convergência da sucessão forem considerados em $\overline{\mathbb{R}}$.

- 7. c) (i) Verdadeiro: A é limitado, logo uma tal sucessão seria monótona e limitada e portanto convergente.
 - (ii) Falso: $u_n = -1 + \frac{1}{3n}$.
 - (iii) Falso: $u_n = -\frac{1}{n}$.
 - (iv) Verdadeiro: B é limitado, logo qualquer sucessão de termos em B será limitada e pelo Teorema de Bolzano-Weierstrass, terá uma subsucessão convergente.
 - (v) Falso: $u_n = \frac{1}{2}$ é uma sucessão de termos em B e o conjunto dos seus sublimites é $\{\frac{1}{2}\}$.
- 8. a) $A = \left[-\infty, -\frac{1}{2} \right] \cup \left[2, +\infty \right[$.
 - c) $A \cap B \cap \mathbb{R}^- =]-\infty, -1]$, logo qualquer sucessão de termos em $A \cap B \cap \mathbb{R}^-$ será majorada. Logo, sendo crescente, será convergente.
 - d) $B \cap \mathbb{R}^+ = [\frac{1}{2}, +\infty[$. Se (x_n) tem termos em $B \cap \mathbb{R}^+$ e $y_n = (-1)^n x_n$, teremos, para n par, $y_n \ge \frac{1}{2}$ e, para n impar, $y_n \le -\frac{1}{2}$. Logo (y_n) não é convergente.
 - e) $x_n = 2 + \frac{\pi}{n}$.
- 9. a) Falso: por exemplo, $u_n = 3 + (-1)^n$, é limitada, tem termos em A e não é convergente, uma vez que tem dois sublimites diferentes: 2 e 4.
 - b) Verdadeiro: se (u_n) é monótona e tem termos em $A \cap V_{1/2}(0)$, será monótona e limitada, logo convergente em \mathbb{R} .

- c) Verdadeiro: se (u_n) é uma sucessão de termos em $A \cup B$ com lim $u_n = a < 0$ então $u_n < \frac{a}{2}$ a partir de certa ordem. Em particular, $u_n \in B$ e o conjunto $B \cap \{x : x < \frac{a}{2}\}$ é finito. Logo (u_n) não poderia ser estritamente decrescente.
- 10. (i) Verdadeiro.
 - (ii) Verdadeiro.
 - (iii) Falso.
- 11. a) Por definição, $u_n \to -\infty$ em $\overline{\mathbb{R}}$ sse dado $\epsilon > 0$, existe $p \in \mathbb{N}_1$ tal que, para n > p, $u_n < -\frac{1}{\epsilon}$. Seja então $\epsilon > 0$ dado,

$$1 - \sqrt{n} < -\frac{1}{\epsilon} \Leftrightarrow \sqrt{n} > 1 + \frac{1}{\epsilon} \Leftrightarrow n > \left(1 + \frac{1}{\epsilon}\right)^2.$$

Seja $p \in \mathbb{N}_1$ tal que $p > \left(1 + \frac{1}{\epsilon}\right)^2$. para n > p, temos $1 - \sqrt{n} < -\frac{1}{\epsilon}$. Logo $1 - \sqrt{n} \to -\infty$.

12. a) $\frac{n^n}{1000^n} = \left(\frac{n}{1000}\right)^n$. Como $\lim \frac{n}{1000} = +\infty$, temos $\lim \frac{n^n}{1000^n} = +\infty$. Alternativamente, como

$$\lim \frac{\frac{(n+1)^{n+1}}{1000^{n+1}}}{\frac{n^n}{1000^n}} = \lim \frac{(n+1)^{n+1}}{n^n} \frac{1000^n}{1000^{n+1}} = \frac{(n+1)}{1000} \left(\frac{n+1}{n}\right)^n = +\infty > 1$$

temos $\lim \frac{n^n}{1000^n} = +\infty$.

- b) $\lim n^{n+1} n^n = \lim n^n (n-1) = +\infty$.
- c) $\lim 3^n (2n)! = \lim(2n)! \left(\frac{3^n}{(2n)!} 1\right) = -\infty.$
- d) $\lim (n! n^{1000})^n = \lim \left(\frac{n!}{n^{1000}} 1\right)^n = +\infty.$
- e) $\frac{(2n)!}{n!}=(n+1)(n+2)\dots(n+n)>n^n$. Como $\lim n^n=+\infty$, então $\lim \frac{(2n)!}{n!}=+\infty$.

Alternativamente, como

$$\lim \frac{\frac{(2(n+1))!}{(n+1)!}}{\frac{(2n)!}{n!}} = \lim \frac{(2(n+1))!}{(2n)!} \frac{n!}{(n+1)!} = \lim \frac{(2n+2)(2n+1)}{n+1} = +\infty > 1$$

temos $\lim \frac{(2n)!}{n!} = +\infty$.

f) Como $\lim_{n \to 2 \atop n+1} = \lim_{n \to 2 \atop 1+\frac{1}{n}} = 1$, tem-se, $\lim_{n \to 2 \atop 1+1} \left(\frac{n+2}{n+1}\right)^{\frac{1}{n}} = 1^0 = 1$.

- g) Como, para qualquer $\alpha \in \mathbb{R}$ e c > 1, $\lim \frac{n^{\alpha}}{c^n} = 0$, tem-se $\lim \frac{n^{1000}}{1.0001^n} =$
- h) Neste caso, $\lim \frac{n}{n^2+1}=0$ e, logo, estamos na presença de uma indeterminação do tipo 0°. Mas, como

$$\lim \frac{\frac{n+1}{(n+1)^2+1}}{\frac{n}{n^2+1}} = 1, \quad \text{(verifique!)}$$

podemos concluir que lim $\sqrt[n]{\frac{n}{n^2+1}} = 1$.

i) Como $\lim(3^n+2) = +\infty$, temos uma indeterminação do tipo $(+\infty)^0$. Como

$$\lim \frac{3^{n+1}+2}{3^n+2} = 3, \qquad \text{(verifique!)}$$

concluímos que lim $\sqrt[n]{3^n + 2} = 3$.

- j) $\lim_{n \to \infty} (2 \frac{1}{n})^n = 2^{+\infty} = +\infty.$
- k) Neste caso temos uma indeterminação do tipo 1^{∞} . No entanto,

$$\lim \left(1 - \frac{1}{2^{n-1}}\right)^{2^n} = \lim \left(1 + \frac{-2}{2^n}\right)^{2^n} = e^{-2}$$

dado que $2^n \to +\infty$.

l) Temos uma indeterminação do tipo $(+\infty)^0$. Como

$$\lim \frac{(n+1)!}{n!} = \lim n + 1 = +\infty,$$

concluímos que $\lim \sqrt[n]{n!} = +\infty$.

m) Novamente temos uma indeterminação do tipo 1^{∞} . Neste caso,

$$\lim \left(1 + \frac{1}{n}\right)^{n^2} = \lim \left[\left(1 + \frac{1}{n}\right)^n\right]^n = +\infty.$$

- 13. a) $\frac{2}{3}$; b) 0; c) $\frac{1}{2}$; d) $+\infty$; e) não é convergente em $\overline{\mathbb{R}}$; f) 0; g) 1; h) 0; i) $+\infty$; j) 1; k) 2; l) $+\infty$; m) $+\infty$; n) $\frac{1}{e}$;

- 14. a) $\lim \frac{n!}{n^{1000}} = +\infty$, uma vez que $\lim \frac{n!}{n^p} = +\infty$, para qualquer $p \in \mathbb{N}$.
 - b) $\lim \frac{(2n)!+2}{(3n)!+3} = 0$, porque $\lim \frac{(2n)!}{(3n)!} = 0$ (calcular!).
 - c) $\lim \frac{(2n)!}{(2n)^n} = +\infty$, porque $\lim \frac{u_{n+1}}{u_n} = +\infty$, com $u_n = \frac{(2n)!}{(2n)^n}$ (calcular!).

- d) $\lim \frac{(n!)^2}{(2n)!+2} = 0$, porque $\lim \frac{u_{n+1}}{u_n} = \frac{1}{4} < 1$, com $u_n = \frac{(n!)^2}{(2n)!+2}$ (calcular!).
- e) $\lim \frac{2^n n!}{n^n} = 0$, porque porque $\lim \frac{u_{n+1}}{u_n} = \frac{2}{e} < 1$, com $u_n = \frac{2^n n!}{n^n}$ (calcular!).
- f) $\lim \frac{3^n n!}{n^n} = +\infty$, porque porque $\lim \frac{u_{n+1}}{u_n} = \frac{3}{e} > 1$, com $u_n = \frac{3^n n!}{n^n}$ (calcular!).
- g) $\lim n^{\frac{1}{n}} = 1$, porque $\lim \frac{n+1}{n} = 1$.
- h) $\lim \left(\frac{1}{n}\right)^{\frac{1}{n}} = 1$, porque $\lim \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1$.
- i) $\lim \left(\frac{1}{n}\right)^n = \lim \frac{1}{n^n} = 0$,
- j) $\lim_{n \to \infty} (2 \frac{1}{n})^n = 2^{+\infty} = +\infty$,
- k) $\lim_{n \to \infty} \left(\frac{n-1}{2n^2+1}\right)^{\frac{2}{n}} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n-1}{2n^2+1}\right)^2} = 1$, porque $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = 1$, com $u_n = \left(\frac{n-1}{2n^2+1}\right)^2$.
- l) $\lim \frac{2^{(n^2)}}{15^n} = +\infty$, porque $\lim \frac{u_{n+1}}{u_n} = +\infty > 1$, com $u_n = \frac{2^{(n^2)}}{15^n}$ (verifique!).
- 15. a) i) Por definição, $u_n \to +\infty$ em $\overline{\mathbb{R}}$ sse dado $\epsilon > 0$, existe $p \in \mathbb{N}_1$ tal que, para $n > p, \ u_n > \frac{1}{\epsilon}$. Neste caso, $u_n > 0$, logo

$$u_n > \frac{1}{\epsilon} \Leftrightarrow \frac{1}{u_n} < \epsilon,$$

- e assim $\frac{1}{u_n} \to 0$.
- b) Não. Por exemplo, $u_n = \frac{(-1)^n}{n} \to 0$ e $\frac{1}{u_n} = (-1)^n n$ não é convergente em $\overline{\mathbb{R}}$.