Complementos de Análise Complexa Primeiro Teste, 20/11/2007

20 de Novembro de 2007 Duração: 90 minutos (Uma das perguntas 3,4,5 é opcional)

- 1. Seja $T(z) = \frac{\alpha z}{1 \bar{\alpha}z}$ uma transformação de Möbius, com $\alpha \in \mathbb{C}$. Quais os valores que α não pode tomar? Mostre que T preserva a circunferência unitária $C = \{z \in \mathbb{C} : |z| = 1\}$ e que, para $|\alpha| < 1$, $T(\mathbb{D}) = \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.
- 2. Seja Ω uma região no plano complexo, $z_0 \in \Omega$, f(z) uma função holomorfa em Ω e considere a aplicação

$$\begin{array}{ccc} \psi:\pi_1(\Omega,z_0) & \to & \mathbb{C} \\ & [\gamma] & \mapsto & \int_{\gamma} f(z) dz. \end{array}$$

- (a) Mostre que ψ está bem definida, é um homomorfismo de grupos e a sua imagem é um subgrupo abeliano de $(\mathbb{C}, +)$. (b) Pode, para certo f(z), a imagem ser um subconjunto denso de $\mathbb{R} \subset \mathbb{C}$? Justifique.
- 3. Seja g(z) holomorfa no disco aberto centrado na origem de raio 2, e verificando |g(z)| < 1 na circunferência unitária |z| = 1. Mostre que g tem um único ponto fixo z_0 (i.e, $g(z_0) = z_0$) no disco unitário |z| < 1.
- 4. Considere a seguinte sucessão de polinómios $f_n(z) = 1 + z + \cdots + \frac{z^n}{n!}$. Mostre que para todo o R > 0 existe um natural N tal que $f_n(z)$ para n > N não tem zeros em $\mathbb{D}(0,R)$. (Sugestão: prove que há convergência uniforme em compactos e use o teorema de Hurwitz).
- 5. Seja f uma função meromorfa em \mathbb{C} e no ponto ∞ . (a) Prove que f é uma função racional, isto é que pode ser escrita na forma f(z) = p(z)/q(z) onde p(z) e q(z) são polinómios. (b) Mostre que a diferença entre o grau de p e o de q é precisamente igual a $-ord_{\infty}f$.