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1 Measures

1.1 Jordan content in RV

Let I be an interval in R. Then its 1-content is defined as c¢;(I) := b — a if I is bounded
with endpoints 4, b. If I is unbounded, we define ¢;(I) = +c0. More generally,

Definition 1.1.1. Let R=1; X ... X Iy c RN be a N-rectangle, where Iy C R is an interval,
k=1,... N. Then the N-content of R is defined as

CN(R) = Cl(Il) X ... X C](IN).

We always assume that if ¢;(Ix) = 0 for some k, then cy(R) = 0 (so the 2-content of a
straightline in IR? is 0) and if ¢1(Iy) = o for some k, with ¢1(I;) > 0, j # k then cy(R) = co.

One important feature of the N-content (and as we shall see of measures of sets) is
its additivity: if Ry, R, are disjoint rectangles then

cN(R1 U Rp) = en(R1) + en(Ry).

This property gives us a way to extend the notion of content to finite unions of rectangles:
we define

Definition 1.1.2. U(IRY) is the class of sets given by finite unions of n-rectangles,

E(RN) is the class of sets given by finite unions of bounded n-rectangles, that is,
bounded sets in U(IRY). Elements of E(RY) are called elementary or simple sets.
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Note that since R \ S is a rectangle whenever R, S are rectangles, any finite union can
assumed to be disjoint: if U = U'_ R;, then

u= U’ R R; =R;, RI,<+1 = Ri1 \ Ui'(lei

i=1""1’

where the rectangles R; are mutually disjoint. (This process of turning an arbitrary union
into an union of disjoint sets will be used often.)

Definition 1.1.3. Let U € E(RV) be such that U = UleRi, where R; are disjoint rectangles.
We define the N-content of U by

p
en(l) = ) en(R).
i=1

1

Of course, one needs to show - see [NotesMR] - that the definition above does not
depend on the partition of U into disjoint rectangles.

The class of simple sets is quite restrictive: e.g., balls and triangles are not simple
sets. The point now is to consider sets that can be approximated, outer and inner, by
simple sets. One can see that if ] ¢ R is bounded then there exist simple sets U, K such
that K C ] ¢ U. Hence the following definition makes sense:

Definition 1.1.4. Let ] ¢ RN be bounded. The outer Jordan content of | is defined as
en(]) = infley(U) : U > ], U € ERY)).

The inner Jordan content of | is defined as
ey()) = suplen(K) : K € [, K € ERY)}.

The bounded set | is said to be Jordan measurable, ] € J(RY), if c\,(J) = ¢(J). In that case
we define the Jordan content of | as

en(]) = () = €())-

Examples 1.1.5. 1. Finite sets are simple, hence Jordan measurable, and have content
0.

2. D =QnN[0,1] not Jordan measurable, ¢(D) = 1 and ¢(D) = 0.

Useful criteria to show Jordan measurability, that relies mainly on the definition of
sup and inf:

Proposition 1.1.6. (i) ] € J(RN) if and only if for all € > 0, there exist simple sets U, K €
ERN) such that
KcjJclU ccnU\K)<e

and in this case cn(]) €len(U) — €, en(K) + €.
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(ii) ] € J(RY) if and only if there exist simple sets U, K, € E(RN) such that
KycJcU, on(Ua\Ky)—0
and in this case cy(]) = lim cy(K),) = lim ey (U,,).
(iii) ] € J(RN) with cn(]) = 0 if and only if there is U € E(RN) such that
JcU coyU)<e

A set with cy(J) = 0 is said to be a null set. Note that since ¢,,(]) < cn(]), any set with
cn(J) = 0is Jordan measurable (see also (iii)), in particular, if N € J(R") is a null-set and
J € N then | is Jordan measurable and cy(]) = 0.

In (i), we can assume that U and K are open or closed without loss of generality

(mainly because if U is simple, then also intU and U are simple, and have the same
content as U). In particular, taking K and open U closed in (i), we see that U \ K covers
the boundary ] of | and that d] € J(IRN) with cy(d]) = 0. The converse is also true:

Proposition 1.1.7. Let ] € RN be bounded. Then | € J(RN) & 9] € J(RY) and cn(d]) = 0.
In that case, cn(]) = cn(int]) = cn(]) and

(i) cn(J) =0 int] =0,
(ii) if ] € E(RN) then cn(]) = 0 © ] is finite.

Note that a set with non-empty interior cannot be a null set, since in that case it
contains a rectangle with positive content.

Properties of J(RV):
Proposition 1.1.8. 1. The class of J(RY) is a semi-algebra:
A BCc JRY) = AUB,A\Be J(RN)
(and also AN B € J(RN)).
2. Let A,B € J(RN). The Jordan content cy : J(RN) — [0, +00] is:

(i) Additive: if AN B =0, then cn(A U B) = cn(A) + en(B).
(ii) Monotonic: if A C B, then cn(A) < cn(B).
(ii1) Subadditive: cny(A U B) < cn(A) + cn(B).

(iv) Invariant under translations and reflexions.

lit is not an algebra, since RN ¢ J(RN).
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3. Products: A € J(RN), B € J(RM) then A x B € JRYM) and cyym(A X B) =
en(A)em(B).

By induction, any union in the proposition above can be replaced by a finite union:
J(RY) is closed for finite unions and intersections, and is finitely additive and subaddi-
tive.

We can show that (for any additive, non-negative set function) for A, B € J(R") (not
necessarily disjoint):

CN(A) + CN(B) = CN(A U B) + CN(B N A) (1)

Moreover, always have cy(A) = cn(A N B) + cn(A \ B).

Remark 1.1.9 (Riemann Integral). Let f : R — R be a non-negative, bounded function
and let

Qf(E) :=={(x,y): 0 <y < f(x),x € E}.

If I = [a,b] is an interval, then

—b b
en(Qf(D)) = f f(x)dx = inf Sp(f), C_N(Qf(I)) = f f(x)dx = supsp(f),

where Sp(f), sp(f) are the upper and lowers Darboux sums relative to a decomposition
D of I. Hence

f is Riemann integrable, f € R(I) & Q) € T(RV).

Conversely, for E C IR, let x¢ be the characteristic, or indicator, function of E: xg(x) =1,
x € E, and xg(x) = 0,x ¢ E. Asume E is bounded, then

EcT®RY) o xieR(D), e(E) = f xe.

R

The fact that there are countable sets that are not Jordan measurable yields an example
of a sequence of Riemann integrable functions whose pointwise limit is not Riemann
integrable: just take E = {p; : k € N} ¢ J(RN) and E,, = {pi : k < n} € J(R") (finite sets).
Then x¢ = lim g, but x¢ not Riemann integrable on any interval.

We have that finite unions of Jordan measurable sets are always Jordan measurable,
but this does not hold even if we take a countable union of points, as Q N [0, 1] shows.
We would like to extend the definition of Jordan content to countable unions of Jordan
measurable sets. This is made possible by the following fundamental result.
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Theorem 1.1.10. Let A, € J(RY), n € N, be disjoint. If A = UpenA, € T(RY) then
en(A) = ) on(Ay).

nelN
Proof. Let A, € J(RN), n € N, be disjoint and A = U,enA, € T(RY). Given € > 0, let
K, K, be closed and U, U, be open such that

KcAcUc(U\K)<e, K,CA,cCU,cy(U\K) < 23

We have then that cy(U) — € < cn(A) < en(K) + € and en(U,) — Ze—n < con(Ay) < en(Ky) + §,

so that
Yooty —e < Y en(A) < Y en(Ky) +e.

neN neN neN
Now note that by Heine-Borel’s theorem, K is compact, as it is closed and bounded.
Since {U,},en is an open cover, it has a finite subcover:

KcUwenl, = KcU_U,.
It follows that

v )
en(A) —e < en(K) < ) en(Un) < ) en(Ay) +e
n=1 n=1

= cn(A) < Z en(Ay) + 2¢, foralle > 0
n=1
hence cy(A) < Yoo en(Ay).
Conversely, let again A, € J(RY), n € N, be disjoint and A = U,enA, € J(RY).
Since, for all n € N, we have A D U_ Ay, by monotonicity and finite additivity:

n

en(A) 2 oy (Up,Ar) = Z en(Ay), Yne N
k=1

hence cny(A) = Y o en(Ax). .

A function satisfying the condition in the above theorem is said to be a pre-measure,
a terminology that will be made clear in the following sections.

We now have a way of extending the Jordan content to countable unions of Jordan
measurable, need to check that if A = U,,cnA, = U,enB,, for collections of measurable,
disjoint, sets (A,), (B,) then since A, is Jordan measurable and A, = U> Ay N By, we get
from the previous result that

[o¢] [s¢]

Y enlAn) = ) icNmn NBu) =Y en(By),

n=1 n=1 m=1 m=1

where we apply to same reasoning to B,, to get the last equality.
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Definition 1.1.11. We let J,(IRY) denote the class of countable unions of Jordan measurable
sets. Define the extended Jordan content ¢y : J,(RN) — [0, +o0] such thatif A = U,,enAy,
with A, € J(RY) disjoint, then

(A =) enlAn).

nelN

The previous theorem shows that the function defined above is indeed an extension
of the Jordan content on J(RY), and we write in general ¢y as cy. We let E,(RYN) denote
the class of countable unions of simple sets, that is, the class of countable unions of
rectangles.

A set function A is said to be g-additive if

A (UnewAy,) = Z AMA,), A, disjoint
nelN

and o-subadditive if
A (UnewA,) < Z AA,).

nelN

Proposition 1.1.12. The classes J,(RN) and E,(RN) are closed for countable unions and cy is
o-additive and o-subadditive on J,(RN) and E,(RN).

Examples 1.1.13. 1. Any countable set is in J,(R") and if Q = {g,} then

&(Q) = G (Unenlgad) = ) enllgn)) = 0.

nelN

2. Let D = [0,1] N Q. Then D € J,(RN), since it is countable, and ¢x(D) = 0. By
additivity, if D¢ := [0,1] "R \ Q € J,(RN), then ¢x(D°) = 1.

But int(D) = 0, hence if D¢ = UA,, with A, € J(RY), then int(A,) = 0, hence
cn(A,) = 0 and also cy(D°) = 0.

We conclude that D¢ = [0,1]\ D = [0,1] N R\ Q ¢ J,(RY). In particular, J,(R") is
not closed for difference of sets, hence not an algebra.

NOTE: In general, for A € J,(RN), ¢y(A) = 0 & int(A) = 0. In particular, A €
E(RN), cn(A) = 0 © A is countable.

3. Any open set is given by a countable union of rectangles, hence is o-simple.
Therefore J,(IRN) contains all the open sets.

4. Anopenset U ¢ J(R): let {gu}uen = [0,1] N Q and € > 0 be given. Define

€ €
u, ::]qn - Z_n’ qn + E[/ U := UuenU,.
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Then U is open, U € E;(R) € J,(IR). By subadditivity,

c(U)<Zc(U)-Zan:

nelN

On the other hand, since [0,1] N Q C U, the upper Jordan content c(U) > c¢([0, 1] N
Q) = 1. If U € J(R), we would have

cU) =&U) <2, o) =2U) > 1.

For € < 1/2 this is a contradiction. Hence U ¢ J(IR) for € < 1/2.

The following two examples will be used and often used as reference during the
course.

Example 1.1. 14 (Cantor set). Let I = [a,b]. Define T(I) := I\ ]“”’ - %, % + 4D [ and
T(U_ L) = X0, T.

Let Fy = [a, b] and F, = T(F,-1), n € IN. Then F, is given by finite unions of closed
sets, hence it is a closed, simple set and c(F,) — 0. Define

C(I) = ﬂneNFn.
Since F, € &RY) and C(I) C F,, with ¢(F,) — 0, it follows from Proposition (iii) that
C() € J(R) with c(C(I)) = 0. It is an uncountable set with int(C(I)) = 0.
Topological properties:

— closed, hence compact

— nowhere dense int(C(I))) = int(C(l))) =
— perfect set: all points in C(I) are limit pomts (no isolated points)
— totally disconnected.

Also have that I \ C(I) is a countable union of open intervals, hence is in &,(R). But
C() ¢ E,(R) being an uncountable null set. Hence, &,(IRY) is not closed for difference of
sets, hence it is not an algebra.

Example 1.1.15 (Smith-Volterra-Cantor set).

Borel Problem: Find a collection of sets M C P(RN) and my : M — [0, +o0] such that

(1) Mis an algebra closed for countable unions and for A, € M,

my (U An] = ) ma(Ay).

nelN nelN
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(2) M > E(MRN) and my(E) = cn(E), for E € E(RY).

Note that M > &,(RY), in particular M contains all opens sets, as well as all closed
sets in RV,

Note also that, since cy is translation invariant, my is translation invariant on E,(IRM).
If we require that my is translation invariant on M, we see now that such a collection M
is necessarily proper, even though the existence on sets that cannot be measured by my
relies on the axiom of Choice.

Example 1.1.16 (Vitali’s set). Define an equivalence relationon [0, 1[byx ~y © x—y €
Q. Let V C [0, 1] be such that the intersection of V with [x] contains precisely one element
(need Axiom of Choice). We claim that if (M, my) is a translation invariant solution for
Borel’s problem, then V ¢ M.

It follows from Vitali’s example that:

If (M, my) is a translation invariant solution for Borel’s problem then M & P(RV).

1.2 o-Algebras and measure spaces
We now consider an arbitrary base space X.
Definition 1.2.1. Let M C P(X). Then
(i) Misan algebra if X € Mand A, Be M= AUB,A\Be M

(ii) Mis a o-algebra if it is an algebra and is closed with respect to countable unions:

A,e M,neN = UAneM.

nelN

We have always 0, X are in M and that M is closed for countable intersections as
well:

A, e M,nelN :ﬂAn:X\(UX\An]EM.

nelN nelN

Examples 1.2.2. 1. P(X) is the largest o-algebra, {0, X} is the smallest.
2. J(RN), E(RN) semi-algebra, not closed for countable unions, hence not o-algebras.

3. J-(RN), E,(RN): closed for countable unions but not algebras: not closed for
difference of set. Hence, are not o-algebras.

4. Let (X, 1) be a topological space. Then the collection 7 of open sets in X is closed
for countable unions, but fails to be an algebra, as it is not closed for complements.

8
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Even if a given class A is not s o-algebra, we can always consider the smallest o-
algebra that contains it. It is easy to see that the intersection of o-algebras is still a
o-algebra, and P(X) is a o-algebra containing any collection of sets A. We define the
o-algebra generated by A by

M(A) = ﬂ M, M g-algebra, A c M.

Definition 1.2.3. Let X be a topological space. The Borel o-algebra B(X) is the o-algebra
generated by the class of opens sets. Sets in B(X) are called Borel sets, include all open
sets, all closed sets, all countable unions of closed sets - such a set is called a Fo-set - and
all countable intersections of open sets - such a set is called a Gs-set.

When X = RY, it is easily seen that B(RV) is generated by open/closed/half- open
rectangles.

Definition 1.2.4. Let M be a o-algebra. A set function u : M — [0, +o0] is a measure on
Mif

1) u@®) =0,
(ii) u is o-additive: for A, € M, n € N, disjoint,

H(U An] = ) H(A).

nelN nelN

A measure space is a triple (X, M, u) where p is a measure on M. Sets in M are said
to be u-measurable. The measure is finite if u(X) < oo and o-finite if there exist X, with
u(X,) < oo and X = Uyen X,

Note that pu(@) = 0 & u(A) < oo, forsome A € M. Moreover, for A,B € M, not
necessarily disjoint, we always have

p(A) + u(B) = W((AUB) + w(BN'A),  p(A) = u(AN B) + u(A\ B). 2)

Examples 1.2.5. 1. Counting measure: # : P(X) — [0, +o0]
#(E) = the number of elements of E, if E is finite, and #(E) = +oo, if E is infinite.
# is finite measure & X is finite, and a o-finite measure & X is countable.

In particular, it is an example of non o-finite measure on R.

9
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2. Dirac measure given xy € X, define 6,, : P(X) — [0, o] by

1, ifxOGE,
Ox,(E) =
0() {O,lfxogéE

3. Dirac comb: pu : P(X) — [0, +oo] such that

u(E) =#ENZ) =) bu(E).

nez

is a o-finite measure.

(NOTE: the sum of measures is always a measure -Exercise.)

4. Probability measure: p : M — [0, 1] such that p(X) = 1, M is the space of events and
(X, M, p) is called a probability space.

#(E
For instance, take p(E) = %, X finite.

5. Borel measures: if X is a topological space, a Borel measure is a measure defined on
o-algebra of the Borel sets 8(X), generated by the opens sets.
In RY, the most important Borel measure is the Lebesgue measure, which is transla-

tion invariant and yields a solution to Borel’s problem.

6. Let f : R — R be increasing, define pi¢(]a, b[) := f(b) — f(a). Then u is o-additive on
the o-algebra generated by the open intervals, that is in B(RR), so (R, B(IR), ) is a
measure space. The Lebesgue measure corresponds to the case f(x) = x.

(The Dirac measure is a particular case, with H(x) = 1,x > x, H(x) = 0, x < xo.)

7. Haar measures: invariant measures on locally compact topological groups, defined
on Borel sets.

An additive, non-negative, function is always monotonic, as p(B) = p(BNA)+u(B\A).
Using monotonicity, we can see that o-additivity implies o-subadditivity. Moreover, a
measure is always continuous with respect to monotonic sequences, in a sense made
clear by the next result.

Proposition 1.2.6. Let (X, M, u) be a measure space.
1. u is o-subadditive;

2. Let E, € M, n € N such that u(E;) < 0, E,41 C E, and E = NyenE,, (write E, \ E).
Then

p(E) = lim u(E,).
2(N, P(N), #), with E, = {k > n} then NE, = 0, u(E,) = .

10
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3. Let E,, € M, n € N such that E,, C E,.;.1 and E = U,enE,, (write E,, /" E). Then
p(E) = lim p(E,).

Properties 2. and 3. are sometimes called continuity from above and continuity from be-
low, respectively. (In [NotesR], Property 3. is called 'Lebesgue’s monotone convergence
theorem’.)

Proof. To see o-subadditivity, let A = U A, and write A = U | A7 with A}, = A, \U/Z Ay,
then by o-additivity and monotonicity

u(A) = i wA,) < i 1(A,).
n=1 n=1

To prove 2., let E, € M, n € N such that u(E;) < oo, E,,; C E, and E = N,enE,, then E4
can be written as a disjoint union

Ei=EU (U, Ei \ Ein)
hence

u(Er) = () + ) p(Ex \ Egsa) < o0,

k=1
Since

Y B(E\ Exa) = lim ) u(Ey) = p(Ein) = p(En) = lim p(Ep),
k=1 k=1

and p(E;) < oo, it follows that p(E) = lim p(E,).
To prove 3., let now E,, € M, n € N such that E,, C E,;;; and E = U,enE,.. Then E can
be written as a disjoint union

E= U]ZOEk+1 \Ekl EO = 0

and in the same way

w(E) = Y pEia \E) =1im Y p(Epr \ E) = lim p(Epen).
k=0 k=0

O

Let (X, M, u) be a measure space. Sets in M with u(E) = 0 are usually called null
sets and play an important role in measure theory, as null sets are used as a means
of approximation: a property that holds except on a null-set is said to hold u-almost
everywhere, u-a.e. (and we often look for characterizations of measurable sets minus a
null-set). Note that a countable union of null-sets is also a null-set, by o-subadditivity.

Let N Cbeanull setand E C N. If E € M, then u(E) < u(N) = 0, hence E is also a
null set. There is however no reason in general for E € M.

11



FTAR Notes — 1° Sem. 2014/15

Definition 1.2.7. A measure space (X, M, ) is said to be complete if
EcNeM, uN)=0=Ee M, u(E) =0.

Even if a given measure space is not complete, we can always form its completion,
extending u to a larger o-algebra. Let N € M be the collection of all null sets. Define

M:={EUF:Ee€ M,FCN,N € N},

U M- [0, +o0], W(E UF) := u(E).

First check that i is well-defined: if E; UF; = E, UF, then E; \ E; C F, C N, for some null
set Ny, hence is also a null set (since E; \ E; € M) and u(E;) = u(E; \ Ez) + u(E1 N Ey) =
u(Ex N Ey) = u(E,), by the same reasoning with E.

Moreover, if A C EUF € Mwith u(EU F) =0, then E is a y-null set, so A is a subset

of a y-null set and hence A € M.
An alternative definition of M is the following:

AEM(:)thereexistU,KeMwithKcACUandy(U\K)=O,

which illustrates that sets in M are precisely the ones that can be approximated by sets
in M, modulo a p-null set. (Exercise.)

Theorem 1.2.8. (X, M, 1) is a complete measure space and is the smallest complete extension
of (X, M, ).

1.3 Outer measures

Now we turn to the issue of defining measure spaces. One way of achieving this is
to consider first outer approximations, which should be defined for any set, and then
define measurability from there.

Definition 1.3.1. An outer measure is a set function u* : P(X) — [0, +oo] such that
(i) u (@) =0,
(ii) p*is monotonic,

(iii) u*is o-subadditive: for any A, C X, n € N,

y*(UAn] < Zu*(An)-

nelN nelN

So, we drop o-additivity, requiring only the weaker o-subadditivity ("approximation
from the outside’) but require on the other hand that y* is defined on the whole of P(X).
Any measure defined on $(X) is also an outer measure, so the counting measure and
the Dirac measures are outer measures.

12
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Example 1.3.2. Outer Jordan content is subadditive but not o-subadditive: take D =
QN [0,1], then cy(D) = 1, but D = {g,}, and }_,n cn({g,.)) = 0. Hence it is not an outer
measure.

The following proposition gives a common way of obtaining outer measures:

Proposition 1.3.3. Let & C P(X) be such that 0, X € Eand A : & — [0, oo] such that A(Q) = 0.
For A c X, let A" : P(X) — [0, o] given by

A(E) = inf{z ME,) :E;€&,AC U,‘j’:lEn}.
n=1

Then A* is an outer measure.

Now we want to associate a measure space to a given outer measure u*, that is, a o-
algebra M, of measurable sets and a measure y = u* on M,-, so " is o-additive on M.
Noting that a finitely additive function is o-additive if and only if it is 0-subadditive, we
want to find a o-algebra M- where " is additive.

Definition 1.3.4. Let u* be an outer measure on X. A set A C X is said to be u*-measurable
if

w(E) = (ENA)+ u(ENAS), forall E € P(X).
We denote by M, the class of all y*-measurable sets.

Note that we have always, by subadditivity, u*(E) < u"(E N A) + u*(E N A°). The next
lemma shows that we get finite additivity of u" restricted to M, (note that B can be any
set).

Lemma 1.3.5. Let A € M-, B € P(X). Then u*(AUB) = u*(A) + u*(B\ A). If AN B = ( then
W(AUB) = i'(A) + 1’ (B).
Proof. Taking E = A U B in the definition of y*-measurability, we get
W(AUB)=u (AUB)NA)+ 1 ((AUB)NAS) = u"(A) + p"(BN A°).
O

In fact, more is true, as we can prove in the same way thatif A € M,., B,C C X, with
A, B disjoint, then
w(CN(AUB)) =pu (CNA)+u(CNB).

We have then, by induction, that u* is (finitely) additive on any algebra contained in
M., hence g-additive on any o-algebra contained in M,..

Lemma 1.3.6. M, is a o-algebra.

13
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Proof. It is closed for complements, by definition, and 0, X € M,.. Let now A, B € M.
We show that AN B € M-, want to see that

W(E) > w(EN(ANB) + ' (EN (AN BY)
for any E C X. Now E N (A N B)° = (EN A°) U (EN AN B°) (disjoint union), hence

WENANBY)+u(ENANB) < (ENA)+u (ENANB) + ' (ENANB)
= W(ENA) + ' (ENA) = '(E)

where we used u*-mensurability of B and A in the last equalities. Hence M, is an
algebra, in particular, closed for finite unions.

We show it is closed for countable unions. Let A = U,enA,, with A, € M., n € N,
assume disjoint. Let E C X. For finite unions, we know that for any n € N,

W(E) = 1 (E 0 (UL AR) + 1°(E 0 (UL AY) 2 1°(E N (UL AY) + i (E N A9)

(since (U7_ Ar)® D A°). Moreover, by measurability of each A,, using induction, one can
see (Exercise) that

WENULA)) = Y w(EN Ap.

k=1

Letting n — oo, it follows

WE) 2 Y w(ENAY+ @ (ENA) 2 1w (ENA)+ ' (ENA),

k=1

by o-subadditivity ® . Since we always have, u*(E) < u*(E N A) + u*(E N A°), the measur-
ability of A follows, and that finishes the proof. ]

Given an outer measure u*, we have constructed a o-algebra M,. where u* is o-
additive (in fact, we only needed additive), that is, so that the restriction of u* to M,- is
a true measure.

Moreover, this measure is always complete. In fact any set with u*(A) = 0 is always
measurable : if E C X, then y*(EN A) < u*(A) = 0, so that

w(E) < p(ANE) + w (A N E) = (A N E) < w(E).

Hence u*(E) = u"(ANE)+u"(A°NE)and A € M,-. In particular, if A € N where N € M,
such that y(N) = u*(N) = 0, then u*(A) < u*(N) = 0, so A is measurable and the space is
complete.

We have proved:

3In fact, in this case we have o-additivity: prove that u*(E N A) = Y2, u*(E N Ag)

14
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Theorem 1.3.7 (Caratheodory). Let u* be an outer measure on X. Then there exists a complete
measure space (X, M, ) such that

W(E) = u'(E), for E € M.

where M, is as in 1.3.4.

The first application of Caratheodory’s construction is to extend additive functions
on algebras to measures on g-algebras.

Definition 1.3.8. Let A C £(X) be an algebra, or a semi-algebra such that X is a countable
union of elements of A. A premeasure on A is a function g : A — [0, 0] such that
(@) =0, and for A, € A disjoint, n € IN, then

A=US A €A = (A = Z 1o(Ay).
nelN

In particular, u, is additive on A. Now to each premeasure, we can associate an outer
measure, according to

n=1

() = inf{z uo(Ay) : Aj € AE C u:;lAn} : 3)

Proposition 1.3.9. Let g be a premeasure on an algebra / semi-algebra* A and y* be defined as
above, M, the o-algebra of u*-measurable sets. Then

(i) Wy = Ho
(i) A € M, if and only if
po(B) = i'(BNA)+ u" (BN A), forall Be A,
(iii) A C M.

Proof. (i). Let A € A. It is clear from the definition that u*(A) < ug(A). Let A C UA,,
A, € A. Then A = UA N A, € Ahence, by the premeasure property,

to(4) = ) (AN A) < Y olAy).

Hence 119(A) < u*(A), so equality follows.
(ii) Let A C X such that po(B) = p*(BNA) + u*(BN A°), for all B € A,. For E C X such
that EC UB,,B,, e Awehave ENA Cc UB, NA), ENnA°cC UB, NA°) hence

WENA) +E (ENA) <Y 1By NA) + 1By N AY) = Y p1o(By)

It follows u*(E) < u*(EN A) + u*(EN A°) < u*(E), so A is measurable.
(iii) is an easy consequence of (i) and (ii). O

4In this case, we assume that X = U,cnA, for some collection A, € A.

15
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Theorem 1.3.10 (Hahn's extension theorem). Let 1 be a premeasure on an algebra / semi-
algebra A and M be the o-algebra generated by A. Then

(i) uo extends to a o-additive function u on Mand (X, M, p) is a measure space.

(ii) If v is also an extension of uy to M, then u(E) = v(E), if u(E) < oo, E € M. In particular,
the extension is unique if L is o-finite.

Proof. (i) is Caratheodory’s extension restricted to M, noting that if A C M, then also
Mc M, (as M, is a o-algebra).

As for (ii), if v is another extension, then v(E) < u*(E) = u(E) as if E C UA;, with A;
disjoint, then

V(E) S v(UA) = Y v(A) = ) tio(A)).

If u(E) < oo, then for any € > 0, can take E C A = UA;, A; € A disjoint such that
u(A\ E) < e. Have u(A) = v(A) by o-additivity of u, v, as the measures coincide on A.
Hence

u(E) < u(A) =v(A) =v(E) + v(A\ E) <v(E) + W(A\E) <v(E)+¢€, Ve >0

so U(E) < v(E). If the space is o-finite, any set can be written as a countable union of sets
with finite measure, hence the two measures coincide. O

Note that in fact we always have a complete extension of 1y and A considering u on
the class M, of u*-measurable sets.

Remark 1.3.11 (Inner measures). If u* is an outer measure obtained by extending a pre-
measure on an algebra, then we can define an inner measure by p.(E) = po(X) — u*(E°).
Then E is y*-measurable iff u*(E) = u.(E). (Exercise [Fol] 1.4.19 - uses regularity)

1.4 Lebesgue measure

We are now back in RY and will use the results in the previous section to provide a solu-
tion (in fact, two) to Borel’s problem: we want to define a measure space (RN, My, my)
such that My > E(RY), that is, simple sets, and my extends the Jordan content:

mn(E) = cn(E),  if E € EMRN).

The outer Jordan content is subadditive but not o-subadditive (just take D = Q N
[0,1] = U,enign}), hence Caratheodory’s construction cannot be applied directly. Nev-
ertheless, it follows from Theorem 1.1.10 that cy is a premeasure on the semi-algebra
E(RN): we saw in partcular that, if A = UA, € E(RY), with A, disjoint, then

en(4) = ) on(Ay).

nelN

From the results in the previous section, it induces an outer measure m;; and a o-algebra
where it becomes a measure.

16
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Definition 1.4.1. The Lebesgue outer measure my, : P(RN) — [0, +o0] is defined as

(o]

my(A) = inf{Z cn(Ry) : Ry, bounded rectangle ,A C U R, }.

n=1
The Lebesgue measurable sets L(IRN) are those sets A such that for any E ¢ RV,
my(E) = my(E N A) + my(E N A).
The Lebesgue measure my : L(RY) — [0, o0] as
my(A) = miy(A), if A € | L(RN).

It is easy to see that m}; is indeed the outer measure induced by cy as in (3). Note
that the o-algebra generated by E(RYN) coincides with the o-algebra generated by the
collection of bounded rectangles, which coincides with the o-algebra generated by the
open sets, that is, with the Borel algebra B(R").

It follows Proposition 1.3.9 that A € L(RN) iff

cn(R) = my (RN A) + my(RNA®), VRbounded rectangle.
We summarize the results from the previous section:

(i) L(RN), B(RY) are o-algebras and my is a measure such that for any E € E(RY),

my(E) = en(E).

(i) my is the unique extension of cy to B(RY) (as RY is o-finite).

(iii) L(RN) is a complete extension of B(IRY) (will see that it is the completion).
Recalling Borel’s problem of extending cy we now have:

Theorem 1.4.2. (RN, B(RY), my) and (RN, L(RN), my) are solutions to Borel’s problem.
(RN, B(RN), my) is the smallest solution, and (RN, L(RN), my) is a complete solution.’

Note that completeness of L(IRY) follows from the stronger crucial property, that we
use often:

nmy(A) =0 = A e L(RY).

Examples 1.4.3. 1. Countable sets

%it will follow from B(RN) = L(IRN) that it is also the smallest complete solution.

17
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2. All open sets and all the closed sets are in B(RN) c L(RRN), as are all sets of the
form
Gs = NpenU,, U, open, F, = U,enK,,, K, closed.

Sets that are countable unions of closed sets are called F-sigma sets, and countable
intersections of open sets are called G-delta sets.

Also, the closure and the interior of any set are always measurable.

3. The set U = U]g, — 2 qn 2%[, where g, are the rationals in [0,1]: open (not in

J(RY))
4. Cantor and Volterra ("fat” Cantor): closed.

Volterra’s set shows that in L(RY), a set with positive measure can have empty
interior, in fact be nowhere dense.

5. Cardinality: the Cantor set C(I) and all subsets of Cantor are Lebesgue measurable
(in fact, also Jordan measurable), as they are null sets. Since C(I) is uncountable, it
follows that

#J(RY) = #L(RN) = #P(R).

On the other hand, the Borel sets are generated by a countable basis of open sets,
and it can be proved that

#B(RN) = #P(IN) = #(R)

So there are many more Lebesgue (and Jordan) measurable sets than Borel sets. It
is not easy however to give an explicit description of a set in L(IRY) \ B(R"). We
have, as we see below, J(RY) c L(RM).

We give now two equivalent definitions of 1}, (we take the extension of cy to E;(RY)
given by o-additivity).

Proposition 1.4.4. Let E,(IRN) be the collection of countable unions of simple sets

my(A) = inf{en(E) : E € E(RY), A C E}
= inf{ex(U) : U is open ,A C U}.

Proof. We have m} (A) = inf{} >, cn(Ey) @ E, € ERYN),A C U™ E,}. The first equality
follows noting that we can assume without loss of generality that E, are disjoint and in
this case if E = U™ | E, € E,(RN), then cy(E) = Y52 en(En).

As for the second, any open set U € &,(IRY), as it can be written as a countable union
of (disjoint) rectangles, so

inf{cy(E) : E € E,(RY), A C E} < infl{ey(U) : U is open , A C U}.
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Moreover, given E € E;(RN) and € > 0, can always find open U O E such that cy(U) <
cn(E) + e if cn(E) < o0 and E = U,enR,, take open rectangles R, O R, such that
cn(R), \ R,) < €/2" and U = UR],. If cNy(E) = oo then any open U D E also has infinite
content. Hence, the reverse inequality holds, and equality follows. ]

The first definition given above is quite similar in form to that of Jordan outer content:
‘just’ replace E(RY) by E,(RY). In particular, we can see that

cN(A) = my(A) = en(A)
for any A hence if A € J(RN) then n},(A) = cn(A). Moreover,
Proposition 1.4.5. J,(RN) c L(RN) and my = cy on J,(RY)

Proof. We show that J(RY) c £L(RN), and so my = cy on J(RY). Given A € J(RV) then
for any bounded rectangle R, RN A,R N A® € J(RY), by additivity

cn(R) = en(RNA) + en(RNAY) = my (RN A) + my (RN A°).
Then J,(RY) ¢ L(RN), as L(IRN) is a o-algebra. Exercise: show my extends cy. m|

Not all Borel sets are Jordan measurable: saw in Example 1.1.13.4 an open non Jordan
measurable set and we have seen that not all Jordan measurable are Borel measurable.

It follows from the second definition that if A € £(IRN) then

my(A) = inf{eny(U) : U is open , A C U}
= inf{my(U) : U is open ,A C U}.
A Borel measure with the above property is said to be (outer) regqular. Regularity means
that the measure is completely determined by its values on open sets, by approximation.

This property, together with the fact that sets with 0 outer measure are measurable
(completeness), give a number of useful characterizations of Lebesgue measurable sets.

Proposition 1.4.6. E € L(RY) &
(i) given € > 0, there is U open, with E C U and my(U\E) <e &
(i1) given € > 0, there is K closed, with E > Kand my(E\K) <e &

(iii) given € > 0, there are U open, K closed, with K C E C U and my(U \ K) < e.
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Proof. (iii) is equivalent to (i) + (ii), while (ii) is equivalent to (i) taking complements. So
we prove equivalence (i). Let E € L(RV) and € > 0 be given.

If m(E) < oo, then since m}(E) = inf{my(U) : Uis open ,E C U}, we can take open
U D E such that my(E) < my(U) < my(E) + €. Since my(U) = my(E) + my(E \ U), by
measurability of E, and m}(E) < oo, my,(U) < oo, it follows that m},(U \ E) < €.

If my(E) = oo, write E = UE,, where E,, = ENR,, with R, bounded rectangles, disjoint
such that X = UR,,. Then m},(E,) < oo, and by the above there is open U,, O E, such that
my,(U, \ E,) < 5. Let U = UU,, open. Then m} (U \ E) <e.

Conversely, if there is U, D E such that m} (U, \ E) < %, then letting U = NU,, have
my(U \ E) < my(U, \ E) < % = my(U\E)=0 = U\ E € L(R").
Hence E = U \ (U \ E) € L(RN). |

The following consequence is very useful:

Corollary 1.4.7. E € L(RN) & if there exist U, open, with U, > E such that my (U, \ E) = 0
and in that case my(U,,) — my(E).

Recall that a F, set is a countable union of closed sets and a G; set is a countable
intersection of open sets; F, and G; sets are in the Borel algebra.

Proposition 1.4.8. E € L(RY) & there are a F, set B and a Gy set A such that A C E C B and
mn(B \ A) = 0. In this case, my(A) = my(B) = mn(E).

Proof. For each n € IN, let K,, be closed, U, be open, such that K, ¢ E ¢ U, and
my(U, \ Ky) < 1. Let B = UK, and A = NU,, then B\ A c U, \ K, for each n, and the
result follows.

Conversely, if there are such A, B, then E\ A c B\ A € B(R") c L(RV), hence by
completeness, E\ A € L(R")and also E= AUE\ A € L(RN). |

It follows straightaway from the definition of completion that:

Corollary 1.4.9. L(RY) is the completion of the Borel algebra B(RY).

Proposition 1.4.10. (RN, L(RN),my) is the unique complete and reqular (it is the largest
regular and the smallest complete) solution to Borel’s problem.

Proof. Any complete solution contains B(RY), hence contains B(RN) = L(RY). Let
now (X, M, i) be a regular solution to Borel’s problem and A € M. By regularity,
p(A) = my(A) as u = my = cy on open sets. Let R be a bounded rectangle, then

cn(R) = p(R) = y(ANR) + u(A° N R) = my(ANR) + my(A° N R)
hence A € L(R") and in this case u(A) = pu*(A) = my(A). |
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To finish this section, we now investigate some properties, of geometrical nature, of
the Lebesgue measure that were known for the Jordan content: invariance, and behavior
with respect to products.

Proposition 1.4.11. 1. Let AC L(RN)andx € RN. Then A+x ={a+x:a € A} € L(RN)
and my(A) = my(A + x).

2. Let ACc BRM and x € RN, Then A+x ={a+x:a € A} € BRY) and my(A) =
mn(A + x).

Proof. It follows from regularity and the fact that cy is translation invariant that
my(A + x) = my(A).
Now forEC X, x € RN, EN (A +x) = ((E + (—x)) N A) + x hence

my(E N (A +x)) + my(E N (A° +x)) = my((E + (=x)) N A) + my((E + (—x)) N A)
= m((E + (—x)) = niy(E),

by measurability of A.
As for the Borel case: let A = {A Cc RN : A +x € B(RY), Vx € RN}. Then A contains
the open sets and A is a o-algebra, hence A > B(RY). m|

Moreover, the Lebesgue measure is also invariant with respect to unitary transfor-
mations [Foll Thm 2.44]

We have seen, when introducing Borel’s problem, that no tranlsation invariant so-
lution could be defined on the whole P(RY): the classical example is Vitali’s set, which
provides an example of a non- Lebesgue measurable set.

Examples 1.4.12. 1. Vitali’s construction can be adapted so as to show that any A
with m},(A) > 0 contains a non-measurable subset.

2. Lebesgue measurable, not Borel measurable. follows form existence of non-

measurable.
Let f : [0,1] — [0, 1] be Cantor function, that is f(} x,37) := Y, x,27" if xi#1,and f
constant on subintervals with x; = 1 for some (the smallest) j, f(x) = i ) x;27".

Then f increasing, continuous, and f(C) = [0, 1], where C is the Cantor set in [0, 1].
(Also known as “devil’s staircase’). Such a function maps Borel sets to Borel sets.

Let V c [0, 1] be Vitail’s set and take E C Csuch that E = f~!(V). Then E is Lebesgue
measurable (even Jordan measurable), as a subset of the Cantor set, but not Borel
measurable, as in this case f(E) = V would be as well.

Behavior with respect to products: see first

21



FTAR Notes — 1° Sem. 2014/15

Lemma 1.4.13. Let A ¢ RN and B ¢ RM, then my,,,,(A X B) < m},(A)m; (B).

In particular, it follows that if m},(A) = 0 (or m;,(B) = 0) then m},_, (A X B) = 0, hence
A X B € L(RN*M),

Proposition 1.4.14. 1. Let A € L(RN) and B € L(RM). Then A x B € L(RN*M) and
mn+m(A X B) = my(A)mpu(B).

2. Let A € BRN) and B € B(RM). Then A x B € B(RN*M) and my.m(A X B) =
mn(A)mpu(B).

2 Integral

2.1 Measurable functions

We now take maps between measure spaces, only interested in maps that ‘respect’ the
measures. Measurable functions are the morphims in the category of measure spaces.

Definition 2.1.1. f : (X, M) — (Y, N) is said to be (M, N)-measurable if f~'(A) € M, for
allA e N.

Note that {f7(A) : A € N}is always a o-algebra. Itis easy to see that the composition
of measurable functions is measurable on the respective spaces.

Proposition 2.1.2. If N is the o-algebra generated by some class & then f : (X, M) — (Y, N)
is (M, N')-measurable if f~1(A) € M, forall A € &.

Proof. {EC Y : f7Y(E): A € M} is a o-algebra and contains &, hence contains IN. m|

Corollary 2.1.3. If X,Y are topological spaces, then any continuous function is (8Bx, By)-
measurable.

Proof. The o-algebras Bx, By are generated by open sets in X, Y. |

We will be mostly considering functions f : X — R (or R or C), for some fixed
measure space (X, M, i). In that case, if f is (M, B(IR))-measurable, we simply say that
f is M-measurable, or just measurable. Note that since B(IR) is generated by open or
closed rays, we have:

Corollary 2.1.4. f : X — Ris M-measurable & f~1(Ja, o[) € M, foralla € R f~([a, o[) €
M, foralla e R & f1(Joo,al) € M, foralla e R & f'(Joo,al) € M, foralla € R.

Examples 2.1.5. 1. A constant function is always measurable.
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2. Let E ¢ X and xg be its characteristic function, that is, such that yg(x) = 1,x € X,
Xe(x) =0,x ¢ X. Then xr is M-measurable iff E € M.

Proposition 2.1.6. Let f,¢ : X — R be M-measurable, c € R. Then f + g, cf, fg are
M-measurable.

The previous result also holds for f : X — R, under the usual convention 0 - oo = 0,
and assuming that there are no indeterminate signs in f + g. Moreover, the (pointwise)
limit of measurable functions is always measurable. In fact:

Theorem 2.1.7. Let f, : X — R be M-measurable functions. Then

g1(x) = sup{f.(x)}, G(x) = limsup f,(x),

neN
hy(x) = inﬂg {fu(2)}, H(x) = liminf f,(x)
ne
are M-measurable. If lim f,(x) = f(x) exists, then f is M-measurable.

Proof. Fora € R, we have
81 (la, +0o[) = {x : sup fu(x) > a} = Unentlx : fu(x) > a} = Upentf, ' (la, +00[),

(1= 0o al) = {x tinf £,(x) < a} = Upenfx : fu(x) < a) = Unentf, (1 = 00, al).

Since f, is measurable, n € N, f,7'(Ja, +o0[) € M and f,;'(] — ,a[) € M, hence g1, h; are
measurable.

Asfor G, write gx(x) = sup,,, f.(x), then g; is measurable by the above and decreasing,
SO

G(x) = limsup f,(x) = llim gk(x) = inf gi(x)

is measurable, as g, is measurable. For H we use a similar argument. If lim f,(x) = f(x),
then lim f,(x) = lim sup f,,(x) = liminf f,(x) is M-measurable. O

Moreover, noting that if f is measurable and g = f p-a.e. (that is except on a p-null
set), then g is also measurable (Exercise), then one can see that if f, measurable,

fu(x) = f(x) u —a.e = f is measurable .

(take the characteristic function of the set where f,,(x) — f(x)).

It also follows that for f, ¢ M-measurable functions, max(f, g) and min(f, g) are also
M-measurable. Given f : X — R, define

7 (x) = max(f(x),0), f~(x) = max(—f(x),0).
Then f = f*— f~and |f|=f"+ f.
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Corollary 2.1.8. f is M-measurable if, and only if, f*, f~ are M-measurable, and in this case,
|f| is also M-measurable.

Now we show that any measurable function is always the limit of 'simpler’ measur-
able functions.

Definition 2.1.9. A function s : X — R is said to be simple if Im(s) is finite and s is
measurable or, equivalently, if s can be written as

P

s = E Ak XEx
k=1

where E; = s7!(a;) is measurable, a, ..., a, € R.

It is clear that if s, f simple functions, c € IR, then s +¢, cs, st are also simple functions.

The keypoint now is that any measurable function can be approximated by simple functions.
Let f : X — [0, oo] be given. Take a finite partition of [0,00], P = {0 = yo < 11 < ... < Yp}
and write

FA) = (1A, +00] = fx: f(x) > A)

and define Ex = F(yx) \ F(Yk+1), Ex = F(y,). To such a  we associate the simple function

| Y ifxe Ek
500 = {o, if x ¢ UE;.

Then 0 < s(x) < f(x) and f(x) —s(x) < Ygs1 — Yx if x € Ej.

Theorem 2.1.10. (X, M, p) measure space.

(i) Let f : X — [0, +0o] be measurable. Then there exist simple functions s, with 0 < s, < s,41
and s,(x) — f(x), x € X.

(ii) Let f : X — IR be measurable. Then there exist simple functions s, with |s,| < |s,41| < |f]
and s,(x) — f(x), x € X.

Proof. (i) Take P, = {0, %, ey 2%, 2 2"} and s, the simple function associated to #,

s
as above, so that f(x) el M= s, (x) = 2% . Then P,..1 O P, hence s, < s,..1, and for all

2}’!/ 211
x <2

0 < f(x) = su(x) < % = lims,(x) = f(x).

(ii) Write f = f* — f~ = lims,, where s, = s, —s; and s, s;, are given as in (i) with
respect to f*, f~, respectively. Then |f| = f* + f~ = lim(s;; +5,,) = lim s,,]. O

Interesting consequence:
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Proposition 2.1.11. (X, M, u) measure space, (X, M, 1) beits completion. If f is M-measumble,
then f = g p-a.e, for some u-measurable function g.

Proof. If f = xg with E € M then, by definition of completion, can take A € M such that
H(E) = u(A), hence xg = xa p-a.e., so the result holds for simple function, as a (finite)
union of p-null sets is p-null.

For the general case, take s, simple p-measurable, with s,(x) — f(x) and ¢, simple
pu-measurable such that, for eachn € IN, t, = s, p-a.e. Let A, = {x : 5,(x) # t,(x)}, then
UA, is p-null, and t,(x) — f(x) on X\ UA,. Take now UA, C N € M with u(N) = 0. Then
g = lim xx\nt, is M-measurable and f = g p-a.e. |

It follows that any Lebesgue measurable function f : RN — R coincides my-a.e with
a Borel measurable function.

2.2 The Lebesgue integral

Let (X, M, u) be a measure space. We first define the integral for non-negative functions.

Definition 2.2.1. Lets: X — [0,+00],s = ZZ:1 ar Xk, be a simple function. Then

fxsdy 1= Zp:ak‘u(Ek).

k=1

Let f : X — [0, +00] be M-measurable. Then define

ffdy = sup{fsdy:OSsSf,ssimple}.
X D'

If E € M, then fEfdy 1= fX)(Efdy.

Proposition 2.2.2. Let f, g be non-negative, M-measurable functions, c > 0, then
(i) [ocfdu=c | fdy,
(i) f<g= [ fdu< [ gdu

(iii) if E,F € M,E CF, then [, fdu < [ fdpu.

(iv) fody =0 f=0pu-ae
If f, g are simple functions:

@) [(f+Qdu= [ fdu+ [ gdu,
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(vi) The function A : M — [0, +oo] such that A(E) := fE fdu is a measure.

Proof. Easy to see that (i) and (ii) hold for simple functions, hence, taking the sup, also
hold for f measurable. (iii) is a consequence of (ii).
As for (iv): if f = Y.F_ axx, is simple, a; > 0, then

ffdy = Zaky(Ek) =0 & a =0V u(E) =0,Vk
X

and the equivalence is proved in this case. Now if f = 0 a.e. and s is any simple function
such that 0 < s < f, thens = 0 a.e. so fxsdy = 0, hence fody = 0. Conversely, if
p(x : f(x) > 0} > 0O, then writing {x : f(x) > 0} = UpenE,, with E, = {x : f(x) > %} eEM,
we have that u(E,) > 0 for some 7, hence from (ii) and (iii),

1
fxfdquEnde;u(Enbo.

For (v) and (vi), we assume (for now) that f = ZZ=1 arXg, and g = 2?1:1 bjxr;, where E
are disjoint, and F; are disjoint. Then

fX (f+&)du= Z(ak +bpu(EcNF)) = Z axp(Ex N F)) + Z b;u(Ex NF;)
k,j k,j

&
= Zk‘ arpu(Er) + Z]" bju(F)) = fxfd# + fxgd“'

Finally, we prove (vi): have A(0) = 0, let A, € M disjoint, A = U,enA,. Then

MA) = j;fdu = i ar(Ex N A) = i Z ari(Ex N Ay)

k=1 k=1 nelN
p
= Z Zaky(Ek NA,) = Zf fdy = Z AMA).
nelN k=1 neN v An nelN
Hence A is g-additive, hence a measure. O

In fact, (v) and (vi) also hold for general measurable, non-negative functions. This
will follow from the next fundamental result, one of the cornerstones of Lebesgue’s
integration theory, that will allow us, in particular, to define the integral as a sup over a
countable set:

Theorem 2.2.3 (Monotone convergence / Beppo-Levi). Let (X, M, u) be a measure space
and f, : X = [0, +o0] be M-measurable, such that f,(x) < fu41(x) and f(x) = lim f,,(x). Then

f is M-measurable and
ffdy :limffn,dy.
b'e D'
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Proof. m|
Taking simple functions s, ,” f, as in Theorem 2.1.10, we have then that, for E € M,

ffdy:hmfsndy:supfsndy.
E E E

Monotone convergence also holds for decreasing sequences (g,,), provided we assume

that fx g1du < 00:.just ta}k.e the increasing, non-negative sequence f, = g1 —g,. Moreover,
a.e. convergence is sufficient:

Corollary 2.2.4. Let f, : X — [0, +oo] be M-measurable, such that f,(x) / f(x) p-a.e. Then

f is M-measurable and
ffdy zlimffn,dy.
X D'

Proof. Let E = {x : f,(x) /" f(x)}, u(E°) = 0. Then xe(x)f.(x) /" xe(x)f(x) for all x € X,
hence by Monotone convergence, and by Proposition 2.2.2 (iv),

ffdy:f)(gfdyzlimf)(gfn,dy:limffn,dy.
X X X X

As a consequence of the Monotone Convergence theorem we can generalize the
additivity of the integral from simple functions to measurable functions, which moreover
holds also for infinite sums:

Proposition 2.2.5. Let f, : X — [0, +00] be M-measurable. Then
(D) [(fi+f)du= [ fdu+ [ frdp.

(ii) [ (Tols fo) dp = T2y [y fudu

Proof. (i) Take s, / fi,t, / f, as in Theorem 2.1.10, then s, +t, ,/* fi + f,. From the
Monotone Convergence theorem:

f(f1+f2)dp—l1mf(sn+t dy—hmfsndy+fsndy ffldy+ff2dy

(ii) It follows from (i) that for any k € IN,

fx[z;f] dF;fondy.

Since Zizl fn ya 220:1 fn, we have, again from Monotone convergence, that

fx(if] duzhl{nfx[;fn] duzliygﬁfndy:g;ﬂfndy,

O
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Examples 2.2.6. 1. Improper Riemann integrals: let e.g f(x) = &, f : [0, o[> [0, o],

a > 0 and m be the lebesgue measure. Then f is Lebesgue measurable, as it is
continuous, and f, = fXxj1i/un /" f, hence

f fdm = lim x® dx.
0 1/n

2. Consider again the Lebesgue measure on R. Then f, = xj, .1 iS measurable,
fu(x) = 0, for all x, but lim [ f,dm =1 [ lim f,dm.

3. Asin 2., letnow f, = nX10,1(- Then limfIan dm=1+# f]Rlimfn dm = 0.

Even if we cannot interchange integral with limit in general, as examples 2. and 3.
show, we have always:

Theorem 2.2.7 (Fatou’s Lemma). f, : X — [0, +o0] be M-measurable. Then

fliminffn du < liminfffndy.
b' b'

Proof. Let hi(x) = inf,5¢ f4(x), so that i 7 liminf f,. By Monotone Convergence,

fliminffndy:limfhkdy:supfhkdy.
D' X Kk Jx

Since hy < f,, for n > k, we have

fhkdygffndy,nzk = fhkdysinfffndy.
b'e X X nzk Jx

supfhkdySsup(infffndy)zliminfffndy
Kk Jx ko\n=k Jx b'e

and the result is proved. m|

It follows that

Again, a similar result holds also for lim sup, assuming that fx fady < K < oo, for all
n € IN. Monotone convergence can be proved from Fatou’s lemma (easy Exercise).

Now we consider measurable functions f : X — R Recall that f is measurable iff
f*, f~ are measurable, non-negative functions.

Definition 2.2.8. Let f : X — R be M-measurable. If j;(er du < oo or fo‘ du < oo, then

Lﬁw:ﬁﬁw—ﬁfW-

We say that f is integrable if fx |fldu < oo, or equivalently, if fo+ du < oo and j;(f‘ du <

0.
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Examples 2.2.9. 1. u = 0,, then f is integrable iff f(x() # co and fx fdoy, = f(xo).

2. u = # counting measure. Then f : N — R integrable iff ), |f(1n)| < co and

fN far =Y fn).

3. 1 = my the Lebesgue measure on RYN. The integral coincides with the Riemann
integral over bounded rectangles.

In IR this can be proved noting that the upper and least sums coincide with the
integral of suitable simple functions and using the Monotone or Dominated con-
vergence theorem. We will see this equivalence in the next section in a different
way.

Proposition 2.2.10. Let f, g be integrable functions, ¢ € R, then
(i) cf is integrable and chfdy = cfody,
(ii) f + g is integrable and fX(f +9)du = fxfdy + fxgdy,
(i) | [, fdu| < [ 1f1du,
(iv) pu({x: f(x) = oo}) =0,
(v) {x: f(x) > 0} is o-finite.

(vi) fEfdy=ngdp,forallEe/\/(@fxlf—gldyzOc:»f:gy-a.e.

Proof. For (i), fxlc fldu = |cl fx' fldu < oo hence cf is integrable and the equality of
integrals follows noting that (cf)* = cf", (¢f)” = ¢f -, if ¢ > 0 and (cf)" = —cf",
(cf)" =—cf*,ifc<O.

For (ii), note that fx If +gldu < fx |fldu + fx Igldu < oo so f + g is integrable. Writing
h=f+ghaveh"-h =f"—f+¢gt—¢g ©h"+f +¢g =h+ f*+ ¢" hence

[ g g [ o e g
D' b'e
and using additivity of the integral for non-negative functions, the result follows (as all

the integrals involved are finite).
For (iii), writing f = f* - f~:
]+ | [ 5] [ 171n
X X X

fxfdu'= fxﬁdu—fxf‘du

< +
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(iv): If (2 f(x) = xoo}) > O, then [o[fldu> [ Ifldy = .

For (v), can write {x : f(x) > 0} = Uy{x : f(x) > %} and u({x : f(x) > %} < oo, by a
similar argument.

Finally (vi): the second equivalence follows from Proposition 2.2.2 (iv). If f = ¢
p-a.e. then |f — g| = 0 p-a.e., hence fE If — gldy = 0. Conversely, let h = f — g and

assume that fEhdy = 0 for all E € M (by (v) can assume that f, ¢ are finite, possibly
changing in a set of measure zero). If u({x : h(x) # 0}) > 0 then, with E* = {x : h*(x) > 0},
E™ = {x: f~(x) > 0}, we have, in the first case, u(E*) > 0 or u(E~) > 0. Hence,

fhdyth+dy>0
E* E+

which is a contradiction. The second case is similar. Hence h =0 & f = g y-a.e |

It follows from (vi) that we can change the values of a given integrable function on a
set of measure zero without changing the integral. (In particular, we can always assume
that an integrable function is finite, possibly changing the values on a set of measure
zero). We say that two integrable functions f and g are equivalent if f = g, y-a.e. and let

Li(X) = {[f] : f is integrable },

where [f] denotes the equivalence class of f. We often identify a function f with its
equivalence class. Note that

f,9):= [ If - glen
makes LL(X) a metric space (in fact, a normed space).

Theorem 2.2.11 (Dominated Convergence). Let f, € LL(X) such that |f,| < g uy-a.e. with
g € Ly(X). I fu — f w-ace., then f € L,(X) and

fxfdy:hmfxfn,dy.

Proof. From |f,| < g, wehave g— f, >0and g+ f, > 0and g - f,, ¢ + f, are measurable.
From Fatou’s lemma:

du= | li wdu < liminf Ay = du +liminf | f,d
L(g+f)‘u fX1m(g+f)y< 1m1nfx(g+f)y fxg y+1m1nfxf U

fX (g = fdp = fx lim(g — f)dp < lim inf fX (g = fudu = fX gdy ~ limsup fx fudi

Hence, as g is integrable,

1imsupffndysffdySliminfffndy
X X X
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In particular, f € Ly(X). Since we have always lim sup fx fudy > liminf fx fodu we
conclude that

ffdyzlimsupffndy:liminfffndyzlimffndy.
b'e X b'e b'e

O

As a first application, we give conditions such that a not necessarily non-negative
series can be integrated term by term:

Proposition 2.2.12. Let f, € L,(X) such that ¥, fx |faldu < oo. Then Y., f, converges
w-ae. to f € L(X) and

Lfdu=L;fndu=gLfnd#-

Proof. From Monotone Convergence,

Lglfnldy:g£|fn|du<ml

hence g := Y, |ful € LL(X). In particular, g is finite p-a.e., so )., f, converges p-a.e.
and |Zﬁ:1 fa| < g for all k € IN. It then follows from Dominated Convergence that

f=Yifa€ LL(X) and

fxfd”:“;{“fngnd#=li,{ngfxfndu=;fxfndy.

O

Another useful application of the Dominated Convergence theorem has to do with
parametric integrals:

Theorem 2.2.13. Let f : X X [a,b] — R be such that f(-,t) € L}l(X)for all't € [a,b]. Let

FO = [ fndue)

(1) If f(x,-) is continuous, for u-a.e. x, and there is g € LL(X) such that for all t € [a,b],
|f(x,t)] < g(x) p-a.e., then F is continuous.

(ii) If % exists and there is g € LL(X) such that for all t € [a, b],
is differentiable and

3—’:(x, t)‘ < g(x) p-a.e., then F
N
F(t) = fx o (x, t) du(x).
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Proof. Letty € [a,b]and t, — t, (if tp = a,btaket, >aort, <Db). Let f,(x) = f(x,t,). Then
|ful < g p-a.e and f,(x) = f(x,ty). By dominated convergence

}in)F(t) =lim F(t,) = limffn du = flimfn du = F(ty).
—ty n n X X

The proof of (ii) is similar, taking now g,(x) = %{;xm

2.3 Product spaces

Let (X, M, u) and (Y, N, v) be measure spaces. We want to consider the integral on X X Y
and relate it with the integral in X and in Y. First we need to define a measure space on
XXY.

Definition 2.3.1. The product o-algebra M ® N is the o-algebra generated by A x B, with
AeM,BeN.

Itis the smallest o-algebra such that the projections 1y : XXY — Xand mty : XXY - Y
are measurable. Moreover, f.Z — XxY is measurableiff nxo f and m, o f are measurable.
We want now to define a measure on M® N that is somehow the product of 1 and v.

Examples 2.3.2. 1. B(RY) ® B(RM) = B(RN*M).

By Proposition 1.4.14, B(RY)® B(RM) c B(RM*M), and equality follows as B(RN*M)
is generated by M + N-rectangles. For A € B(RN), B € B(RM), have

mym(A X B) = my(A)mn(B)
and my.y will be the product measure.

2. LRY)® LIRY) & LIRNM).

Inclusion follows again from Proposition 1.4.14. In this case equality fails as
L(RN*M) is complete but L(RY) ® L(RM) is not complete.

Lemma 2.3.3. Let AX B = UjenA; X Bj where A,A; € Mand B, B; € N disjoint. Then
wAWB) = Y pA(A)).
j
Proof. We write

(A (B) = fy (A s(y) dv(y) = fy ( fx mx)xB(y)du(x)) dv(y).
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Now note that

Xa()xe(y) = xaxs(x, y) = Z Xaxs;(x,Y) = Z Xa,(X)xs;(y)-
j j

Therefore;
[ xsoms e = [ 3 xawn e = ¥ [ a0 = ¥ i o,
X X j X j

where we used the o-additivity of the integral of non-negative, measurable functions.
Hence, again by o-additivity,

) = Y0t [ )avis) = Y pams).
j

O

Let now & be the collection of finite unions of M x N-rectangles, then & is an algebra.
For E = UleAi X B; € & with A; disjoint and B; disjoint, define (check is well-defined)

p
ME) = ), 1(A)V(B).
i=1

Lemma 2.3.4. A is a premeasure on &E.
Proof. We checked above that A is g-additive in the class of M X N-rectangles. m|
Finally:

Theorem 2.3.5. There exists a complete measure space (X X Y,K, p) such that M@ N C K
and p(E) = A(E) for E € &, in particular,

p(AxB) = u(Av(B), Ac M,BEN.

Proof. Follows from Hanh's extension theorem - using Caratheodory’s construction. O

Definition 2.3.6. The product measure y ® v is the restriction of p to M® N.

Note that we have in particular (recalling the definition of outer measure induced by
a premeasure):

1 ®v(E) = inf {Z H(AV(By) : E C UenAy X By}

We are now ready to relate the integral on X X Y with respect to the measure u ® v
with the integrals in X and Y and prove the fundamental Fubini-Lebesgue’s theorem.
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Definition 2.3.7. Sections: let EC XX Y and f : X XY — R. Then we define

E.={yeY:(x,y)€E}, E'={xeX:(x,y)€E}

it Yo R, f/:X->R fuly) = /(%) = fx, y)
In particular, (xg)x = xe,, (XE)Y = XEv-
Proposition2.3.8. (i) Ee MON =E, e N,EV e M;

(i) fis M ® N-measurable = f, is N-measurable and f¥ is M-measurable.

Remark 2.3.9. Unless M = P(X), N = P(Y), the space M ® N is not complete: if e.g
A C Y is not in N, then taking a non-empty uy-null set N C X, have NXA C NXY
and (U®V)(INXY) = 0but NxA ¢ M® N: it it were then for x € N, the section
(NxA),=AeN.

For the Lebesgue measure, we have then that L(RY) ® L(RM) ¢ L(RN*M). In fact,

LRNM) = L(RN) ® LRM).

Hence the functions x — v(E,) and y — u(EY) are well-defined. Want to show that
we can obtain u ® v(E) by integrating the first function on X or integrating the second
function on Y. We see this first on &.

Lemma 2.3.10. If E € & then x v+ v(Ey) is M-measurable, y — u(EY) is N-measurable and

(L®V)(E) = fX V(Ey) du = fy p(EY) dv.

To show that the lemma above holds in the class M ® N, it would suffice to see now
that the class of sets where the conclusions hold is a g-algebra. Instead we show that it
is a monotone class: a collection A is a monotone class if E; € A, E; /" E or E; \, E then
E € A. Any o-algebra is a monotone class (and if A is an algebra, then A is monotone
class iff it is a o-algebra). In general, the o-algebra generated by some collection A
coincides with the smallest monotone class that contains ‘A ([Fol] 2.35)

The next results can be regarded as Fubini’s theorem for sets:

Theorem 2.3.11. Let (X, M, u) and (Y, N,v) be o-finite measure spaces. If E € M ® N then
x = v(Ey) is M-measurable, y — u(EY) is N-measurable and

(4 ®v)(E) = f v(Ex) dp = fy W(EY) dv,
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Proof. Let ¥ be the class of sets E C X X Y such that the conclusions of the theorem hold
for E. Then ¥ D> & We now prove it is a monotone class, which proves that it contains

MeN.

Let E, € ¥ such that E, /' E = UE,. Then, for each y € Y, f,(y) = w(E}) is N-
measurable and f, /' f = u(EY). Then by Monotone Convergence, f is N-measurable
and

f u(EY) dv = lim f u(ES) dv = lim(u @ v)(E,) = (1 ® v)(E)
Y Y

where in the last step we used Monotone convergence for sets / continuity from below.
In a similar way, we can show

fX WE) dp = (4 ®v)(E),

soEe 7. Letnow E, € ¥ suchthatE, \\E=NE,. Ifforallxe X,y €Y,

f U((E)?)dv < oo, f U((E)) dis < oo,
Y X

we can proceed in the same way, and use Monotone Convergence for decreasing se-
quences and sets to get E € .

In particular, the result if proved when both p and v are finite measures: in this case
¥ is a monotone class that contains &, hence by the remarks above, it contains M® N.

In the o-finite case, write X X Y = UX|; X Y}, where X;, Y; have finite measure and
X;xY; /" XxY. Then the lemma holds for EN (X; X Y;) and an application of Monotone
Convergence yields the result also for E. ]

Note that the equality in the previous theorem can be written as

fX xedugv- fX ( fy (XE)x<y)dv(y>) du(x) = fy ( fX (xE)y<x>du(x)) dv(y).

Theorem 2.3.12 (Fubini-Tonelli-Lebesgue). Let (X, M, u) and (Y, N,v) be o-finite measure
spaces.

1. (Tonelli) If f : X XY — [0, +o0] is y ® v-measurable then

s = [ fn, h= [ prda
Y X
are measurable and

[ fiuev= f ( fx fx(}/)dV(}/)) Au) = f ( f fy(x)dwy)) Au().
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2. (lebi?i) Iff € Lug, (XXY)then f € Li(Y) p-ae., f¥ € L (X) v-a.e, g € Li(X), h € Ly(Y)
and also

 rausv= [ ( [ fx(y)dV(y)) dut) = | ( | fy(x)dv(y)) A ().

Proof. In the previous theorem, we saw that the (1) is true for characteristic functions,
and it follows also for non-negative, measurable simple functions. Hence, if f is yu ® v-
measurable, let f, be simple such that f, // f. Then g, ,/* g h, /" hso gh are
measurable, and Monotone Convergence yields the result for f.

For 2., assuming now that f is integrable, an application of 1. to |f| yields that g and &
are finite a.e., that is, f, € LI(Y) u-a.e., f¥ € LL(X) v-a.e., and also that ¢ € L}t(X), heLXY),
as the iterated integrals of | f| are finite.

Equality of iterated integrals in this case now follows from an application of 1. to f*,
f. m|
Examples 2.3.13. 1. Let X = Y = N, u = v = #. Then Fubini’s theorem states that if

the series )., cn men @n,m iS absolutely convergent then

E Aym = E E Aym = E E Apm-
m m n

n,meN n

2. LetX=Y=[0,1], M= N = 8B([0,1]) and u = m, v = # (not o-finite). Let D be the
diagonal in X X Y and f = xp. Then

f f Xp(x,y)d#dm =1, f f Xp(x, y)ydmd# =0,
[01] JI0,1] 0,11 J0,1]

f Xp(x,y)d(m @ #) = oco.
[0,1]x[0,1]

and

As we have noted, the space M ® N is in general not complete. We can give a
version of Tonelli/Fubini in the complete case, in particular, for L(RN*M), recalling that
any measurable function on the completion coincides a.e. with a function on M® N
([Foll] 2.39).

Remark 2.3.14 (Equivalent definition of integral). Let (X, M, u) be a o-finite measure
space and u ® m be the product measure on M x B(IR), m the Lebesgue measure.

Then f : X — [0, +o0] is M-measurable if, and only if, Q¢(X) is u ® m-measurable, for
any E € M, where Q¢(X) = {(x,y) : 0 < y < f(x)}, and in this case

fX fdp = (u ®m)(Qs(X)).
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This result can be checked directly if f is simple, and by Monotone convergence, for
integrals and measures, we see that if f is measurable then Q¢(X) is measurable and
the integral coincides with (u ® m)(Qs(X)). Conversely, note that sets f™()A, co[, A > 0
coincide with sections of Q¢(X).

For arbitrary functions, we get then that f : X — R is integrable iff Q;;(X) ={(x,y):
0<y<f(®), Q}(X) ={(x,y) : 0 > y > f(x)}, are u ® m-measurable and in this case

fxfdﬂ = (p@m)(QF(X)) — (1 ©m)(C(X)).

In particular, we see that the Lebesgue integral on RY coincides with the Riemann
integral, when defined, as the Lebesgue measure generalizes Jordan content.

2.4 Differentiation of measures

We consider now a more general class of measures that are not necessarily non-negative.

Definition 2.4.1. Let M be a o-algebra on X and v : M — R. Then v is a signed measure if
v(0) = 0, v attains at most one of the values +o0o or —co and v(U,enA;) = Y ,en V(AL), for
any disjoint A, € M. If v is finite, we say v is a real measure.

We will call from now on the non-negative measures considered so far positive mea-
sures. Any positive (finite) measure is a signed (real) measure. If y is given as the
difference of two finite, positive, measures, then u is a real measure. Note that, in
general, a signed measure is not monotonic.

The main reason we are interested in real measures here is that if u is a positive
measure and f : X — R is uy-integrable, then the indefinite integral

AME) = fE fdu

is a real measure. In this case we write f = Z—ﬁ and call it the generalized derivative of A

with respect to u. A fundamental question in integration theory is to determine which
measures admit such a representation. Note that if u(E) = 0 then A(E) = 0, and we will
see that this property is also sufficient to show that A has a generalized derivative.

We first study the structure of real measures.
Definition 2.4.2. Let v be a real or signed measure.
e Aisv-positiveif v(E) >0, forallEC A e ifv(ENA) >0, forall Ee M.

o Aisv-negativeif v(E) <0, forall EC A
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o Aisv-nullif v(E) =0, forallEC A

Note that a v-null set has measure 0, but not all measure 0 sets are v-null (unless
the measure is monotonic). Moreover, v is monotonic when restricted to the class of
v-positive or v-negative sets:

Proposition 2.4.3. (i) P is v-positive, Q C P, then Q is v-positive and v(Q) < v(P);
(ii) N is v-negative, L C P, then L is v-negative and v(L) > v(N).

(iii) if P, are v-positive, then P = U,enP,, is also v-positive and v(P) > v(P,,)

Theorem 2.4.4 (Hahn’s decomposition). Let v be a real measure. Then there exist a pair
(P, N) with v-positive set P and a v-negative set N such that X = PUN, PN N = (. If (P",N’)
is another such pair then P \ P" and P’ \ P are v-null sets.

Examples 2.4.5.
V= fxfdv then can take P = {x: f(x) > 0} and N = {x : f(x) < 0}.
v =01 — 6_1 then v({—1,1}) = 0 but it is not a v-null set.

Definition 2.4.6. Let v be a real or sighed measure and (P, N) be a Hahn’s decomposition
for v. Then

o the positive variation of v is v*(E) := v(E N P);
e the negative variation of vis v~ (E) := —v(E N N);
e the fotal variation of v is |V|(E) := v*(E) + v~ (E).

We can always write
v(E) =v*(E)—v (E), Ee M.

It is easy to check that v*, |[v| are positive measures, finite if v is finite. Moreover v* do
not depend on the Hahn decomposition taken: if (P’, N’) is another such decomposition,
then v(P \ P’) = v(P" \ P) =0, hence

VENP)=v(EN(P\P)+v(ENPNP)=v(ENPNP)=v(ENP).
In fact, (Exercise)
VI(E) =supfv(ENA):Ae M}, v (E)=-inf[v(ANE):Ae M)
and a set E is v-positive /v-negative /v-nulliffv=(E) = 0/v*(E) = 0/|v|(E) = 0, respectively.

Definition 2.4.7. Let v,v’ be signed, or real, measures. Then v and v’ are said to be
mutually singular, v L V', if there are A,B € M suchthat X=AUB,ANB =0and Bis
v-null, A is v'-null.
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Note that if v L v" as above, then v(E) = v(E N A) and v'(E) = v/(E N B). The support
of a measure v is the smallest S € M such that v(E) = v(EN S). Then v L v iff v and v/
have disjoint supports. We proved:

Theorem 2.4.8 (Jordan’s decomposition). Let v be a signed measure. Then there exist unique
positive measures v*, v~ such that

v=vt—v7, vi L.
If v is real then v*, |v| are finite and bounded.

We can now define integration with respect to signed measures: let L}(X) = L, (X) N

L! (X)and
Lfdv:zﬁfdf—ﬁfdv‘.

Definition 2.4.9. Let i be a positive measure and v be signed measure. We say that v is
absolutely continuous with respect to u, v << p, if

u(E) = 0 = v|(E) = 0.

Easy to check thatv << p © | <<y ©v' << pand v << .

Lemma 2.4.10. If v << pandv L u thenv = 0.

Proof. Let A, Bbe such that X = AUB and u(A) = |[v|(B) = 0. Then by absolute continuity,
[V|(A) = 0, hence |[v| = 0and v = 0. O

Examples 2.4.11. 1. The delta measure § is not absolutely continuous with respect
to the Lebesgue measure m, as m({0}) = 0 and 6({0}) = 1. In fact 6y L m.

2. If f € Ly(X), the indefinite integral

A= [ fau

is a real measure and A << p.

Theorem 2.4.12 (Radon-Nikodym-Lebesgue). Let v be a o-finite signed measure and 1 be a
o-finite positive measure. Then there exists a unique pair (A, p) of o-finite signed measures such
that

v=A+p, A<<u, pdlpu

Moreover, there is f € L}I(X), unique -a.e., such that

A(E):j;fdy.
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Proof. Uniqueness of the decomposition follows from the previous lemma. Also, if
f,g : X = R are p-integrable such that

A(E):j;fdy:ngdy, VEe M

then f = g y-a.e., so f and g represent the same element in LL(X).

1) To prove that such a decomposition exists, we first assume that v and p are both
finite positive measures.® Let

F={f:X—]0,00]: LfdySV(E),VEEM}.

Then ¥ #0and f,g € ¥ = h = max{f, g} € ¥, hence max{fi,..., fil € Fif f1,..., fu €F.
Now let a = sup{fxfdy : fe€F). Thena < v(X) < . Let f, € ¥ such that

fon du — aand g, = max{fy, ..., f,} € ¥ increasing. Let

f =sup{f,} =limg,.

‘fEfd‘u:IimegndySv(E)

so f € ¥. Moreover, fody =g, since f > f,, hence fody > fon du, for alln € N, so it
follows that fxfdy > limfxfn du = a.

By Monotone convergence,

Let now A(E) := fE fduand p :=v — A, so p is a positive, finite, measure. The proof
is finished in the positive, finite case if we show that p L p.

2) Now for o-finite, positive measures: write X = UA; with A; disjoint, and u(A;) < oo,
V(Aj) < oo. Let uj(E) := w(ENAj), v{(E) == v(EN Aj). Then uj, v; are positive, finite
measures, so by what we just proved

vi=Aj+p;, piLy, A(E) = j; fidu;.

Then (A, p) is a suitable decomposition for v, with A =} A;, p =}’ p;.

3) For real measures, apply the results just proved to f*, f~. ]

The pair (A, p) is called the Lebesgue decomposition for v with respect to u. We now
have:

®In this case, A and p are also positive, in particular, always have A(E) < v(E).
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Theorem 2.4.13 (Radon-Nikodym). Let v be a o-finite signed measure and u be a o-finite
positive measure. Assume v << p. Then there exists unique f € Lzl(X) such that

V(E):fEfdy.

Proof. Since v << y, the pair (v, 0) is a Lebesgue decomposition. The result follows from
Radon-Nikodym-Lebesgue and uniqueness of decomposition. ]

Example 2.4.14. X = [0,1], M = B([0, 1]), v = m the Lebesgue measure, and u = #. Then

m << #, but there is no function f such that m(E) = f[o 1 fd#.

We have then that the class of measures given by an indefinite integral with respect
to some given positive measure p coincide with the absolutely continuous measures
with respect to p.

Definition 2.4.15. If v << u then we define the generalized derivative of v with respect to

u as the unique

v %
@ €L,(X) st v(E) = fdy du.

E

Proposition 2.4.16. Let v be a o-finite real measure and u, A o-finite positive measures, v << L,
pu << A

(1) Ifv' is also o-finite real measure with v’ << u then

dv+v) dv dv
= —+

du du  du’
(it) Forall ¢ € LY(X):
dv
dv :f —dyu.
fg ng# !
(iii) Have also v << A and
dv  dvdu
—=——, A—ae
dA  dudA
(iv) If A << p then
dAdu
@ﬁ = 1, —a.e

For the remainder of this section, we outline how the Fundamental Theorem of
Calculus for Riemann integrals can be generalized in the Lebesgue setting, using the
results seen so far.

We consider now Borel measures on R. (MISSING)
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2.5 [LF-spaces

Definition 2.5.1. Let (X, M, u) be a measure space and 1 < p < co. The space L/(X) is the
space of equivalence classes of M-measurable functions f : X — R such that

f @y < oo,
X

where two functions are equivalent if they coincide y-a.e. For f € L{(X) we define

£l = ( fx | f(x)lpdy)% |

The space Ly (X) is the space space of equivalence classes of M-measurable functions
f:X — Rsuch thatinf{sup g : f = g u —a.e.} < oo, and define

Iflle =inf{supg: f =g u—ael.

For p = 1, we saw that L}l(X) is a vector space and it is easy to check that || - ||; is a
norm.

Theorem 2.5.2 (Holder’s inequality). Let 1 < p < oo and f € Ly(X) and g € LI(X), with
++3 =1 Then fg € Li(X) and
£ gl < lIflpligll,-

If p = 2, this is the Cauchy-Schwartz inequality.
Theorem 2.5.3 (Minkowsky’s inequality). Let f, g € Li,(X). Then f + g € Li,(X) and

If =+ &lly < 1l flly + 118l

It then follows that Lf,(X) is a normed space, for 1 < p < co. For p = 2, we get an inner
product space:

<f,8>= fxfgdy-

Theorem 2.5.4 (Dominated Convergence). Let f, € L’Z(X), 1 < p < oo such that |f,| < g
u-a.e. with g € LN(X). If f, — f p-a.e., then f € LI(X) and

fxfdyzlimf);fn,d‘u.
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Proposition 2.5.5. Let f, € LZ(X) such that Yo" || full, < co. Then }¥.,”; f, converges u-a.e. to

f € Li(X) and
Lfdu=L;fndu=;Lfnd#-

Proposition 2.5.6. Let V be a normed space. Then V is complete iff any absolutely convergent
series is convergent.

Theorem 2.5.7 (Riesz-Fischer). If 1 < p < oo, then L¥(X) is complete, hence a Banach space.
Ifp =2, it is a Hlbert space.

Proposition 2.5.8. Let 1 < p < co. The class of simple function s = }. a;xg, with u(E;) < oo,
is dense in L} (X).

In R (or RY), simple functions can be approximated by continuous functions: it
follows from Urysohn’s lemma and the definition of Lebesgue measurability that given
E € L(RR) there exist K compact and U open such that K ¢ E c U and m(U \ K) < €, so
that there exists f € C.(IR), continuous with compact support, such that yx < f < xu,
hence

m({x : f(x) # xe} <e.
Together with density of simple functions this yields:

Proposition 2.5.9. Continuous functions with compact support are dense in L/, (RR).
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