ANÁLISE COMPLEXA

1^{o} Exame 99/00

- 1. Seja $T(z) = \frac{az+b}{cz+d}$ uma transformação de Möbius que preserva a recta real, e a sua orientação, com ad bc = 1. Mostre que T tem dois pontos fixos em \mathbb{R} se e só se |a+d| > 2.
- 2. Calcule o integral $\int_0^{2\pi} \frac{d\theta}{\frac{1}{2} + \cos^2 \theta}.$
- 3. Seja $p(z)=z^4+\frac{z}{2}+\frac{1}{6}$. Prove que p tem 3 zeros em $B=\{z\in\mathbb{C}:|z|\geqslant\frac{1}{2}\}$ e calcule o índice da curva $\gamma(t)=\frac{p(\frac{1}{2}e^{it})}{\frac{1}{16}e^{4it}},\,t\in[0,2\pi]$, em torno da origem.
- 4. Seja $\Pi(\mathbb{C}^*)$ o grupo das classes de homotoia de caminhos fechados em $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, que começam e acabam em 1, com a operação de composição. Prove que a função $\varphi: \Pi(\mathbb{C}^*) \to \mathbb{Z}$, dada por $\varphi(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z}$ está bem definida e que é um homomorfismo de grupos sobrejectivo.
- 5. Seja h uma função inteira, de ordem finita ρ , cuja sucessão de zeros, de acordo com as respectivas multiplicidades, é dada por $z_n = n^2$, $n \in \mathbb{Z}$ (isto é, 0 é zero simples e $n^2 > 0$ é duplo). Prove que $\rho \geqslant \frac{1}{2}$. Supondo $\rho = 1$, $\lim_{z \to 0} \frac{h(z)}{z} = i$, $\lim_{z \to 1} \frac{h(z)}{(z-1)^2} = 2e$, determine uma factorização de h.
- 6. Seja T o interior do triângulo de vértices $0, 1, i \in \mathbb{C}$, e f_1, f_2 duas transformações conformes entre T e $\mathbb{H} = \{z : \text{Im} z > 0\}$.
 - (a) Prove que $f_1 \circ f_2^{-1}$ é uma transformação de Möbius, e indique a sua forma mais geral.
 - (b) Prove que é possível extender f_1 a uma função meromorfa em \mathbb{C} e que essa função resultante é uma função elíptica.
- 7. Prove o teorema de Mittag-Leffler: Se $\{z_n\}_{n\geq 1}$ é um conjunto discreto de números complexos e $p_n(z)$ uma sequência de polinómios sem termo constante, então existe uma função meromorfa em \mathbb{C} , cujos únicos polos estão em $\{z_n\}$ e cuja parte principal em z_n é $p_n(\frac{1}{z-z_n})$.