Exercícios sobre transformações de Möbius

8 de Outubro de 2007

- 1. Sejam $\phi_1: S^2 \setminus \{(0,0,1)\} \to \mathbb{C}$ e $\phi_2: S^2 \setminus \{(0,0,-1)\} \to \mathbb{C}$ as projecções estereográficas a partir dos pontos PN = (0,0,1) e PS = (0,0,-1) da esfera $S^2 \subset \mathbb{R}^3$. Mostre que a aplicação $\mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ envia o número complexo z em $1/\bar{z}$.
- 2. Se $T(z) = \frac{az+b}{cz+d}$ é uma transformação de Möbius diferente da identidade, e ad-bc=1, mostre que $T\circ T(z)=z$, para todo z, se e só se a=-d.
- 3. Mostre que uma equação do tipo $az\bar{z}+bz+\bar{b}\bar{z}+c=0$, com $b\in\mathbb{C}$, $a,c\in\mathbb{R}$, e com $|b|^2-ac>0$ define uma circunferência em \mathbb{C} se $a\neq 0$, e uma recta em \mathbb{C} se a=0. No caso da circunferência, determine o seu centro e raio.
- 4. Prove que se T é uma transformação de Möbius com dois pontos fixos $\alpha, \beta \in \mathbb{C}$, então existe $\lambda \in \mathbb{C} \setminus \{0\}$, tal que $\frac{T(z)-\alpha}{T(z)-\beta} = \lambda \frac{z-\alpha}{z-\beta}$; Da mesma forma, se T tiver um único ponto fixo $\alpha \in \mathbb{C}$, então existe $\beta \in \mathbb{C}$, tal que $\frac{1}{T(z)-\alpha} = \frac{1}{z-\alpha} + \beta$.
- 5. Duas transformações de Möbius S e T dizem-se conjugadas se existir uma transformação de Möbius F tal que $S = F^{-1} \circ T \circ F$. Prove que:
 - (a) Se T tem um único ponto fixo $\alpha \in \mathbb{C}$, então T é conjugada a uma translacção da forma S(z)=z+1.
 - (b) Se T tem dois pontos fixos $\alpha, \beta \in \mathbb{C}$, então T é conjugada a uma função da forma S(z) = az. $(a \in \mathbb{C}^*)$.
- 6. Considere a transformação de Möbius T, tal que T(0)=2, T(1)=1, $T(-1)=\frac{5}{3}$. Quantos pontos fixos tem T em $\overline{\mathbb{C}}$? Determine T(C) onde C é a circunferência unitária $C=\{z\in\mathbb{C}:|z|=1\}$.
- 7. Mostre que $[z_1, z_2, z_3, z_4]$ é um número real se e só se os pontos z_1, z_2, z_3 e z_4 se encontram numa circunferência de $\overline{\mathbb{C}}$.