Complementos de Análise Complexa Segundo Teste, 15/12/2007

Duração: 90 minutos (Uma das perguntas 4,5 é opcional)

- 1. Seja h(z) uma função inteira de ordem 1, cujos únicos zeros são simples e estão localizados nos inteiros: $z_n = n, \quad n \in \mathbb{Z}$.
 - (a) Supondo que h(z) é impar e que $\lim_{z\to 0}\frac{h(z)}{z}=\pi$, determine a factorização de Hadamard de h(z).
 - (b) Mostre que $\prod_{n=1}^{\infty} \left(1 \frac{1}{16n^2}\right) = \frac{2\sqrt{2}}{\pi}$.
- 2. Seja $f:\mathbb{D}\to\mathbb{D}$ uma função holomorfa do disco unitário nele próprio. Prove que para todo $a\in\mathbb{D}$ se tem

$$\frac{|f'(a)|}{1 - |f(a)|^2} \leqslant \frac{1}{1 - |a|^2}.$$

(Sugestão: Considere uma função $F = \phi_1 \circ f \circ \phi_2 : \mathbb{D} \to \mathbb{D}$ com F(0) = 0, onde ϕ_1, ϕ_2 são certos automorfismos do disco, e aplique o lema de Schwarz.)

- 3. Seja f(z) uma função elíptica em relação a um recticulado Λ , tendo apenas um pólo num polígono fundamental para Λ .
 - (a) Mostre que $\operatorname{Res}_w f(z) = 0$, para todo pólo w de f(z).
 - (b) Supondo que a origem é um pólo triplo de f(z) e que esta função é impar, prove que f(z) é um múltiplo da função $\wp'(z)$, sendo $\wp(z)$ a função de Weierstrass do recticulado Λ .
- 4. Prove que uma função u é harmónica numa região Ω se e só se satisfaz a propriedade do valor médio em discos de Ω , isto é, se para qualquer $z \in \Omega$ e disco $\mathbb{D}(z,r) \subset \Omega$ centrado em z (r>0), se verifica:

$$u(z) = \frac{1}{\pi r^2} \int_{\mathbb{D}(z,r)} u \ dx \ dy.$$

- 5. Seja f(z) analítica num disco $D \subset \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ e $u = \Re f$ harmónica em \mathbb{C}^* . Seja $f_n(z), (z \in D)$ a função obtida por continuação analítica ao longo do caminho $\gamma_n : [0,1] \to \mathbb{C}^*$ dado por $\gamma_n(t) = e^{2\pi i n t}, \quad n \in \mathbb{Z}$.
 - (a) Mostre que, para n fixo, $f_n(z) f(z)$ é constante em D.
 - (b) Prove que a aplicação $\phi : \mathbb{Z} \to \mathbb{R}$, definida por $\phi(n) = \Im(f_n(z) f(z))$ é um homomorfismo de grupos, para qualquer $z \in D$.