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1 Measures

1.1 Jordan content in RN

Let I be an interval in R. Then its 1-content is defined as c1(I) := b − a if I is bounded
with endpoints a, b. If I is unbounded, we define c1(I) = +∞. More generally,

Definition 1.1.1. Let R = I1 × ... × IN ⊂ RN be a N-rectangle, where Ik ⊂ R is an interval,
k = 1, ...,N. Then the N-content of R is defined as

cN(R) = c1(I1) × ... × c1(IN).

We always assume that if c1(Ik) = 0 for some k, then cN(R) = 0 (so the 2-content of a
straightline in R2 is 0) and if c1(Ik) = ∞ for some k, with c1(I j) > 0, j , k then cN(R) = ∞.

One important feature of the N-content (and as we shall see of measures of sets) is
its additivity: if R1,R2 are disjoint rectangles then

cN(R1 ∪ R2) = cN(R1) + cN(R2).

This property gives us a way to extend the notion of content to finite unions of rectangles:
we define

Definition 1.1.2. U(RN) is the class of sets given by finite unions of n-rectangles,

E(RN) is the class of sets given by finite unions of bounded n-rectangles, that is,
bounded sets inU(RN). Elements of E(RN) are called elementary or simple sets.
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Note that since R \ S is a rectangle whenever R,S are rectangles, any finite union can
assumed to be disjoint: if U = ∪

p
i=1Ri, then

U = ∪
p
i=1R′i , R′1 = R1, R′k+1 = Rk+1 \ ∪

k
i=1Ri

where the rectangles R′k are mutually disjoint. (This process of turning an arbitrary union
into an union of disjoint sets will be used often.)

Definition 1.1.3. Let U ∈ E(RN) be such that U = ∪
p
i=1Ri, where Ri are disjoint rectangles.

We define the N-content of U by

cN(U) :=
p∑

i=1

cN(Ri).

Of course, one needs to show - see [NotesMR] - that the definition above does not
depend on the partition of U into disjoint rectangles.

The class of simple sets is quite restrictive: e.g., balls and triangles are not simple
sets. The point now is to consider sets that can be approximated, outer and inner, by
simple sets. One can see that if J ⊂ RN is bounded then there exist simple sets U, K such
that K ⊂ J ⊂ U. Hence the following definition makes sense:

Definition 1.1.4. Let J ⊂ RN be bounded. The outer Jordan content of J is defined as

cN(J) := inf{cN(U) : U ⊃ J,U ∈ E(RN)}.

The inner Jordan content of J is defined as

cN(J) := sup{cN(K) : K ⊂ J,K ∈ E(RN)}.

The bounded set J is said to be Jordan measurable, J ∈ J(RN), if cN(J) = c(J). In that case
we define the Jordan content of J as

cN(J) := cN(J) = c(J).

Examples 1.1.5. 1. Finite sets are simple, hence Jordan measurable, and have content
0.

2. D = Q ∩ [0, 1] not Jordan measurable, c(D) = 1 and c(D) = 0.

Useful criteria to show Jordan measurability, that relies mainly on the definition of
sup and inf:

Proposition 1.1.6. (i) J ∈ J(RN) if and only if for all ε > 0, there exist simple sets U,K ∈
E(RN) such that

K ⊂ J ⊂ U, cN(U \ K) < ε

and in this case cN(J) ∈]cN(U) − ε, cN(K) + ε[.
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(ii) J ∈ J(RN) if and only if there exist simple sets Un,Kn ∈ E(RN) such that

Kn ⊂ J ⊂ Un, cN(Un \ Kn)→ 0

and in this case cN(J) = lim cN(Kn) = lim cN(Un).

(iii) J ∈ J(RN) with cN(J) = 0 if and only if there is U ∈ E(RN) such that

J ⊂ U, cN(U) < ε

A set with cN(J) = 0 is said to be a null set. Note that since cN(J) ≤ cN(J), any set with
cN(J) = 0 is Jordan measurable (see also (iii)), in particular, if N ∈ J(RN) is a null-set and
J ⊂ N then J is Jordan measurable and cN(J) = 0.

In (i), we can assume that U and K are open or closed without loss of generality
(mainly because if U is simple, then also intU and U are simple, and have the same
content as U). In particular, taking K and open U closed in (i), we see that U \ K covers
the boundary ∂J of J and that ∂J ∈ J(RN) with cN(∂J) = 0. The converse is also true:

Proposition 1.1.7. Let J ⊂ RN be bounded. Then J ∈ J(RN)⇔ ∂J ∈ J(RN) and cN(∂J) = 0.
In that case, cN(J) = cN(intJ) = cN(J) and

(i) cN(J) = 0⇔ intJ = ∅,

(ii) if J ∈ E(RN) then cN(J) = 0⇔ J is finite.

Note that a set with non-empty interior cannot be a null set, since in that case it
contains a rectangle with positive content.

Properties of J(RN):

Proposition 1.1.8. 1. The class of J(RN) is a semi-algebra:1

A,B ⊂ J(RN) ⇒ A ∪ B,A \ B ∈ J(RN)

(and also A ∩ B ∈ J(RN)).

2. Let A,B ∈ J(RN). The Jordan content cN : J(RN)→ [0,+∞] is:

(i) Additive: if A ∩ B = ∅, then cN(A ∪ B) = cN(A) + cN(B).

(ii) Monotonic: if A ⊂ B, then cN(A) ≤ cN(B).

(iii) Subadditive: cN(A ∪ B) ≤ cN(A) + cN(B).

(iv) Invariant under translations and reflexions.

1it is not an algebra, since RN < J(RN).

3



FTAR Notes – 1o Sem. 2014/15

3. Products: A ∈ J(RN), B ∈ J(RM) then A × B ∈ J(RN+M) and cN+M(A × B) =
cN(A)cM(B).

By induction, any union in the proposition above can be replaced by a finite union:
J(RN) is closed for finite unions and intersections, and is finitely additive and subaddi-
tive.

We can show that (for any additive, non-negative set function) for A,B ∈ J(RN) (not
necessarily disjoint):

cN(A) + cN(B) = cN(A ∪ B) + cN(B ∩ A). (1)

Moreover, always have cN(A) = cN(A ∩ B) + cN(A \ B).

Remark 1.1.9 (Riemann Integral). Let f : R → R be a non-negative, bounded function
and let

Ω f (E) := {(x, y) : 0 ≤ y ≤ f (x), x ∈ E}.

If I = [a, b] is an interval, then

cN(Ω f (I)) =

∫ b

a
f (x)dx = inf SD( f ), cN(Ω f (I)) =

∫ b

a

f (x)dx = sup sD( f ),

where SD( f ), sD( f ) are the upper and lowers Darboux sums relative to a decomposition
D of I. Hence

f is Riemann integrable, f ∈ R(I) ⇔ Ω f (I) ∈ J(RN).

Conversely, for E ⊂ R, let χE be the characteristic, or indicator, function of E: χE(x) = 1,
x ∈ E, and χE(x) = 0, x < E. Asume E is bounded, then

E ∈ J(RN) ⇔ χE ∈ R(I), cN(E) =

∫
R

χE.

The fact that there are countable sets that are not Jordan measurable yields an example
of a sequence of Riemann integrable functions whose pointwise limit is not Riemann
integrable: just take E = {pk : k ∈N} < J(RN) and En = {pk : k ≤ n} ∈ J(RN) (finite sets).
Then χE = limχEn but χE not Riemann integrable on any interval.

We have that finite unions of Jordan measurable sets are always Jordan measurable,
but this does not hold even if we take a countable union of points, as Q ∩ [0, 1] shows.
We would like to extend the definition of Jordan content to countable unions of Jordan
measurable sets. This is made possible by the following fundamental result.
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Theorem 1.1.10. Let An ∈ J(RN), n ∈N, be disjoint. If A = ∪n∈NAn ∈ J(RN) then

cN(A) =
∑
n∈N

cN(An).

Proof. Let An ∈ J(RN), n ∈ N, be disjoint and A = ∪n∈NAn ∈ J(RN). Given ε > 0, let
K,Kn be closed and U,Un be open such that

K ⊂ A ⊂ U, cN(U \ K) < ε, Kn ⊂ An ⊂ Un, cN(U \ K) <
ε
2n .

We have then that cN(U)− ε < cN(A) < cN(K) + ε and cN(Un)−
ε
2n ≤ cN(An) ≤ cN(Kn) +

ε
2n ,

so that ∑
n∈N

cN(Un) − ε ≤
∑
n∈N

cN(An) ≤
∑
n∈N

cN(Kn) + ε.

Now note that by Heine-Borel’s theorem, K is compact, as it is closed and bounded.
Since {Un}n∈N is an open cover, it has a finite subcover:

K ⊂ ∪n∈NUn ⇒ K ⊂ ∪p
n=1Un.

It follows that

cN(A) − ε < cN(K) ≤
p∑

n=1

cN(Un) ≤
∞∑

n=1

cN(An) + ε

⇒ cN(A) <
∞∑

n=1

cN(An) + 2ε, for all ε > 0

hence cN(A) ≤
∑
∞

n=1 cN(An).

Conversely, let again An ∈ J(RN), n ∈ N, be disjoint and A = ∪n∈NAn ∈ J(RN).
Since, for all n ∈N, we have A ⊃ ∪n

k=1Ak, by monotonicity and finite additivity:

cN(A) ≥ cN

(
∪

n
k=1Ak

)
=

n∑
k=1

cN(Ak), ∀n ∈N

hence cN(A) ≥
∑
∞

k=1 cN(Ak). �

A function satisfying the condition in the above theorem is said to be a pre-measure,
a terminology that will be made clear in the following sections.

We now have a way of extending the Jordan content to countable unions of Jordan
measurable, need to check that if A = ∪n∈NAn = ∪n∈NBn for collections of measurable,
disjoint, sets (An), (Bn) then since An is Jordan measurable and An = ∪∞m=1An ∩Bm, we get
from the previous result that

∞∑
n=1

cN(An) =

∞∑
n=1

∞∑
m=1

cN(An ∩ Bm) =

∞∑
m=1

cN(Bm),

where we apply to same reasoning to Bm to get the last equality.
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Definition 1.1.11. We letJσ(RN) denote the class of countable unions of Jordan measurable
sets. Define the extended Jordan content c̃N : Jσ(RN)→ [0,+∞] such that if A = ∪n∈NAn,
with An ∈ J(RN) disjoint, then

c̃N(A) :=
∑
n∈N

cN(An).

The previous theorem shows that the function defined above is indeed an extension
of the Jordan content on J(RN), and we write in general c̃N as cN. We let Eσ(RN) denote
the class of countable unions of simple sets, that is, the class of countable unions of
rectangles.

A set function λ is said to be σ-additive if

λ (∪n∈NAn) :=
∑
n∈N

λ(An), An disjoint

and σ-subadditive if
λ (∪n∈NAn) ≤

∑
n∈N

λ(An).

Proposition 1.1.12. The classes Jσ(RN) and Eσ(RN) are closed for countable unions and cN is
σ-additive and σ-subadditive on Jσ(RN) and Eσ(RN).

Examples 1.1.13. 1. Any countable set is in Jσ(RN) and if Q = {qn} then

c̃N(Q) = c̃N
(
∪n∈N{qn}

)
=

∑
n∈N

cN({qn}) = 0.

2. Let D = [0, 1] ∩ Q. Then D ∈ Jσ(RN), since it is countable, and c̃N(D) = 0. By
additivity, if Dc := [0, 1] ∩R \Q ∈ Jσ(RN), then c̃N(Dc) = 1.

But int(Dc) = ∅, hence if Dc = ∪An, with An ∈ J(RN), then int(An) = ∅, hence
cN(An) = 0 and also c̃N(Dc) = 0.

We conclude that Dc = [0, 1] \D = [0, 1] ∩R \Q < Jσ(RN). In particular, Jσ(RN) is
not closed for difference of sets, hence not an algebra.

NOTE: In general, for A ∈ Jσ(RN), c̃N(A) = 0 ⇔ int(A) = ∅. In particular, A ∈
Eσ(RN), c̃N(A) = 0⇔ A is countable.

3. Any open set is given by a countable union of rectangles, hence is σ-simple.
Therefore Jσ(RN) contains all the open sets.

4. An open set U < J(R): let {qn}n∈N = [0, 1] ∩Q and ε > 0 be given. Define

Un :=]qn −
ε
2n , qn +

ε
2n [, U := ∪n∈NUn.
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Then U is open, U ∈ Eσ(R) ⊂ Jσ(R). By subadditivity,

c̃(U) ≤
∑
n∈N

c(Un) =

∞∑
n=1

ε

2n−1 = 2ε.

On the other hand, since [0, 1] ∩Q ⊂ U, the upper Jordan content c(U) ≥ c([0, 1] ∩
Q) = 1. If U ∈ J(R), we would have

c(U) = c̃(U) < 2ε, c(U) = c(U) ≥ 1.

For ε < 1/2 this is a contradiction. Hence U < J(R) for ε < 1/2.

The following two examples will be used and often used as reference during the
course.

Example 1.1.14 (Cantor set). Let I = [a, b]. Define T(I) := I \
]

a+b
2 −

c(I)
6 ,

a+b
2 + c(I)

6

[
and

T(∪p
k=1Ik) :=

∑p
k=1 T(Ik).

Let F0 = [a, b] and Fn = T(Fn−1), n ∈ N. Then Fn is given by finite unions of closed
sets, hence it is a closed, simple set and c(Fn)→ 0. Define

C(I) = ∩n∈NFn.

Since Fn ∈ E(RN) and C(I) ⊂ Fn, with c(Fn) → 0, it follows from Proposition (iii) that
C(I) ∈ J(R) with c(C(I)) = 0. It is an uncountable set with int(C(I)) = ∅.

Topological properties:

– closed, hence compact
– nowhere dense int(C(I))) = int(C(I))) = ∅
– perfect set: all points in C(I) are limit points (no isolated points)
– totally disconnected.

Also have that I \ C(I) is a countable union of open intervals, hence is in Eσ(R). But
C(I) < Eσ(R) being an uncountable null set. Hence, Eσ(RN) is not closed for difference of
sets, hence it is not an algebra.

Example 1.1.15 (Smith-Volterra-Cantor set).

Borel Problem: Find a collection of setsM ⊂ P(RN) and mN :M→ [0,+∞] such that

(1) M is an algebra closed for countable unions and for An ∈ M,

mN

⋃
n∈N

An

 =
∑
n∈N

mN(An).
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(2) M ⊃ E(RN) and mN(E) = cN(E), for E ∈ E(RN).

Note thatM ⊃ Eσ(RN), in particularM contains all opens sets, as well as all closed
sets in RN.

Note also that, since cN is translation invariant, mN is translation invariant on Eσ(RN).
If we require that mN is translation invariant onM, we see now that such a collectionM
is necessarily proper, even though the existence on sets that cannot be measured by mN

relies on the axiom of Choice.

Example 1.1.16 (Vitali’s set). Define an equivalence relation on [0, 1[ by x ∼ y ⇔ x− y ∈
Q. Let V ⊂ [0, 1[ be such that the intersection of V with [x] contains precisely one element
(need Axiom of Choice). We claim that if (M,mN) is a translation invariant solution for
Borel’s problem, then V <M.

It follows from Vitali’s example that:

If (M,mN) is a translation invariant solution for Borel’s problem thenM & P(RN).

1.2 σ-Algebras and measure spaces

We now consider an arbitrary base space X.

Definition 1.2.1. LetM ⊂ P(X). Then

(i) M is an algebra if X ∈ M and A,B ∈ M⇒ A ∪ B,A \ B ∈ M

(ii) M is a σ-algebra if it is an algebra and is closed with respect to countable unions:

An ∈ M,n ∈N ⇒

⋃
n∈N

An ∈ M.

We have always ∅,X are in M and that M is closed for countable intersections as
well:

An ∈ M,n ∈N ⇒

⋂
n∈N

An = X \

⋃
n∈N

X \ An

 ∈ M.

Examples 1.2.2. 1. P(X) is the largest σ-algebra, {∅,X} is the smallest.

2. J(RN), E(RN) semi-algebra, not closed for countable unions, hence not σ-algebras.

3. Jσ(RN), Eσ(RN): closed for countable unions but not algebras: not closed for
difference of set. Hence, are not σ-algebras.

4. Let (X, τ) be a topological space. Then the collection τ of open sets in X is closed
for countable unions, but fails to be an algebra, as it is not closed for complements.

8



FTAR Notes – 1o Sem. 2014/15

Even if a given class A is not s σ-algebra, we can always consider the smallest σ-
algebra that contains it. It is easy to see that the intersection of σ-algebras is still a
σ-algebra, and P(X) is a σ-algebra containing any collection of sets A. We define the
σ-algebra generated byA by

M(A) :=
⋂
M, M σ-algebra,A ⊂M.

Definition 1.2.3. Let X be a topological space. The Borel σ-algebra B(X) is the σ-algebra
generated by the class of opens sets. Sets in B(X) are called Borel sets, include all open
sets, all closed sets, all countable unions of closed sets - such a set is called a Fσ-set - and
all countable intersections of open sets - such a set is called a Gδ-set.

When X = RN, it is easily seen that B(RN) is generated by open/closed/half- open
rectangles.

Definition 1.2.4. LetM be a σ-algebra. A set function µ :M→ [0,+∞] is a measure on
M if

(i) µ(∅) = 0,

(ii) µ is σ-additive: for An ∈ M, n ∈N, disjoint,

µ

⋃
n∈N

An

 =
∑
n∈N

µ(An).

A measure space is a triple (X,M, µ) where µ is a measure on M. Sets in M are said
to be µ-measurable. The measure is finite if µ(X) < ∞ and σ-finite if there exist Xn with
µ(Xn) < ∞ and X = ∪n∈NXn.

Note that µ(∅) = 0 ⇔ µ(A) < ∞, for some A ∈ M. Moreover, for A,B ∈ M, not
necessarily disjoint, we always have

µ(A) + µ(B) = µ(A ∪ B) + µ(B ∩ A), µ(A) = µ(A ∩ B) + µ(A \ B). (2)

Examples 1.2.5. 1. Counting measure: # : P(X)→ [0,+∞]

#(E) = the number of elements of E, if E is finite, and #(E) = +∞, if E is infinite.

# is finite measure⇔ X is finite, and a σ-finite measure⇔ X is countable.

In particular, it is an example of non σ-finite measure on R.
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2. Dirac measure given x0 ∈ X, define δx0 : P(X)→ [0,∞] by

δx0(E) =

1, if x0 ∈ E,
0, if x0 < E

3. Dirac comb: µ : P(X)→ [0,+∞] such that

µ(E) = #(E ∩Z) =
∑
n∈Z

δn(E).

is a σ-finite measure.

(NOTE: the sum of measures is always a measure -Exercise.)

4. Probability measure: p :M→ [0, 1] such that p(X) = 1,M is the space of events and
(X,M, p) is called a probability space.

For instance, take p(E) =
#(E)
#(X)

, X finite.

5. Borel measures: if X is a topological space, a Borel measure is a measure defined on
σ-algebra of the Borel sets B(X), generated by the opens sets.

In RN, the most important Borel measure is the Lebesgue measure, which is transla-
tion invariant and yields a solution to Borel’s problem.

6. Let f : R→ R be increasing, define µ f (]a, b[) := f (b)− f (a). Then µ is σ-additive on
the σ-algebra generated by the open intervals, that is in B(R), so (R,B(R), µ f ) is a
measure space. The Lebesgue measure corresponds to the case f (x) = x.

(The Dirac measure is a particular case, with H(x) = 1, x ≥ x0, H(x) = 0, x < x0.)

7. Haar measures: invariant measures on locally compact topological groups, defined
on Borel sets.

An additive, non-negative, function is always monotonic, asµ(B) = µ(B∩A)+µ(B\A).
Using monotonicity, we can see that σ-additivity implies σ-subadditivity. Moreover, a
measure is always continuous with respect to monotonic sequences, in a sense made
clear by the next result.

Proposition 1.2.6. Let (X,M, µ) be a measure space.

1. µ is σ-subadditive;

2. Let En ∈ M, n ∈ N such that µ(E1) < ∞,2 En+1 ⊂ En and E = ∩n∈NEn (write En ↘ E).
Then

µ(E) = limµ(En).

2(N,P(N), #), with En = {k ≥ n} then ∩En = ∅, µ(En) = ∞.

10
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3. Let En ∈ M, n ∈N such that En ⊂ En+1 and E = ∪n∈NEn (write En ↗ E). Then

µ(E) = limµ(En).

Properties 2. and 3. are sometimes called continuity from above and continuity from be-
low, respectively. (In [NotesR], Property 3. is called ’Lebesgue’s monotone convergence
theorem’.)

Proof. To see σ-subadditivity, let A = ∪∞n=1An and write A = ∪∞n=1A′n with A′n = An\∪
n−1
k=1 Ak,

then by σ-additivity and monotonicity

µ(A) =

∞∑
n=1

µ(A′n) ≤
∞∑

n=1

µ(An).

To prove 2., let En ∈ M, n ∈N such that µ(E1) < ∞, En+1 ⊂ En and E = ∩n∈NEn then E1

can be written as a disjoint union

E1 = E ∪
(
∪
∞

k=1Ek \ Ek+1

)
hence

µ(E1) = µ(E) +

∞∑
k=1

µ(Ek \ Ek+1) < ∞.

Since
∞∑

k=1

µ(Ek \ Ek+1) = lim
n∑

k=1

µ(Ek) − µ(Ek+1) = µ(E1) − limµ(En+1),

and µ(E1) < ∞, it follows that µ(E) = limµ(En).
To prove 3., let now En ∈ M, n ∈ N such that En ⊂ En+1 and E = ∪n∈NEn. Then E can

be written as a disjoint union

E = ∪∞k=0Ek+1 \ Ek, E0 = ∅

and in the same way

µ(E) =

∞∑
k=0

µ(Ek+1 \ Ek) = lim
n∑

k=0

µ(Ek+1 \ Ek) = limµ(En+1).

�

Let (X,M, µ) be a measure space. Sets in M with µ(E) = 0 are usually called null
sets and play an important role in measure theory, as null sets are used as a means
of approximation: a property that holds except on a null-set is said to hold µ-almost
everywhere, µ-a.e. (and we often look for characterizations of measurable sets minus a
null-set). Note that a countable union of null-sets is also a null-set, by σ-subadditivity.

Let N ⊂ be a null set and E ⊂ N. If E ∈ M, then µ(E) ≤ µ(N) = 0, hence E is also a
null set. There is however no reason in general for E ∈ M.
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Definition 1.2.7. A measure space (X,M, µ) is said to be complete if

E ⊂ N ∈ M, µ(N) = 0⇒ E ∈ M, µ(E) = 0.

Even if a given measure space is not complete, we can always form its completion,
extending µ to a larger σ-algebra. LetN ⊂M be the collection of all null sets. Define

M := {E ∪ F : E ∈ M,F ⊂ N,N ∈ N},

µ :M→ [0,+∞], µ(E ∪ F) := µ(E).

First check that µ is well-defined: if E1∪F1 = E2∪F2 then E1 \E2 ⊂ F2 ⊂ N2 for some null
set N2, hence is also a null set (since E1 \ E2 ∈ M) and µ(E1) = µ(E1 \ E2) + µ(E1 ∩ E2) =
µ(E1 ∩ E2) = µ(E2), by the same reasoning with E2.

Moreover, if A ⊂ E ∪ F ∈ M with µ(E ∪ F) = 0, then E is a µ-null set, so A is a subset
of a µ-null set and hence A ∈ M.

An alternative definition ofM is the following:

A ∈ M⇔ there exist U,K ∈ Mwith K ⊂ A ⊂ U and µ(U \ K) = 0,

which illustrates that sets inM are precisely the ones that can be approximated by sets
inM, modulo a µ-null set. (Exercise.)

Theorem 1.2.8. (X,M, µ) is a complete measure space and is the smallest complete extension
of (X,M, µ).

1.3 Outer measures

Now we turn to the issue of defining measure spaces. One way of achieving this is
to consider first outer approximations, which should be defined for any set, and then
define measurability from there.

Definition 1.3.1. An outer measure is a set function µ∗ : P(X)→ [0,+∞] such that

(i) µ∗(∅) = 0,

(ii) µ∗ is monotonic,

(iii) µ∗ is σ-subadditive: for any An ⊂ X, n ∈N,

µ∗
⋃

n∈N

An

 ≤ ∑
n∈N

µ∗(An).

So, we drop σ-additivity, requiring only the weaker σ-subadditivity (’approximation
from the outside’) but require on the other hand that µ∗ is defined on the whole of P(X).
Any measure defined on P(X) is also an outer measure, so the counting measure and
the Dirac measures are outer measures.

12
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Example 1.3.2. Outer Jordan content is subadditive but not σ-subadditive: take D =
Q ∩ [0, 1], then cN(D) = 1, but D = {qn}, and

∑
n∈N cN({qn}) = 0. Hence it is not an outer

measure.

The following proposition gives a common way of obtaining outer measures:

Proposition 1.3.3. Let E ⊂ P(X) be such that ∅,X ∈ E and λ : E → [0,∞] such that λ(∅) = 0.
For A ⊂ X, let λ∗ : P(X)→ [0,∞] given by

λ∗(E) = inf

 ∞∑
n=1

λ(En) : E j ∈ E,A ⊂ ∪∞n=1En

 .
Then λ∗ is an outer measure.

Now we want to associate a measure space to a given outer measure µ∗, that is, a σ-
algebraMµ∗ of measurable sets and a measure µ = µ∗ onMµ∗ , so µ∗ is σ-additive onMµ∗ .
Noting that a finitely additive function is σ-additive if and only if it is σ-subadditive, we
want to find a σ-algebraMµ∗ where µ∗ is additive.

Definition 1.3.4. Let µ∗ be an outer measure on X. A set A ⊂ X is said to be µ∗-measurable
if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac), for all E ∈ P(X).

We denote byMµ∗ the class of all µ∗-measurable sets.

Note that we have always, by subadditivity, µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac). The next
lemma shows that we get finite additivity of µ∗ restricted toMµ∗ (note that B can be any
set).

Lemma 1.3.5. Let A ∈ Mµ∗ , B ∈ P(X). Then µ∗(A∪B) = µ∗(A) +µ∗(B \A). If A∩B = ∅ then

µ∗(A ∪ B) = µ∗(A) + µ∗(B).

Proof. Taking E = A ∪ B in the definition of µ∗-measurability, we get

µ∗(A ∪ B) = µ∗((A ∪ B) ∩ A) + µ∗((A ∪ B) ∩ Ac) = µ∗(A) + µ∗(B ∩ Ac).

�

In fact, more is true, as we can prove in the same way that if A ∈ Mµ∗ , B,C ⊂ X, with
A,B disjoint, then

µ∗(C ∩ (A ∪ B)) = µ∗(C ∩ A) + µ∗(C ∩ B).

We have then, by induction, that µ∗ is (finitely) additive on any algebra contained in
Mµ∗ , hence σ-additive on any σ-algebra contained inMµ∗ .

Lemma 1.3.6. Mµ∗ is a σ-algebra.

13
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Proof. It is closed for complements, by definition, and ∅,X ∈ Mµ∗ . Let now A,B ∈ Mµ∗ .
We show that A ∩ B ∈ Mµ∗ , want to see that

µ∗(E) ≥ µ∗(E ∩ (A ∩ B)) + µ∗(E ∩ (A ∩ B)c)

for any E ⊂ X. Now E ∩ (A ∩ B)c = (E ∩ Ac) ∪ (E ∩ A ∩ Bc) (disjoint union), hence

µ∗(E ∩ (A ∩ B)c) + µ∗(E ∩ (A ∩ B)) ≤ µ∗(E ∩ Ac) + µ∗(E ∩ A ∩ Bc) + µ∗(E ∩ A ∩ B)
= µ∗(E ∩ Ac) + µ∗(E ∩ A) = µ∗(E)

where we used µ∗-mensurability of B and A in the last equalities. Hence Mµ∗ is an
algebra, in particular, closed for finite unions.

We show it is closed for countable unions. Let A = ∪n∈NAn, with An ∈ Mµ∗ , n ∈ N,
assume disjoint. Let E ⊂ X. For finite unions, we know that for any n ∈N,

µ∗(E) = µ∗(E ∩ (∪n
k=1Ak)) + µ∗(E ∩ (∪n

k=1Ak)c) ≥ µ∗(E ∩ (∪n
k=1Ak)) + µ∗(E ∩ Ac)

(since (∪n
k=1Ak)c

⊃ Ac). Moreover, by measurability of each An, using induction, one can
see (Exercise) that

µ∗(E ∩ (∪n
k=1An)) =

n∑
k=1

µ∗(E ∩ Ak).

Letting n→∞, it follows

µ∗(E) ≥
∞∑

k=1

µ∗(E ∩ Ak) + µ∗(E ∩ Ac) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac),

by σ-subadditivity 3 . Since we always have, µ∗(E) ≤ µ∗(E ∩ A) + µ∗(E ∩ Ac), the measur-
ability of A follows, and that finishes the proof. �

Given an outer measure µ∗, we have constructed a σ-algebra Mµ∗ where µ∗ is σ-
additive (in fact, we only needed additive), that is, so that the restriction of µ∗ toMµ∗ is
a true measure.

Moreover, this measure is always complete. In fact any set with µ∗(A) = 0 is always
measurable : if E ⊂ X, then µ∗(E ∩ A) ≤ µ∗(A) = 0, so that

µ∗(E) ≤ µ∗(A ∩ E) + µ∗(Ac
∩ E) = µ∗(Ac

∩ E) ≤ µ∗(E).

Hence µ∗(E) = µ∗(A∩E) +µ∗(Ac
∩E) and A ∈ Mµ∗ . In particular, if A ⊂ N where N ∈ Mµ∗

such that µ(N) = µ∗(N) = 0, then µ∗(A) ≤ µ∗(N) = 0, so A is measurable and the space is
complete.

We have proved:

3In fact, in this case we have σ-additivity: prove that µ∗(E ∩ A) =
∑
∞

k=1 µ
∗(E ∩ Ak)

14
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Theorem 1.3.7 (Caratheodory). Let µ∗ be an outer measure on X. Then there exists a complete
measure space (X,Mµ∗ , µ) such that

µ(E) = µ∗(E), for E ∈ Mµ∗ .

whereMµ∗ is as in 1.3.4.

The first application of Caratheodory’s construction is to extend additive functions
on algebras to measures on σ-algebras.

Definition 1.3.8. LetA ⊂ P(X) be an algebra, or a semi-algebra such that X is a countable
union of elements of A. A premeasure on A is a function µ0 : A → [0,∞] such that
µ∗(∅) = 0, and for An ∈ A disjoint, n ∈N, then

A = ∪∞n=1An ∈ A ⇒ µ0 (A) =
∑
n∈N

µ0(An).

In particular, µ0 is additive onA. Now to each premeasure, we can associate an outer
measure, according to

µ∗(E) = inf

 ∞∑
n=1

µ0(An) : A j ∈ A,E ⊂ ∪∞n=1An

 . (3)

Proposition 1.3.9. Let µ0 be a premeasure on an algebra / semi-algebra4
A and µ∗ be defined as

above,Mµ∗ the σ-algebra of µ∗-measurable sets. Then

(i) µ∗
|A

= µ0

(ii) A ∈ Mµ∗ if and only if

µ0(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac), for all B ∈ A,

(iii) A ⊂Mµ∗ .

Proof. (i). Let A ∈ A. It is clear from the definition that µ∗(A) ≤ µ0(A). Let A ⊂ ∪An,
An ∈ A. Then A = ∪A ∩ An ∈ A hence, by the premeasure property,

µ0(A) =
∑

µ0(A ∩ An) ≤
∑

µ0(An).

Hence µ0(A) ≤ µ∗(A), so equality follows.
(ii) Let A ⊂ X such that µ0(B) = µ∗(B ∩A) + µ∗(B ∩Ac), for all B ∈ A,. For E ⊂ X such

that E ⊂ ∪Bn,Bn ∈ Awe have E ∩ A ⊂ ∪(Bn ∩ A), E ∩ Ac
⊂ ∪(Bn ∩ Ac) hence

µ∗(E ∩ A) + µ∗(E ∩ Ac) ≤
∑

µ∗(Bn ∩ A) + µ∗(Bn ∩ Ac) =
∑

µ0(Bn)

It follows µ∗(E) ≤ µ∗(E ∩ A) + µ∗(E ∩ Ac) ≤ µ∗(E), so A is measurable.
(iii) is an easy consequence of (i) and (ii). �

4In this case, we assume that X = ∪n∈NAn for some collection An ∈ A.

15
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Theorem 1.3.10 (Hahn’s extension theorem). Let µ0 be a premeasure on an algebra / semi-
algebraA andM be the σ-algebra generated byA. Then

(i) µ0 extends to a σ-additive function µ onM and (X,M, µ) is a measure space.

(ii) If ν is also an extension of µ0 toM, then µ(E) = ν(E), if µ(E) < ∞, E ∈ M. In particular,
the extension is unique if µ0 is σ-finite.

Proof. (i) is Caratheodory’s extension restricted toM, noting that ifA ⊂ Mµ∗ , then also
M ⊂Mµ∗ (asMµ∗ is a σ-algebra).

As for (ii), if ν is another extension, then ν(E) ≤ µ∗(E) = µ(E) as if E ⊂ ∪Ai, with Ai

disjoint, then
ν(E) ≤ ν(∪Ai) =

∑
ν(Ai) =

∑
µ0(Ai).

If µ(E) < ∞, then for any ε > 0, can take E ⊂ A = ∪Ai, Ai ∈ A disjoint such that
µ(A \ E) < ε. Have µ(A) = ν(A) by σ-additivity of µ, ν, as the measures coincide on A.
Hence

µ(E) ≤ µ(A) = ν(A) = ν(E) + ν(A \ E) ≤ ν(E) + µ(A \ E) ≤ ν(E) + ε, ∀ε > 0

so µ(E) ≤ ν(E). If the space is σ-finite, any set can be written as a countable union of sets
with finite measure, hence the two measures coincide. �

Note that in fact we always have a complete extension of µ0 andA considering µ on
the classMµ∗ of µ∗-measurable sets.

Remark 1.3.11 (Inner measures). If µ∗ is an outer measure obtained by extending a pre-
measure on an algebra, then we can define an inner measure by µ∗(E) = µ0(X) − µ∗(Ec).
Then E is µ∗-measurable iff µ∗(E) = µ∗(E). (Exercise [Fol] 1.4.19 - uses regularity)

1.4 Lebesgue measure

We are now back inRN and will use the results in the previous section to provide a solu-
tion (in fact, two) to Borel’s problem: we want to define a measure space (RN,MN,mN)
such thatMN ⊃ E(RN), that is, simple sets, and mN extends the Jordan content:

mN(E) = cN(E), if E ∈ E(RN).

The outer Jordan content is subadditive but not σ-subadditive (just take D = Q ∩
[0, 1] = ∪n∈N{qn}), hence Caratheodory’s construction cannot be applied directly. Nev-
ertheless, it follows from Theorem 1.1.10 that cN is a premeasure on the semi-algebra
E(RN): we saw in partcular that, if A = ∪An ∈ E(RN), with An disjoint, then

cN(A) =
∑
n∈N

cN(An).

From the results in the previous section, it induces an outer measure m∗N and a σ-algebra
where it becomes a measure.

16
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Definition 1.4.1. The Lebesgue outer measure m∗N : P(RN)→ [0,+∞] is defined as

m∗N(A) = inf{
∞∑

n=1

cN(Rn) : Rn bounded rectangle ,A ⊂ ∪∞n=1Rn}.

The Lebesgue measurable sets L(RN) are those sets A such that for any E ⊂ RN,

m∗N(E) = m∗N(E ∩ A) + m∗N(E ∩ Ac).

The Lebesgue measure mN : L(RN)→ [0,∞] as

mN(A) = m∗N(A), if A ∈ |L(RN).

It is easy to see that m∗N is indeed the outer measure induced by cN as in (3). Note
that the σ-algebra generated by E(RN) coincides with the σ-algebra generated by the
collection of bounded rectangles, which coincides with the σ-algebra generated by the
open sets, that is, with the Borel algebra B(RN).

It follows Proposition 1.3.9 that A ∈ L(RN) iff

cN(R) = m∗N(R ∩ A) + m∗N(R ∩ Ac), ∀R bounded rectangle.

We summarize the results from the previous section:

(i) L(RN), B(RN) are σ-algebras and mN is a measure such that for any E ∈ E(RN),

mN(E) = cN(E).

(ii) mN is the unique extension of cN to B(RN) (as RN is σ-finite).

(iii) L(RN) is a complete extension of B(RN) (will see that it is the completion).

Recalling Borel’s problem of extending cN we now have:

Theorem 1.4.2. (RN,B(RN),mN) and (RN,L(RN),mN) are solutions to Borel’s problem.
(RN,B(RN),mN) is the smallest solution, and (RN,L(RN),mN) is a complete solution.5

Note that completeness of L(RN) follows from the stronger crucial property, that we
use often:

m∗N(A) = 0 ⇒ A ∈ L(RN).

Examples 1.4.3. 1. Countable sets

5it will follow from B(RN) = L(RN) that it is also the smallest complete solution.
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2. All open sets and all the closed sets are in B(RN) ⊂ L(RN), as are all sets of the
form

Gδ = ∩n∈NUn, Un open , Fσ = ∪n∈NKn, Kn closed.

Sets that are countable unions of closed sets are called F-sigma sets, and countable
intersections of open sets are called G-delta sets.

Also, the closure and the interior of any set are always measurable.

3. The set U = ∪]qn −
ε

2n , qn + ε
2n [, where qn are the rationals in [0, 1]: open (not in

J(RN))

4. Cantor and Volterra (’fat’ Cantor): closed.

Volterra’s set shows that in L(RN), a set with positive measure can have empty
interior, in fact be nowhere dense.

5. Cardinality: the Cantor set C(I) and all subsets of Cantor are Lebesgue measurable
(in fact, also Jordan measurable), as they are null sets. Since C(I) is uncountable, it
follows that

#J(RN) = #L(RN) = #P(R).

On the other hand, the Borel sets are generated by a countable basis of open sets,
and it can be proved that

#B(RN) = #P(N) = #(R)

So there are many more Lebesgue (and Jordan) measurable sets than Borel sets. It
is not easy however to give an explicit description of a set in L(RN) \ B(RN). We
have, as we see below, J(RN) ⊂ L(RN).

We give now two equivalent definitions of m∗N (we take the extension of cN to Eσ(RN)
given by σ-additivity).

Proposition 1.4.4. Let Eσ(RN) be the collection of countable unions of simple sets

m∗N(A) = inf{cN(E) : E ∈ Eσ(RN),A ⊂ E}
= inf{cN(U) : U is open ,A ⊂ U}.

Proof. We have m∗N(A) = inf{
∑
∞

n=1 cN(En) : En ∈ E(RN),A ⊂ ∪∞n=1En}. The first equality
follows noting that we can assume without loss of generality that En are disjoint and in
this case if E = ∪∞n=1En ∈ Eσ(RN), then cN(E) =

∑
∞

n=1 cN(En).
As for the second, any open set U ∈ Eσ(RN), as it can be written as a countable union

of (disjoint) rectangles, so

inf{cN(E) : E ∈ Eσ(RN),A ⊂ E} ≤ inf{cN(U) : U is open ,A ⊂ U}.
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Moreover, given E ∈ Eσ(RN) and ε > 0, can always find open U ⊃ E such that cN(U) ≤
cN(E) + ε: if cN(E) < ∞ and E = ∪n∈NRn, take open rectangles R′n ⊃ Rn such that
cN(R′n \ Rn) < ε/2n and U = ∪R′n. If cN(E) = ∞ then any open U ⊃ E also has infinite
content. Hence, the reverse inequality holds, and equality follows. �

The first definition given above is quite similar in form to that of Jordan outer content:
’just’ replace E(RN) by Eσ(RN). In particular, we can see that

cN(A) ≥ m∗N(A) ≥ cN(A)

for any A hence if A ∈ J(RN) then m∗N(A) = cN(A). Moreover,

Proposition 1.4.5. Jσ(RN) ⊂ L(RN) and mN = cN on Jσ(RN)

Proof. We show that J(RN) ⊂ L(RN), and so mN = cN on J(RN). Given A ∈ J(RN) then
for any bounded rectangle R, R ∩ A,R ∩ AC

∈ J(RN), by additivity

cN(R) = cN(R ∩ A) + cN(R ∩ Ac) = m∗N(R ∩ A) + m∗N(R ∩ Ac).

Then Jσ(RN) ⊂ L(RN), as L(RN) is a σ-algebra. Exercise: show mN extends cN. �

Not all Borel sets are Jordan measurable: saw in Example 1.1.13.4 an open non Jordan
measurable set and we have seen that not all Jordan measurable are Borel measurable.

It follows from the second definition that if A ∈ L(RN) then

mN(A) = inf{cN(U) : U is open ,A ⊂ U}
= inf{mN(U) : U is open ,A ⊂ U}.

A Borel measure with the above property is said to be (outer) regular. Regularity means
that the measure is completely determined by its values on open sets, by approximation.

This property, together with the fact that sets with 0 outer measure are measurable
(completeness), give a number of useful characterizations of Lebesgue measurable sets.

Proposition 1.4.6. E ∈ L(RN)⇔

(i) given ε > 0, there is U open, with E ⊂ U and m∗N(U \ E) < ε⇔

(ii) given ε > 0, there is K closed, with E ⊃ K and m∗N(E \ K) < ε ⇔

(iii) given ε > 0, there are U open, K closed, with K ⊂ E ⊂ U and mN(U \ K) < ε.
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Proof. (iii) is equivalent to (i) + (ii), while (ii) is equivalent to (i) taking complements. So
we prove equivalence (i). Let E ∈ L(RN) and ε > 0 be given.

If m∗N(E) < ∞, then since m∗N(E) = inf{mN(U) : U is open ,E ⊂ U}, we can take open
U ⊃ E such that mN(E) ≤ mN(U) < mN(E) + ε. Since mN(U) = m∗N(E) + m∗N(E \ U), by
measurability of E, and m∗N(E) < ∞, m∗N(U) < ∞, it follows that m∗N(U \ E) < ε.

If m∗N(E) = ∞, write E = ∪En, where En = E∩Rn, with Rn bounded rectangles, disjoint
such that X = ∪Rn. Then m∗N(En) < ∞, and by the above there is open Un ⊃ En such that
m∗N(Un \ En) < ε

2n . Let U = ∪Un, open. Then m∗N(U \ E) < ε.

Conversely, if there is Un ⊃ E such that m∗N(Un \ E) < 1
n , then letting U = ∩Un, have

m∗N(U \ E) ≤ m∗N(Un \ E) <
1
n
⇒ m∗N(U \ E) = 0 ⇒ U \ E ∈ L(RN).

Hence E = U \ (U \ E) ∈ L(RN). �

The following consequence is very useful:

Corollary 1.4.7. E ∈ L(RN)⇔ if there exist Un open, with Un ⊃ E such that m∗N(Un \ E)→ 0
and in that case mN(Un)→ mN(E).

Recall that a Fσ set is a countable union of closed sets and a Gδ set is a countable
intersection of open sets; Fσ and Gδ sets are in the Borel algebra.

Proposition 1.4.8. E ∈ L(RN)⇔ there are a Fσ set B and a Gδ set A such that A ⊂ E ⊂ B and
mN(B \ A) = 0. In this case, mN(A) = mN(B) = mN(E).

Proof. For each n ∈ N, let Kn be closed, Un be open, such that Kn ⊂ E ⊂ Un and
mN(Un \ Kn) < 1

n . Let B = ∪Kn and A = ∩Un, then B \ A ⊂ Un \ Kn for each n, and the
result follows.

Conversely, if there are such A, B, then E \ A ⊂ B \ A ∈ B(RN) ⊂ L(RN), hence by
completeness, E \ A ∈ L(RN) and also E = A ∪ E \ A ∈ L(RN). �

It follows straightaway from the definition of completion that:

Corollary 1.4.9. L(RN) is the completion of the Borel algebra B(RN).

Proposition 1.4.10. (RN,L(RN),mN) is the unique complete and regular (it is the largest
regular and the smallest complete) solution to Borel’s problem.

Proof. Any complete solution contains B(RN), hence contains B(RN) = L(RN). Let
now (X,M, µ) be a regular solution to Borel’s problem and A ∈ M. By regularity,
µ(A) = m∗N(A) as µ = mN = cN on open sets. Let R be a bounded rectangle, then

cN(R) = µ(R) = µ(A ∩ R) + µ(Ac
∩ R) = m∗N(A ∩ R) + m∗N(Ac

∩ R)

hence A ∈ L(RN) and in this case µ(A) = µ∗(A) = mN(A). �
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To finish this section, we now investigate some properties, of geometrical nature, of
the Lebesgue measure that were known for the Jordan content: invariance, and behavior
with respect to products.

Proposition 1.4.11. 1. Let A ⊂ L(RN) and x ∈ RN. Then A + x = {a + x : a ∈ A} ∈ L(RN)
and mN(A) = mN(A + x).

2. Let A ⊂ B(RN) and x ∈ RN. Then A + x = {a + x : a ∈ A} ∈ B(RN) and mN(A) =
mN(A + x).

Proof. It follows from regularity and the fact that cN is translation invariant that

m∗N(A + x) = m∗N(A).

Now for E ⊂ X, x ∈ RN, E ∩ (A + x) = ((E + (−x)) ∩ A) + x hence

m∗N(E ∩ (A + x)) + m∗N(E ∩ (Ac + x)) = m∗N((E + (−x)) ∩ A) + m∗N((E + (−x)) ∩ Ac)
= m∗N((E + (−x)) = m∗N(E),

by measurability of A.
As for the Borel case: let A = {A ⊂ RN : A + x ∈ B(RN),∀x ∈ RN

}. Then A contains
the open sets andA is a σ-algebra, henceA ⊃ B(RN). �

Moreover, the Lebesgue measure is also invariant with respect to unitary transfor-
mations [Foll Thm 2.44]

We have seen, when introducing Borel’s problem, that no tranlsation invariant so-
lution could be defined on the whole P(RN): the classical example is Vitali’s set, which
provides an example of a non- Lebesgue measurable set.

Examples 1.4.12. 1. Vitali’s construction can be adapted so as to show that any A
with m∗N(A) > 0 contains a non-measurable subset.

2. Lebesgue measurable, not Borel measurable. follows form existence of non-
measurable.

Let f : [0, 1]→ [0, 1] be Cantor function, that is f (
∑

xi3−i) :=
∑

xi2−i if xi , 1, and f
constant on subintervals with x j = 1 for some (the smallest) j, f (x) =

∑ j
n=1

∑
xi2−i.

Then f increasing, continuous, and f (C) = [0, 1], where C is the Cantor set in [0, 1].
(Also known as ’devil’s staircase’). Such a function maps Borel sets to Borel sets.

Let V ⊂ [0, 1] be Vitail’s set and take E ⊂ C such that E = f −1(V). Then E is Lebesgue
measurable (even Jordan measurable), as a subset of the Cantor set, but not Borel
measurable, as in this case f (E) = V would be as well.

Behavior with respect to products: see first
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Lemma 1.4.13. Let A ⊂ RN and B ⊂ RM, then m∗N+M(A × B) ≤ m∗N(A)m∗M(B).

In particular, it follows that if m∗N(A) = 0 (or m∗M(B) = 0) then m∗N+M(A × B) = 0, hence
A × B ∈ L(RN+M).

Proposition 1.4.14. 1. Let A ∈ L(RN) and B ∈ L(RM). Then A × B ∈ L(RN+M) and
mN+M(A × B) = mN(A)mM(B).

2. Let A ∈ B(RN) and B ∈ B(RM). Then A × B ∈ B(RN+M) and mN+M(A × B) =
mN(A)mM(B).

2 Integral

2.1 Measurable functions

We now take maps between measure spaces, only interested in maps that ’respect’ the
measures. Measurable functions are the morphims in the category of measure spaces.

Definition 2.1.1. f : (X,M) → (Y,N) is said to be (M,N)-measurable if f −1(A) ∈ M, for
all A ∈ N .

Note that { f −1(A) : A ∈ N} is always a σ-algebra. It is easy to see that the composition
of measurable functions is measurable on the respective spaces.

Proposition 2.1.2. If N is the σ-algebra generated by some class E then f : (X,M) → (Y,N)
is (M,N)-measurable if f −1(A) ∈ M, for all A ∈ E.

Proof. {E ⊂ Y : f −1(E) : A ∈ M} is a σ-algebra and contains E, hence contains N. �

Corollary 2.1.3. If X,Y are topological spaces, then any continuous function is (BX,BY)-
measurable.

Proof. The σ-algebras BX,BY are generated by open sets in X, Y. �

We will be mostly considering functions f : X → R (or R or C), for some fixed
measure space (X,M, µ). In that case, if f is (M,B(R))-measurable, we simply say that
f is M-measurable, or just measurable. Note that since B(R) is generated by open or
closed rays, we have:

Corollary 2.1.4. f : X→ R isM-measurable⇔ f −1(]a,∞[) ∈ M, for all a ∈ R⇔ f −1([a,∞[) ∈
M, for all a ∈ R⇔ f −1(]∞, a[) ∈ M, for all a ∈ R⇔ f −1(]∞, a]) ∈ M, for all a ∈ R.

Examples 2.1.5. 1. A constant function is always measurable.
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2. Let E ⊂ X and χE be its characteristic function, that is, such that χE(x) = 1, x ∈ X,
χE(x) = 0, x < X. Then χE isM-measurable iff E ∈ M.

Proposition 2.1.6. Let f , g : X → R be M-measurable, c ∈ R. Then f + g, c f , f g are
M-measurable.

The previous result also holds for f : X → R, under the usual convention 0 · ∞ = 0,
and assuming that there are no indeterminate signs in f + g. Moreover, the (pointwise)
limit of measurable functions is always measurable. In fact:

Theorem 2.1.7. Let fn : X→ R beM-measurable functions. Then

g1(x) = sup
n∈N
{ fn(x)}, G(x) = lim sup fn(x),

h1(x) = inf
n∈N
{ fn(x)}, H(x) = lim inf fn(x)

areM-measurable. If lim fn(x) = f (x) exists, then f isM-measurable.

Proof. For a ∈ R, we have

g−1
1 (]a,+∞[) = {x : sup fn(x) > a} = ∪n∈N{x : fn(x) > a} = ∪n∈N f −1

n (]a,+∞[),

h−1
1 (] −∞, a[) = {x : inf fn(x) < a} = ∪n∈N{x : fn(x) < a} = ∪n∈N f −1

n (] −∞, a[).

Since fn is measurable, n ∈ N, f −1
n (]a,+∞[) ∈ M and f −1

n (] −∞, a[) ∈ M, hence g1, h1 are
measurable.

As for G, write gk(x) = supn≥k fn(x), then gk is measurable by the above and decreasing,
so

G(x) = lim sup fn(x) = lim
k→∞

gk(x) = inf gk(x)

is measurable, as gk is measurable. For H we use a similar argument. If lim fn(x) = f (x),
then lim fn(x) = lim sup fn(x) = lim inf fn(x) isM-measurable. �

Moreover, noting that if f is measurable and g = f µ-a.e. (that is except on a µ-null
set), then g is also measurable (Exercise), then one can see that if fn measurable,

fn(x)→ f (x) µ − a.e⇒ f is measurable .

(take the characteristic function of the set where fn(x)→ f (x)).

It also follows that for f , gM-measurable functions, max( f , g) and min( f , g) are also
M-measurable. Given f : X→ R, define

f +(x) = max( f (x), 0), f −(x) = max(− f (x), 0).

Then f = f +
− f − and | f | = f + + f −.
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Corollary 2.1.8. f isM-measurable if, and only if, f +, f − areM-measurable, and in this case,
| f | is alsoM-measurable.

Now we show that any measurable function is always the limit of ’simpler’ measur-
able functions.

Definition 2.1.9. A function s : X → R is said to be simple if Im(s) is finite and s is
measurable or, equivalently, if s can be written as

s =

p∑
k=1

akχEk

where Ek = s−1(ak) is measurable, a1, ..., ap ∈ R.

It is clear that if s, t simple functions, c ∈ R, then s + t, cs, st are also simple functions.

The keypoint now is that any measurable function can be approximated by simple functions.
Let f : X → [0,∞] be given. Take a finite partition of [0,∞], P = {0 = y0 < y1 < ... < yn}

and write
F(λ) = f −1(]λ,+∞] = {x : f (x) > λ}

and define Ek = F(yk) \ F(Yk+1), En = F(yn). To such a Pwe associate the simple function

s(x) =

yk, if x ∈ Ek

0, if x < ∪Ek.

Then 0 ≤ s(x) ≤ f (x) and f (x) − s(x) ≤ yk+1 − yk if x ∈ Ek.

Theorem 2.1.10. (X,M, µ) measure space.

(i) Let f : X→ [0,+∞] be measurable. Then there exist simple functions sn with 0 ≤ sn ≤ sn+1

and sn(x)→ f (x), x ∈ X.

(ii) Let f : X → R be measurable. Then there exist simple functions sn with |sn| ≤ |sn+1| ≤ | f |
and sn(x)→ f (x), x ∈ X.

Proof. (i) Take Pn = {0, 1
2n , ...,

k
2n , ...,

22n

2n = 2n
} and sn the simple function associated to Pn

as above, so that f (x) ∈] k
2n ,

k+1
2n [⇒ sn(x) = k

2n . Then Pn+1 ⊃ Pn, hence sn ≤ sn+1, and for all
x ≤ 2n

0 ≤ f (x) − sn(x) ≤
1
2n ⇒ lim sn(x) = f (x).

(ii) Write f = f +
− f − = lim sn, where sn = s+

n − s−n and s+
n , s−n are given as in (i) with

respect to f +, f −, respectively. Then | f | = f + + f − = lim(s+
n + s−n ) = lim |sn|. �

Interesting consequence:
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Proposition 2.1.11. (X,M, µ) measure space, (X,M, µ) be its completion. If f isM-measurable,
then f = g µ-a.e, for some µ-measurable function g.

Proof. If f = χE with E ∈ M then, by definition of completion, can take A ∈ M such that
µ(E) = µ(A), hence χE = χA µ-a.e., so the result holds for simple function, as a (finite)
union of µ-null sets is µ-null.

For the general case, take sn simple µ-measurable, with sn(x) → f (x) and tn simple
µ-measurable such that, for each n ∈ N, tn = sn µ-a.e. Let An = {x : sn(x) , tn(x)}, then
∪An is µ-null, and tn(x)→ f (x) on X \∪An. Take now ∪An ⊂ N ∈ Mwith µ(N) = 0. Then
g = limχX\Ntn isM-measurable and f = g µ-a.e. �

It follows that any Lebesgue measurable function f : RN
→ R coincides mN-a.e with

a Borel measurable function.

2.2 The Lebesgue integral

Let (X,M, µ) be a measure space. We first define the integral for non-negative functions.

Definition 2.2.1. Let s : X→ [0,+∞], s =
∑p

k=1 akχEk be a simple function. Then∫
X

sdµ :=
p∑

k=1

akµ(Ek).

Let f : X→ [0,+∞] beM-measurable. Then define∫
X

f dµ := sup
{∫

X
sdµ : 0 ≤ s ≤ f , s simple

}
.

If E ∈ M, then
∫

E
f dµ :=

∫
X
χE f dµ.

Proposition 2.2.2. Let f , g be non-negative,M-measurable functions, c ≥ 0, then

(i)
∫

X
c f dµ = c

∫
X

f dµ,

(ii) f ≤ g ⇒
∫

X
f dµ ≤

∫
X

g dµ

(iii) if E,F ∈ M, E ⊂ F, then
∫

E
f dµ ≤

∫
F

f dµ.

(iv)
∫

X
f dµ = 0⇔ f = 0 µ-a.e.

If f , g are simple functions:

(v)
∫

X
( f + g) dµ =

∫
X

f dµ +
∫

X
g dµ,

25



FTAR Notes – 1o Sem. 2014/15

(vi) The function λ :M→ [0,+∞] such that λ(E) :=
∫

E
f dµ is a measure.

Proof. Easy to see that (i) and (ii) hold for simple functions, hence, taking the sup, also
hold for f measurable. (iii) is a consequence of (ii).

As for (iv): if f =
∑p

k=1 akχEk is simple, ak ≥ 0, then∫
X

f dµ =
∑

akµ(Ek) = 0⇔ ak = 0 ∨ µ(Ek) = 0,∀k

and the equivalence is proved in this case. Now if f = 0 a.e. and s is any simple function
such that 0 ≤ s ≤ f , then s = 0 a.e. so

∫
X

s dµ = 0, hence
∫

X
f dµ = 0. Conversely, if

µ({x : f (x) > 0} > 0, then writing {x : f (x) > 0} = ∪n∈NEn, with En = {x : f (x) > 1
n } ∈ M,

we have that µ(En) > 0 for some n, hence from (ii) and (iii),∫
X

f dµ ≥
∫

En

f dµ >
1
n
µ(En) > 0.

For (v) and (vi), we assume (for now) that f =
∑p

k=1 akχEk and g =
∑m

j=1 b jχF j , where Ek

are disjoint, and F j are disjoint. Then∫
X

( f + g) dµ =
∑

k, j

(ak + b j)µ(Ek ∩ F j) =
∑

k, j

akµ(Ek ∩ F j) +
∑

k, j

b jµ(Ek ∩ F j)

=
∑

k

akµ(Ek) +
∑

j

b jµ(F j) =

∫
X

f dµ +

∫
X

g dµ.

Finally, we prove (vi): have λ(∅) = 0, let An ∈ M disjoint, A = ∪n∈NAn. Then

λ(A) =

∫
A

f dµ =

p∑
k=1

akµ(Ek ∩ A) =

p∑
k=1

∑
n∈N

akµ(Ek ∩ An)

=
∑
n∈N

p∑
k=1

akµ(Ek ∩ An) =
∑
n∈N

∫
An

f dµ =
∑
n∈N

λ(An).

Hence λ is σ-additive, hence a measure. �

In fact, (v) and (vi) also hold for general measurable, non-negative functions. This
will follow from the next fundamental result, one of the cornerstones of Lebesgue’s
integration theory, that will allow us, in particular, to define the integral as a sup over a
countable set:

Theorem 2.2.3 (Monotone convergence / Beppo-Levi). Let (X,M, µ) be a measure space
and fn : X → [0,+∞] beM-measurable, such that fn(x) ≤ fn+1(x) and f (x) = lim fn(x). Then
f isM-measurable and ∫

X
f dµ = lim

∫
X

fn, dµ.
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Proof. �

Taking simple functions sn ↗ f , as in Theorem 2.1.10, we have then that, for E ∈ M,∫
E

f dµ = lim
∫

E
sn dµ = sup

∫
E

sn dµ.

Monotone convergence also holds for decreasing sequences (gn), provided we assume
that

∫
X

g1 dµ < ∞: just take the increasing, non-negative sequence fn = g1−gn. Moreover,
a.e. convergence is sufficient:

Corollary 2.2.4. Let fn : X → [0,+∞] beM-measurable, such that fn(x) ↗ f (x) µ-a.e. Then
f isM-measurable and ∫

X
f dµ = lim

∫
X

fn, dµ.

Proof. Let E = {x : fn(x) ↗ f (x)}, µ(Ec) = 0. Then χE(x) fn(x) ↗ χE(x) f (x) for all x ∈ X,
hence by Monotone convergence, and by Proposition 2.2.2 (iv),∫

X
f dµ =

∫
X
χE f dµ = lim

∫
X
χE fn, dµ = lim

∫
X

fn, dµ.

�

As a consequence of the Monotone Convergence theorem we can generalize the
additivity of the integral from simple functions to measurable functions, which moreover
holds also for infinite sums:

Proposition 2.2.5. Let fn : X→ [0,+∞] beM-measurable. Then

(i)
∫

X
( f1 + f2) dµ =

∫
X

f1 dµ +
∫

X
f2 dµ.

(ii)
∫

X

(∑∞
n=1 fn

)
dµ =

∑
∞

n=1

∫
X

fn dµ.

Proof. (i) Take sn ↗ f1, tn ↗ f2 as in Theorem 2.1.10, then sn + tn ↗ f1 + f2. From the
Monotone Convergence theorem:∫

X
( f1 + f2) dµ = lim

∫
X

(sn + tn) dµ = lim
∫

X
sn dµ +

∫
X

sn dµ =

∫
X

f1 dµ +

∫
X

f2 dµ.

(ii) It follows from (i) that for any k ∈N,∫
X

 k∑
n=1

fn

 dµ =

k∑
n=1

∫
X

fn dµ.

Since
∑k

n=1 fn ↗
∑
∞

n=1 fn, we have, again from Monotone convergence, that∫
X

 ∞∑
n=1

fn

 dµ = lim
k

∫
X

 k∑
n=1

fn

 dµ = lim
k

k∑
n=1

∫
X

fn dµ =

∞∑
n=1

∫
X

fn dµ.

�
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Examples 2.2.6. 1. Improper Riemann integrals: let e.g f (x) = 1
xα , f : [0,∞[→ [0,∞],

α > 0 and m be the lebesgue measure. Then f is Lebesgue measurable, as it is
continuous, and fn = fχ]1/n,n[ ↗ f , hence∫

∞

0
f dm = lim

∫ n

1/n
xα dx.

2. Consider again the Lebesgue measure on R. Then fn = χ]n,n+1[ is measurable,
fn(x)→ 0, for all x, but lim

∫
R

fn dm = 1 ,
∫
R

lim fn dm.

3. As in 2., let now fn = nχ]0, 1
n [. Then lim

∫
R

fn dm = 1 ,
∫
R

lim fn dm = 0.

Even if we cannot interchange integral with limit in general, as examples 2. and 3.
show, we have always:

Theorem 2.2.7 (Fatou’s Lemma). fn : X→ [0,+∞] beM-measurable. Then∫
X

lim inf fn dµ ≤ lim inf
∫

X
fn dµ.

Proof. Let hk(x) = infn≥k fn(x), so that hk ↗ lim inf fn. By Monotone Convergence,∫
X

lim inf fn dµ = lim
∫

X
hk dµ = sup

k

∫
X

hk dµ.

Since hk ≤ fn, for n ≥ k, we have∫
X

hk dµ ≤
∫

X
fn dµ, n ≥ k ⇒

∫
X

hk dµ ≤ inf
n≥k

∫
X

fn dµ.

It follows that

sup
k

∫
X

hk dµ ≤ sup
k

(
inf
n≥k

∫
X

fn dµ
)

= lim inf
∫

X
fn dµ

and the result is proved. �

Again, a similar result holds also for lim sup, assuming that
∫

X
fn dµ < K < ∞, for all

n ∈N. Monotone convergence can be proved from Fatou’s lemma (easy Exercise).

Now we consider measurable functions f : X → R Recall that f is measurable iff
f +, f − are measurable, non-negative functions.

Definition 2.2.8. Let f : X→ R beM-measurable. If
∫

X
f + dµ < ∞ or

∫
X

f − dµ < ∞, then∫
X

f dµ :=
∫

X
f + dµ −

∫
X

f − dµ.

We say that f is integrable if
∫

X
| f | dµ < ∞, or equivalently, if

∫
X

f + dµ < ∞ and
∫

X
f − dµ <

∞.
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Examples 2.2.9. 1. µ = δx0 then f is integrable iff f (x0) , ∞ and
∫

X
f dδx0 = f (x0).

2. µ = # counting measure. Then f : N→ R integrable iff
∑
| f (n)| < ∞ and∫

N

f d# =
∑

f (n).

3. µ = mN the Lebesgue measure on RN. The integral coincides with the Riemann
integral over bounded rectangles.

In R this can be proved noting that the upper and least sums coincide with the
integral of suitable simple functions and using the Monotone or Dominated con-
vergence theorem. We will see this equivalence in the next section in a different
way.

Proposition 2.2.10. Let f , g be integrable functions, c ∈ R, then

(i) c f is integrable and
∫

X
c f dµ = c

∫
X

f dµ,

(ii) f + g is integrable and
∫

X
( f + g) dµ =

∫
X

f dµ +
∫

X
g dµ,

(iii)
∣∣∣∫

X
f dµ

∣∣∣ ≤ ∫
X
| f | dµ,

(iv) µ({x : f (x) = ±∞}) = 0,

(v) {x : f (x) > 0} is σ-finite.

(vi)
∫

E
f dµ =

∫
E

g dµ, for all E ∈ M⇔
∫

X
| f − g| dµ = 0⇔ f = g µ-a.e.

Proof. For (i),
∫

X
|c f |dµ = |c|

∫
X
| f |dµ < ∞ hence c f is integrable and the equality of

integrals follows noting that (c f )+ = c f +, (c f )− = c f −, if c ≥ 0 and (c f )+ = −c f −,
(c f )− = −c f +, if c < 0.

For (ii), note that
∫

X
| f + g|dµ ≤

∫
X
| f |dµ +

∫
X
|g|dµ < ∞ so f + g is integrable. Writing

h = f + g, have h+
− h− = f +

− f − + g+
− g− ⇔ h+ + f − + g− = h− + f + + g+ hence∫

X
(h+ + f − + g−)dµ =

∫
X

(h− + f + + g+)dµ

and using additivity of the integral for non-negative functions, the result follows (as all
the integrals involved are finite).

For (iii), writing f = f +
− f −:∣∣∣∣∣∫

X
f dµ

∣∣∣∣∣ =

∣∣∣∣∣∫
X

f +dµ −
∫

X
f − dµ

∣∣∣∣∣ ≤ ∣∣∣∣∣∫
X

f +dµ
∣∣∣∣∣ +

∣∣∣∣∣∫
X

f − dµ
∣∣∣∣∣ =

∫
X
| f | dµ.

29



FTAR Notes – 1o Sem. 2014/15

(iv): If µ({x : f (x) = ±∞}) > 0, then
∫

X
| f | dµ ≥

∫
{x: f (x)=±∞}

| f | dµ = ∞.

For (v), can write {x : f (x) > 0} = ∪n{x : f (x) > 1
n } and µ({x : f (x) > 1

n } < ∞, by a
similar argument.

Finally (vi): the second equivalence follows from Proposition 2.2.2 (iv). If f = g
µ-a.e. then | f − g| = 0 µ-a.e., hence

∫
E
| f − g| dµ = 0. Conversely, let h = f − g and

assume that
∫

E
h dµ = 0 for all E ∈ M (by (v) can assume that f , g are finite, possibly

changing in a set of measure zero). If µ({x : h(x) , 0}) > 0 then, with E+ = {x : h+(x) > 0},
E− = {x : f −(x) > 0}, we have, in the first case, µ(E+) > 0 or µ(E−) > 0. Hence,∫

E+

h dµ =

∫
E+

h+ dµ > 0

which is a contradiction. The second case is similar. Hence h = 0⇔ f = g µ-a.e �

It follows from (vi) that we can change the values of a given integrable function on a
set of measure zero without changing the integral. (In particular, we can always assume
that an integrable function is finite, possibly changing the values on a set of measure
zero). We say that two integrable functions f and g are equivalent if f = g, µ-a.e. and let

L1
µ(X) = {[ f ] : f is integrable },

where [ f ] denotes the equivalence class of f . We often identify a function f with its
equivalence class. Note that

d( f , g) :=
∫

x
| f − g| dµ

makes L1
µ(X) a metric space (in fact, a normed space).

Theorem 2.2.11 (Dominated Convergence). Let fn ∈ L1
µ(X) such that | fn| ≤ g µ-a.e. with

g ∈ L1
µ(X). If fn → f µ-a.e., then f ∈ L1

µ(X) and∫
X

f dµ = lim
∫

X
fn, dµ.

Proof. From | fn| ≤ g, we have g − fn ≥ 0 and g + fn ≥ 0 and g − fn, g + fn are measurable.
From Fatou’s lemma:∫

X
(g + f )dµ =

∫
X

lim(g + fn)dµ ≤ lim inf
∫

X
(g + fn)dµ =

∫
X

g dµ + lim inf
∫

X
fn dµ∫

X
(g − f )dµ =

∫
X

lim(g − fn)dµ ≤ lim inf
∫

X
(g − fn)dµ =

∫
X

g dµ − lim sup
∫

X
fn dµ

Hence, as g is integrable,

lim sup
∫

X
fn dµ ≤

∫
X

f dµ ≤ lim inf
∫

X
fn dµ
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In particular, f ∈ L1
µ(X). Since we have always lim sup

∫
X

fn dµ ≥ lim inf
∫

X
fn dµ we

conclude that ∫
X

f dµ = lim sup
∫

X
fn dµ = lim inf

∫
X

fn dµ = lim
∫

X
fn dµ.

�

As a first application, we give conditions such that a not necessarily non-negative
series can be integrated term by term:

Proposition 2.2.12. Let fn ∈ L1
µ(X) such that

∑
∞

n=1

∫
X
| fn| dµ < ∞. Then

∑
∞

n=1 fn converges
µ-a.e. to f ∈ L1

µ(X) and ∫
X

f dµ =

∫
X

∞∑
n=1

fn dµ =

∞∑
n=1

∫
X

fn dµ.

Proof. From Monotone Convergence,∫
X

∞∑
n=1

| fn| dµ =

∞∑
n=1

∫
X
| fn| dµ < ∞,

hence g :=
∑
∞

n=1 | fn| ∈ L1
µ(X). In particular, g is finite µ-a.e., so

∑
∞

n=1 fn converges µ-a.e.
and

∣∣∣∑k
n=1 fn

∣∣∣ ≤ g, for all k ∈ N. It then follows from Dominated Convergence that
f =

∑
∞

n=1 fn ∈ L1
µ(X) and∫

X
f dµ = lim

k

∫
X

k∑
n=1

fn dµ = lim
k

k∑
n=1

∫
X

fn dµ =

∞∑
n=1

∫
X

fn dµ.

�

Another useful application of the Dominated Convergence theorem has to do with
parametric integrals:

Theorem 2.2.13. Let f : X × [a, b]→ R be such that f (·, t) ∈ L1
µ(X) for all t ∈ [a, b]. Let

F(t) =

∫
X

f (x, t) dµ(x).

(i) If f (x, ·) is continuous, for µ-a.e. x, and there is g ∈ L1
µ(X) such that for all t ∈ [a, b],

| f (x, t)| ≤ g(x) µ-a.e., then F is continuous.

(ii) If ∂ f
∂t exists and there is g ∈ L1

µ(X) such that for all t ∈ [a, b],
∣∣∣∣∂ f
∂t (x, t)

∣∣∣∣ ≤ g(x) µ-a.e., then F
is differentiable and

F′(t) =

∫
X

∂ f
∂t

(x, t) dµ(x).
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Proof. Let t0 ∈ [a, b] and tn → t0 (if t0 = a, b take tn ≥ a or tn ≤ b). Let fn(x) = f (x, tn). Then
| fn| ≤ g µ-a.e and fn(x)→ f (x, t0). By dominated convergence

lim
t→t0

F(t) = lim
n

F(tn) = lim
n

∫
X

fn dµ =

∫
X

lim fn dµ = F(t0).

The proof of (ii) is similar, taking now gn(x) =
f (x,tn)− f (x,t0)

tn−t0
. �

2.3 Product spaces

Let (X,M, µ) and (Y,N , ν) be measure spaces. We want to consider the integral on X×Y
and relate it with the integral in X and in Y. First we need to define a measure space on
X × Y.

Definition 2.3.1. The product σ-algebraM⊗N is the σ-algebra generated by A × B, with
A ∈ M, B ∈ N .

It is the smallest σ-algebra such that the projectionsπX : X×Y→ X andπY : X×Y→ Y
are measurable. Moreover, f .Z→ X×Y is measurable iffπX◦ f andπy◦ f are measurable.

We want now to define a measure onM⊗N that is somehow the product of µ and ν.

Examples 2.3.2. 1. B(RN) ⊗ B(RM) = B(RN+M).

By Proposition 1.4.14,B(RN)⊗B(RM) ⊂ B(RN+M), and equality follows asB(RN+M)
is generated by M + N-rectangles. For A ∈ B(RN), B ∈ B(RM), have

mN+M(A × B) = mN(A)mN(B)

and mN+M will be the product measure.

2. L(RN) ⊗ L(RM) $ L(RN+M).

Inclusion follows again from Proposition 1.4.14. In this case equality fails as
L(RN+M) is complete but L(RN) ⊗ L(RM) is not complete.

Lemma 2.3.3. Let A × B = ∪ j∈NA j × B j where A,A j ∈ M and B,B j ∈ N disjoint. Then

µ(A)ν(B) =
∑

j

µ(A j)ν(A j).

Proof. We write

µ(A)ν(B) =

∫
Y
µ(A)χB(y) dν(y) =

∫
Y

(∫
X
χA(x)χB(y) dµ(x)

)
dν(y).
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Now note that

χA(x)χB(y) = χA×B(x, y) =
∑

j

χA j×B j(x, y) =
∑

j

χA j(x)χB j(y).

Therefore;∫
X
χA(x)χB(y) dµ(x) =

∫
X

∑
j

χA j(x)χB j(y) dµ(x) =
∑

j

∫
X
χA j(x)χB j(y) dµ(x) =

∑
j

µ(A j)χB j(y),

where we used the σ-additivity of the integral of non-negative, measurable functions.
Hence, again by σ-additivity,

µ(A)ν(B) =
∑

j

µ(A j)
∫

Y
χB j(y) dν(y) =

∑
µ(A j)ν(B j).

�

Let now E be the collection of finite unions ofM×N-rectangles, then E is an algebra.
For E = ∪

p
i=1Ai × Bi ∈ E, with A j disjoint and B j disjoint, define (check is well-defined)

λ(E) =

p∑
i=1

µ(Ai)ν(Bi).

Lemma 2.3.4. λ is a premeasure on E.

Proof. We checked above that λ is σ-additive in the class ofM×N-rectangles. �

Finally:

Theorem 2.3.5. There exists a complete measure space (X × Y,K , ρ) such thatM⊗N ⊂ K
and ρ(E) = λ(E) for E ∈ E, in particular,

ρ(A × B) = µ(A)ν(B), A ∈ M,B ∈ N .

Proof. Follows from Hanh’s extension theorem - using Caratheodory’s construction. �

Definition 2.3.6. The product measure µ ⊗ ν is the restriction of ρ toM⊗N .

Note that we have in particular (recalling the definition of outer measure induced by
a premeasure):

µ ⊗ ν(E) = inf
{∑

µ(An)ν(Bn) : E ⊂ ∪n∈NAn × Bn

}
.

We are now ready to relate the integral on X × Y with respect to the measure µ ⊗ ν
with the integrals in X and Y and prove the fundamental Fubini-Lebesgue’s theorem.
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Definition 2.3.7. Sections: let E ⊂ X × Y and f : X × Y→ R. Then we define

Ex = {y ∈ Y : (x, y) ∈ E}, Ey = {x ∈ X : (x, y) ∈ E},

fx : Y→ R, f y : X→ R, fx(y) = f y(x) = f (x, y).

In particular, (χE)x = χEx , (χE)y = χEy .

Proposition 2.3.8. (i) E ∈ M⊗N ⇒ Ex ∈ N , Ey
∈ M;

(ii) f isM⊗N-measurable⇒ fx isN-measurable and f y isM-measurable.

Remark 2.3.9. Unless M = P(X), N = P(Y), the space M⊗ N is not complete: if e.g
A ⊂ Y is not in N , then taking a non-empty µ-null set N ⊂ X, have N × A ⊂ N × Y
and (µ ⊗ ν)(N × Y) = 0 but N × A < M ⊗ N : it it were then for x ∈ N, the section
(N × A)x = A ∈ N .

For the Lebesgue measure, we have then that L(RN) ⊗ L(RM)  L(RN+M). In fact,
L(RN+M) = L(RN) ⊗ L(RM).

Hence the functions x 7→ ν(Ex) and y 7→ µ(Ey) are well-defined. Want to show that
we can obtain µ ⊗ ν(E) by integrating the first function on X or integrating the second
function on Y. We see this first on E.

Lemma 2.3.10. If E ∈ E then x 7→ ν(Ex) isM-measurable, y 7→ µ(Ey) isN-measurable and

(µ ⊗ ν)(E) =

∫
X
ν(Ex) dµ =

∫
Y
µ(Ey) dν.

To show that the lemma above holds in the classM⊗N , it would suffice to see now
that the class of sets where the conclusions hold is a σ-algebra. Instead we show that it
is a monotone class: a collection A is a monotone class if Ei ∈ A, Ei ↗ E or Ei ↘ E then
E ∈ A. Any σ-algebra is a monotone class (and if A is an algebra, then A is monotone
class iff it is a σ-algebra). In general, the σ-algebra generated by some collection A
coincides with the smallest monotone class that containsA ([Fol] 2.35)

The next results can be regarded as Fubini’s theorem for sets:

Theorem 2.3.11. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. If E ∈ M ⊗ N then
x 7→ ν(Ex) isM-measurable, y 7→ µ(Ey) isN-measurable and

(µ ⊗ ν)(E) =

∫
X
ν(Ex) dµ =

∫
Y
µ(Ey) dν.
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Proof. Let F be the class of sets E ⊂ X ×Y such that the conclusions of the theorem hold
for E. Then F ⊃ E. We now prove it is a monotone class, which proves that it contains
M⊗N .

Let En ∈ F such that En ↗ E = ∪En. Then, for each y ∈ Y, fn(y) = µ(Ey
n) is N-

measurable and fn ↗ f = µ(Ey). Then by Monotone Convergence, f is N-measurable
and ∫

Y
µ(Ey) dν = lim

∫
Y
µ(Ey

n) dν = lim(µ ⊗ ν)(En) = (µ ⊗ ν)(E)

where in the last step we used Monotone convergence for sets / continuity from below.
In a similar way, we can show ∫

X
ν(Ex) dµ = (µ ⊗ ν)(E),

so E ∈ F . Let now En ∈ F such that En ↘ E = ∩En. If for all x ∈ X, y ∈ Y,∫
Y
µ((E1)y) dν < ∞,

∫
X
µ((E1)x) dµ < ∞,

we can proceed in the same way, and use Monotone Convergence for decreasing se-
quences and sets to get E ∈ F .

In particular, the result if proved when both µ and ν are finite measures: in this case
F is a monotone class that contains E, hence by the remarks above, it containsM⊗N .

In the σ-finite case, write X × Y = ∪X j × Y j, where X j, Y j have finite measure and
X j×Y j ↗ X×Y. Then the lemma holds for E∩ (X j×Y j) and an application of Monotone
Convergence yields the result also for E. �

Note that the equality in the previous theorem can be written as∫
X×Y

χE dµ ⊗ ν =

∫
X

(∫
Y
(χE)x(y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

(χE)y(x) dµ(x)
)

dν(y).

Theorem 2.3.12 (Fubini-Tonelli-Lebesgue). Let (X,M, µ) and (Y,N , ν) be σ-finite measure
spaces.

1. (Tonelli) If f : X × Y→ [0,+∞] is µ ⊗ ν-measurable then

g(x) =

∫
Y

fx dν, h(y) =

∫
X

f y dµ

are measurable and∫
X×Y

f dµ ⊗ ν =

∫
Y

(∫
X

fx(y) dν(y)
)

dµ(x) =

∫
X

(∫
Y

f y(x) dν(y)
)

dµ(x).
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2. (Fubini) If f ∈ L1
µ⊗ν(X×Y) then fx ∈ L1

ν(Y) µ-a.e., f y
∈ L1

µ(X) ν-a.e., g ∈ L1
µ(X), h ∈ L1

ν(Y)
and also∫

X×Y
f dµ ⊗ ν =

∫
Y

(∫
X

fx(y) dν(y)
)

dµ(x) =

∫
X

(∫
Y

f y(x) dν(y)
)

dµ(x).

Proof. In the previous theorem, we saw that the (1) is true for characteristic functions,
and it follows also for non-negative, measurable simple functions. Hence, if f is µ ⊗ ν-
measurable, let fn be simple such that fn ↗ f . Then gn ↗ g, hn ↗ h so g, h are
measurable, and Monotone Convergence yields the result for f .

For 2., assuming now that f is integrable, an application of 1. to | f | yields that g and h
are finite a.e., that is, fx ∈ L1

ν(Y) µ-a.e., f y
∈ L1

µ(X) ν-a.e., and also that g ∈ L1
µ(X), h ∈ L1

ν(Y),
as the iterated integrals of | f | are finite.

Equality of iterated integrals in this case now follows from an application of 1. to f +,
f −. �

Examples 2.3.13. 1. Let X = Y = N, µ = ν = #. Then Fubini’s theorem states that if
the series

∑
n∈N,m∈N an,m is absolutely convergent then∑

n,m∈N

an,m =
∑

n

∑
m

an,m =
∑

m

∑
n

an,m.

2. Let X = Y = [0, 1],M = N = B([0, 1]) and µ = m, ν = # (not σ-finite). Let D be the
diagonal in X × Y and f = χD. Then∫

[0,1]

∫
[0,1]

χD(x, y) d# dm = 1,
∫

[0,1]

∫
[0,1]

χD(x, y) dm d# = 0,

and ∫
[0,1]×[0,1]

χD(x, y) d(m ⊗ #) = ∞.

As we have noted, the space M ⊗ N is in general not complete. We can give a
version of Tonelli/Fubini in the complete case, in particular, for L(RN+M), recalling that
any measurable function on the completion coincides a.e. with a function on M⊗N
([Foll] 2.39).

Remark 2.3.14 (Equivalent definition of integral). Let (X,M, µ) be a σ-finite measure
space and µ ⊗m be the product measure onM×B(R), m the Lebesgue measure.

Then f : X→ [0,+∞] isM-measurable if, and only if, Ω f (X) is µ⊗m-measurable, for
any E ∈ M, where Ω f (X) = {(x, y) : 0 ≤ y ≤ f (x)}, and in this case∫

X
f dµ = (µ ⊗m)(Ω f (X)).
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This result can be checked directly if f is simple, and by Monotone convergence, for
integrals and measures, we see that if f is measurable then Ω f (X) is measurable and
the integral coincides with (µ ⊗ m)(Ω f (X)). Conversely, note that sets f −1()λ,∞[, λ > 0
coincide with sections of Ω f (X).

For arbitrary functions, we get then that f : X → R is integrable iff Ω+
f (X) = {(x, y) :

0 ≤ y ≤ f (x)}, Ω−f (X) = {(x, y) : 0 ≥ y ≥ f (x)}, are µ ⊗m-measurable and in this case∫
X

f dµ = (µ ⊗m)(Ω+
f (X)) − (µ ⊗m)(Ω−f (X)).

In particular, we see that the Lebesgue integral on RN coincides with the Riemann
integral, when defined, as the Lebesgue measure generalizes Jordan content.

2.4 Differentiation of measures

We consider now a more general class of measures that are not necessarily non-negative.

Definition 2.4.1. LetM be a σ-algebra on X and ν :M→ R. Then ν is a signed measure if
ν(∅) = 0, ν attains at most one of the values +∞ or −∞ and ν(∪n∈NAn) =

∑
n∈N ν(An), for

any disjoint An ∈ M. If ν is finite, we say ν is a real measure.

We will call from now on the non-negative measures considered so far positive mea-
sures. Any positive (finite) measure is a signed (real) measure. If µ is given as the
difference of two finite, positive, measures, then µ is a real measure. Note that, in
general, a signed measure is not monotonic.

The main reason we are interested in real measures here is that if µ is a positive
measure and f : X→ R is µ-integrable, then the indefinite integral

λ(E) :=
∫

E
f dµ

is a real measure. In this case we write f = dλ
dµ and call it the generalized derivative of λ

with respect to µ. A fundamental question in integration theory is to determine which
measures admit such a representation. Note that if µ(E) = 0 then λ(E) = 0, and we will
see that this property is also sufficient to show that λ has a generalized derivative.

We first study the structure of real measures.

Definition 2.4.2. Let ν be a real or signed measure.

• A is ν-positive if ν(E) ≥ 0, for all E ⊂ A⇔ if ν(E ∩ A) ≥ 0, for all E ∈ M.

• A is ν-negative if ν(E) ≤ 0, for all E ⊂ A
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• A is ν-null if ν(E) = 0, for all E ⊂ A

Note that a ν-null set has measure 0, but not all measure 0 sets are ν-null (unless
the measure is monotonic). Moreover, ν is monotonic when restricted to the class of
ν-positive or ν-negative sets:

Proposition 2.4.3. (i) P is ν-positive, Q ⊂ P, then Q is ν-positive and ν(Q) ≤ ν(P);

(ii) N is ν-negative, L ⊂ P, then L is ν-negative and ν(L) ≥ ν(N).

(iii) if Pn are ν-positive, then P = ∪n∈NPn is also ν-positive and ν(P) ≥ ν(Pn)

Theorem 2.4.4 (Hahn’s decomposition). Let ν be a real measure. Then there exist a pair
(P,N) with ν-positive set P and a ν-negative set N such that X = P ∪N, P ∩N = ∅. If (P′,N′)
is another such pair then P \ P′ and P′ \ P are ν-null sets.

Examples 2.4.5.

ν =
∫

x
f dν then can take P = {x : f (x) ≥ 0} and N = {x : f (x) ≤ 0}.

ν = δ1 − δ−1 then ν({−1, 1}) = 0 but it is not a ν-null set.

Definition 2.4.6. Let ν be a real or signed measure and (P,N) be a Hahn’s decomposition
for ν. Then

• the positive variation of ν is ν+(E) := ν(E ∩ P);

• the negative variation of ν is ν−(E) := −ν(E ∩N);

• the total variation of ν is |ν|(E) := ν+(E) + ν−(E).

We can always write
ν(E) = ν+(E) − ν−(E), E ∈ M.

It is easy to check that ν±, |ν| are positive measures, finite if ν is finite. Moreover ν± do
not depend on the Hahn decomposition taken: if (P′,N′) is another such decomposition,
then ν(P \ P′) = ν(P′ \ P) = 0, hence

ν(E ∩ P) = ν(E ∩ (P \ P′)) + ν(E ∩ P ∩ P′) = ν(E ∩ P ∩ P′) = ν(E ∩ P′).

In fact, (Exercise)

ν+(E) = sup{ν(E ∩ A) : A ∈ M}, ν−(E) = − inf{ν(A ∩ E) : A ∈ M}

and a set E is ν-positive / ν-negative / ν-null iff ν−(E) = 0 / ν+(E) = 0 /|ν|(E) = 0, respectively.

Definition 2.4.7. Let ν, ν′ be signed, or real, measures. Then ν and ν′ are said to be
mutually singular, ν ⊥ ν′, if there are A,B ∈ M such that X = A ∪ B, A ∩ B = ∅ and B is
ν-null, A is ν′-null.
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Note that if ν ⊥ ν′ as above, then ν(E) = ν(E ∩ A) and ν′(E) = ν′(E ∩ B). The support
of a measure ν is the smallest S ∈ M such that ν(E) = ν(E ∩ S). Then ν ⊥ ν′ iff ν and ν′

have disjoint supports. We proved:

Theorem 2.4.8 (Jordan’s decomposition). Let ν be a signed measure. Then there exist unique
positive measures ν+, ν− such that

ν = ν+
− ν−, ν+

⊥ ν−.

If ν is real then ν±, |ν| are finite and bounded.

We can now define integration with respect to signed measures: let L1
ν(X) = L1

ν+(X)∩
L1
ν−(X) and ∫

X
f dν :=

∫
X

f dν+
−

∫
X

f dν−.

Definition 2.4.9. Let µ be a positive measure and ν be signed measure. We say that ν is
absolutely continuous with respect to µ, ν << µ, if

µ(E) = 0⇒ |ν|(E) = 0.

Easy to check that ν << µ⇔ |ν| << µ⇔ ν+ << µ and ν− << µ.

Lemma 2.4.10. If ν << µ and ν ⊥ µ then ν = 0.

Proof. Let A,B be such that X = A∪B and µ(A) = |ν|(B) = 0. Then by absolute continuity,
|ν|(A) = 0, hence |ν| = 0 and ν = 0. �

Examples 2.4.11. 1. The delta measure δ0 is not absolutely continuous with respect
to the Lebesgue measure m, as m({0}) = 0 and δ({0}) = 1. In fact δ0 ⊥ m.

2. If f ∈ L1
µ(X), the indefinite integral

λ(E) :=
∫

E
f dµ

is a real measure and λ << µ.

Theorem 2.4.12 (Radon-Nikodym-Lebesgue). Let ν be a σ-finite signed measure and µ be a
σ-finite positive measure. Then there exists a unique pair (λ, ρ) of σ-finite signed measures such
that

ν = λ + ρ, λ << µ, ρ ⊥ µ.

Moreover, there is f ∈ L1
µ(X), unique µ-a.e., such that

λ(E) =

∫
E

f dµ.
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Proof. Uniqueness of the decomposition follows from the previous lemma. Also, if
f , g : X→ R are µ-integrable such that

λ(E) =

∫
E

f dµ =

∫
E

g dµ, ∀E ∈ M

then f = g µ-a.e., so f and g represent the same element in L1
µ(X).

1) To prove that such a decomposition exists, we first assume that ν and µ are both
finite positive measures.6 Let

F = { f : X→ [0,∞] :
∫

E
f dµ ≤ ν(E),∀E ∈ M}.

Then F , ∅ and f , g ∈ F ⇒ h = max{ f , g} ∈ F , hence max{ f1, ..., fn} ∈ F if f1, ..., fn ∈ F .
Now let a = sup{

∫
X

f dµ : f ∈ F }. Then a ≤ ν(X) < ∞. Let fn ∈ F such that∫
X

fn dµ→ a and gn = max{ f1, ..., fn} ∈ F increasing. Let

f = sup{ fn} = lim gn.

By Monotone convergence, ∫
E

f dµ = lim
∫

E
gn dµ ≤ ν(E)

so f ∈ F . Moreover,
∫

X
f dµ = a, since f ≥ fn, hence

∫
X

f dµ ≥
∫

X
fn dµ, for all n ∈N, so it

follows that
∫

X
f dµ ≥ lim

∫
X

fn dµ = a.

Let now λ(E) :=
∫

E
f dµ and ρ := ν − λ, so ρ is a positive, finite, measure. The proof

is finished in the positive, finite case if we show that ρ ⊥ µ.

2) Now for σ-finite, positive measures: write X = ∪A j with A j disjoint, andµ(A j) < ∞,
ν(A j) < ∞. Let µ j(E) := µ(E ∩ A j), ν j(E) := ν(E ∩ A j). Then µ j, ν j are positive, finite
measures, so by what we just proved

ν j = λ j + ρ j, ρ j ⊥ µ j, λ j(E) =

∫
E

f j dµ j.

Then (λ, ρ) is a suitable decomposition for ν, with λ =
∑
λ j, ρ =

∑
ρ j.

3) For real measures, apply the results just proved to f +, f −. �

The pair (λ, ρ) is called the Lebesgue decomposition for ν with respect to µ. We now
have:

6In this case, λ and ρ are also positive, in particular, always have λ(E) ≤ ν(E).
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Theorem 2.4.13 (Radon-Nikodym). Let ν be a σ-finite signed measure and µ be a σ-finite
positive measure. Assume ν << µ. Then there exists unique f ∈ L1

µ(X) such that

ν(E) =

∫
E

f dµ.

Proof. Since ν << µ, the pair (ν, 0) is a Lebesgue decomposition. The result follows from
Radon-Nikodym-Lebesgue and uniqueness of decomposition. �

Example 2.4.14. X = [0, 1],M = B([0, 1]), ν = m the Lebesgue measure, and µ = #. Then
m << #, but there is no function f such that m(E) =

∫
[0,1]

f d#.

We have then that the class of measures given by an indefinite integral with respect
to some given positive measure µ coincide with the absolutely continuous measures
with respect to µ.

Definition 2.4.15. If ν << µ then we define the generalized derivative of ν with respect to
µ as the unique

dν
dµ
∈ L1

µ(X) s.t. ν(E) =

∫
E

dν
dµ

dµ.

Proposition 2.4.16. Let ν be a σ-finite real measure and µ, λ σ-finite positive measures, ν << µ,
µ << λ.

(i) If ν′ is also σ-finite real measure with ν′ << µ then

d(ν + ν′)
dµ

=
dν
dµ

+
dν′

dµ
.

(ii) For all g ∈ L1
ν(X): ∫

X
g dν =

∫
X

g
dν
dµ

dµ.

(iii) Have also ν << λ and
dν
dλ

=
dν
dµ

dµ
dλ
, λ − a.e.

(iv) If λ << µ then
dλ
dµ

dµ
dλ

= 1, µ − a.e.

For the remainder of this section, we outline how the Fundamental Theorem of
Calculus for Riemann integrals can be generalized in the Lebesgue setting, using the
results seen so far.

We consider now Borel measures on R. (MISSING)
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2.5 Lp-spaces

Definition 2.5.1. Let (X,M, µ) be a measure space and 1 ≤ p < ∞. The space Lp
µ(X) is the

space of equivalence classes ofM-measurable functions f : X→ R such that∫
X
| f (x)|pdµ < ∞,

where two functions are equivalent if they coincide µ-a.e. For f ∈ Lp
µ(X) we define

‖ f ‖p =

(∫
X
| f (x)|pdµ

) 1
p

.

The space L∞µ (X) is the space space of equivalence classes of M-measurable functions
f : X→ R such that inf{sup g : f = g µ − a.e.} < ∞, and define

‖ f ‖∞ = inf{sup g : f = g µ − a.e.}.

For p = 1, we saw that L1
µ(X) is a vector space and it is easy to check that ‖ · ‖1 is a

norm.

Theorem 2.5.2 (Holder’s inequality). Let 1 ≤ p ≤ ∞ and f ∈ Lp
µ(X) and g ∈ Lq

µ(X), with
1
p + 1

q = 1. Then f g ∈ L1
µ(X) and

‖ f g‖1 ≤ ‖ f ‖p‖g‖q.

If p = 2, this is the Cauchy-Schwartz inequality.

Theorem 2.5.3 (Minkowsky’s inequality). Let f , g ∈ Lp
µ(X). Then f + g ∈ Lp

µ(X) and

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p.

It then follows that Lp
µ(X) is a normed space, for 1 ≤ p ≤ ∞. For p = 2, we get an inner

product space:

< f , g >:=
∫

X
f g dµ.

Theorem 2.5.4 (Dominated Convergence). Let fn ∈ Lp
µ(X), 1 ≤ p < ∞ such that | fn| ≤ g

µ-a.e. with g ∈ Lp
µ(X). If fn → f µ-a.e., then f ∈ Lp

µ(X) and∫
X

f dµ = lim
∫

X
fn, dµ.
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Proposition 2.5.5. Let fn ∈ Lp
µ(X) such that

∑
∞

n=1 ‖ fn‖p < ∞. Then
∑
∞

n=1 fn converges µ-a.e. to
f ∈ Lp

µ(X) and ∫
X

f dµ =

∫
X

∞∑
n=1

fn dµ =

∞∑
n=1

∫
X

fn dµ.

Proposition 2.5.6. Let V be a normed space. Then V is complete iff any absolutely convergent
series is convergent.

Theorem 2.5.7 (Riesz-Fischer). If 1 ≤ p < ∞, then Lp(X) is complete, hence a Banach space.
If p = 2, it is a Hlbert space.

Proposition 2.5.8. Let 1 ≤ p ≤ ∞. The class of simple function s =
∑

a jχE j , with µ(E j) < ∞,
is dense in Lp

µ(X).

In R (or RN), simple functions can be approximated by continuous functions: it
follows from Urysohn’s lemma and the definition of Lebesgue measurability that given
E ∈ L(R) there exist K compact and U open such that K ⊂ E ⊂ U and m(U \ K) < ε, so
that there exists f ∈ Cc(R), continuous with compact support, such that χK ≤ f ≤ χU,
hence

m({x : f (x) , χE} < ε.

Together with density of simple functions this yields:

Proposition 2.5.9. Continuous functions with compact support are dense in Lp
µ(R).
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