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Chapter 1

Phase spaces and dynamical
systems

1.1 Determinism, phase space, group, vector

field

Dynamical systems describe deterministic evolution processes with con-
tinuous dependence on time and on the initial condition. The idea of deter-
minism involves the consideration of an evolution in a phase space or state
space in such a way that all past and future of the evolution is determined
by the present state of the system, and the state reached from a given state
y after t units of time is the same, no matter the evolution from y developed
between instants 0 and t or between instants s and s+ t (see Figure 1.1). De-
terminism can be described precisely by the concept of dynamical system or
flow. Let I be either IR or Z and let X be a topological space. A dynamical
system or flow in X is a continuous function ϕ : I ×X → X such that

i) ϕ(0, x) = x, x ∈ X

ii) ϕ(t+ s, x) = ϕ(t, ϕ(s, x)), x ∈ X, t, s ∈ I

The variable t in ϕ(t, x) is known as the time variable and the variable x
as the state variable. A dynamical system is said to be finite dimensional
if its phase space X is finite dimensional and infinite dimensional if that
is not the case, it is said to be continuous if I = IR and it is said to be
discrete if I = Z. For a continuous dynamical system it is also usual to
write ϕtx = ϕ(t, x) or T (t)x = ϕ(t, x) and refer to the family ϕt, t ∈ IR or
T (t), t ∈ IR as a one-parameter group of transformations in X or, if the
context is clear, a group in X. This comes naturally because the map t→ ϕt
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Figure 1.1:

Figure 1.2:

defines a group isomorphism from the real additive group to a subgroup of
the group of homeomorphisms (continuous functions with continuous inverse)
on X with the composition of functions as operation.

It is clear from the previous discussion that, when modeling an evolution
process as a dynamical system, we must consider for the state of the system
only information from which all the past and future evolution of the process,
for the purposes desired from the model, would be uniquely determined. In
any particular instance, there will be infinitely many possible choices for the
model phase space and we should choose one that is as simple as possible
for the desired purposes; for example, it may be appropriate to take a phase
space with minimal dimension.

Sometimes it does not make sense to define the evolution ϕ(t, x) for all
t ∈ IR (e.g, the state may evolve to infinity in finite time), but it is possible for
every x ∈ X to define ϕ(t, x) for t in an interval IX which is the intersection
of I with an open interval containing zero and depending on x; we then say
that ϕ is a local dynamical system or a local flow in X.

A continuous dynamical system ϕ is said to be differentiable or smooth
if X is a differential manifold and ϕ(t, x) is differentiable relative to t at
t = 0; if this is the case and the system is finite dimensional, we call the
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function f(x) = ∂ϕ(t, x)/∂t|t=0 the vector field associated with the dynam-
ical system ϕ (see Figure 1.2), and the differential equation ẋ(t) = f(x(t)) or
ẋ = f(x), where the dot stands for derivative relative to t, is known as the
Ordinary Differential Equation (ODE) associated with the dynamical
system ϕ.

In certain applications we need to consider processes that are semideter-
ministic, in the sense that the present state determines the future but not the
past. This situation may be described by the concept of semidynamical
system or semiflow which amounts to modifying the concept of dynamical
system or flow, introduced above, by only requiring ϕ(t, x) to be defined for
t ≥ 0. For a semidynamical continuous system, the family ϕt, t ≥ 0 or T (t),
t ≥ 0 is called a one-parameter semigroup of transformations in X
or, if the context is clear, a semigroup in X. The other concepts refered
above for dynamical systems can be defined for semidynamical systems just
by restricting to t ≥ 0.

Even if a semigroup T (t), t ≥ 0 in a linear phase space X is not differen-
tiable, it may be useful to consider the function

Ax = lim
h→0+

1

h
[T (h)x− x],

defined in the set D(A) where the limit exists. The function A, which takes
the role played above by the vector field, is then known as the infinitesimal
generator of the semigroup T (t), and D(A) is called the domain of the
infinitesimal generator. This is particularly useful for infinite dimensional
systems.

1.2 Systems defined by ODEs in IRn

We saw in the preceding section that a smooth local dynamical system in
IRn defines an ODE. Inversely, under very broad conditions, an ODE ẋ = f(x)
in IRn defines a smooth local dynamical system.

An ODE of the type ẋ = f(x) is called autonomous because the vec-
tor field f does not depend explicitly on t. We will also have to study
nonautonomous ODEs ẋ = f(t, x) and their dependence on parameters.
Therefore, we consider here some facts from the elementary theory of ODEs
of the form ẋ = f(t, x, λ). It is known that if f : D → IRn is continu-
ous in an open set D ⊂ IR1+n+p, with f(t, x, λ) locally lipschitzian1 in x for

1i.e., for every compact set K ⊂ D there exists a constant CK such that |f(t, x, λ) −
f(t, y, λ)| ≤ CK |x − y|, (t, x, λ), (t, y, λ) ∈ K; note this necessarily holds if the derivative
of f(t, x, λ) relative to x exists and is continuous in D.
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(t, x, λ) ∈ (IR× IRn× IRp)∩D, then for each (t0, x0, λ0) ∈ D the initial value
problem

ẋ = f(t, x, λ0), x(t0) = x0

has a unique solution x(t) = x(t; t0, x0, λ0) defined for t in an open inter-
val depending on t0, x0, λ0 and containing t0; this solution is continuous in
t0, x0, λ0 and continuously differentiable in t. Furthermore, if f is Ck then
the solution is Ck in t0, x0, λ0 and Ck+1 in t. Solutions can be extended
to maximal intervals of definition I(t0, x0, λ0) and, when t approaches one
of the endpoints of this interval, either (t, x(t; t0, x0, λ0), λ0) approaches the
boundary of the domain of definition D or else goes to infinity in norm; in
this last case, if the maximal interval of definition is (−∞,+∞) we say the
solution is global, and if one of the endpoints of the interval is finite then
necessarily |x(t; t0, x0, λ0)| → ∞ as t approaches the endpoint and we say
that the solution blows up at that point.

Applying the results above to an autonomous ODE ẋ = f(x) in IRn, with
f locally lipshitzian, it follows that the solutions x(t; t0, x0) of initial value
problems for this equation define a smooth local dynamical system ϕ in IRn

by ϕ(t, y) = x(t; 0, y); if, in addition, all the solutions of the equation are
global then they define a dynamical system. This shows that, except for
the technical assumption of f being lipschitzian, specifying a smooth (local)
dynamical system in IRn amounts to specifying an autonomous ODE in IRn.

1.3 Systems defined by ODEs in differential

manifolds

Frequently, in applications, the natural phase space for a system is a
differential manifold. This is illustrated here with two examples.

As a first example, let us consider a simple pendulum without friction
of length L and mass m, under the action of a constant vertical force (Fig-
ure 1.3), modeled with basis on Newton’s law of motion by mLẍ = F sin x.
We can take for state variables the angular position x and the angular ve-
locity y = ẋ of the pendulum and choose IR2 for phase space, writing the
corresponding differential equation as

ẋ = y

ẏ = − F
mL

sin x.

Clearly, modifying the angle x by a multiple of 2π should not modify the state
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Figure 1.3:

of the pendulum. It is then natural to take for phase space the cylindrical
surface [0, 2π)× IR, with 0 identified with 2π.

Perhaps a more clear example is that of a Newtonian motion of a rigid
body with a point fixed. The position of the body can be specified by the
position of an orthonormal frame attached to the body relative to a reference
frame. As for the preceding example, we can take as state variables the
position of the body and components specifying its velocity. The position
can be specified by the orthogonal transformations preserving orientation,
i.e., by points of the special orthogonal group SO(3) = {A : A is a 3 × 3
real matrix with AAt = I and detA = 1}, which is a differential manifold of
dimension 3. In this case the natural phase space is SO(3)×IR3 , a differential
manifold of dimension 6.

Since differential manifolds are locally euclidean, the concepts and meth-
ods of the local theory of dynamical systems in euclidean spaces can be
modified to apply to dynamical systems in differential manifolds. We shall
keep this in mind, but will restrict our attention to dynamical systems in
euclidean phase spaces for simplicity.

1.4 Infinite dimensional systems

Infinite dimensional systems, sometimes called distributed systems
arise frequently in applications. Particular cases of interest are systems de-
fined by Retarded Functional Differential Equations and by Partial Differ-
ential Equations. We shall introduce below these types of systems through
examples.
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Retarded Functional Differential Equations (FDEs) occur in many
situations in applications where one has to consider delays when modeling
evolution processes. This happens, in particular, in control theory, trans-
mission systems, viscoelasticity, chemical and nuclear reactions, population
dynamics, spread of diseases, biological systems, economics, etc.

Evolution Partial Differential Equations (PDEs) provide the fun-
damental modeling tool for continuum mechanics in areas like fluid dynam-
ics, elasticity, electromagnetism, magnetohydrodynamics, combustion theory,
chemical and nuclear reactions, population dynamics, biological systems, etc.
They are also important in quantum mechanics, particle physics, economics,
and can be used to describe the evolution of certain probabilistic processes.
The above areas are central to almost all aspects of Science and Engineering.

Because of its wide area of application, the study of the dynamics of infi-
nite dimensional systems is of great practical importance. It happens at the
interface between the theory of dynamical systems which developed from the
classical theory of Ordinary Differential Equations and the theory of Partial
Differential Equations and Functional Differential Equations on questions of
existence and uniqueness of solutions. Due to their own overwhelming techni-
cal difficulties, these two fields have mostly grown separately, with the result
that the systematic study of the dynamics of infinite dimensional systems
began only recently, about the mid 60’s, and is currently playing a growing
role in mathematics research.

1.4.1 Retarded Functional Differential Equations

Examples of differential equations with delays are

ẋ(t) = f(x(t), x(t− 1), x(t− 2))

ẋ(t) =
∫ 0
−1 f(θ, x(t+ θ))dθ.

In both cases ẋ(t) depends on past values of x(t). In the first equation this
dependence is on values at a finite number of past instants of time and in the
second equation it is on past values along a whole interval of time; we say that
the first equation has concentrated delays and the second distributed
delays. The first type of equations is also known as differential delay
equations or differential difference equations and the second type as
integro-differential equations.

In order to consider more general dependences on past values, given a
function defined on an interval of real numbers x : I → IRn, we denote its
translation of t units of time by xt , with xt(θ) = x(t + θ) ; if we want to
consider delays in an interval [−r, 0], xt(θ) should be taken with θ ∈ [−r, 0].
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We can then consider an autonomous Retarded Functional Differential
Equation (RFDE) as an equation of the form

ẋ(t) = f(xt).

In attempting to choose a phase space for a system defined by solutions
of this equation, we note that the values of a solution after the instant of
time t depend on the values it assumed in the interval of length r ending
at t and, consequently, the phase space should consist of functions defined
on [−r, 0] (see Figure 1.4). A simple possibility is to take for phase space
the space X = C([−r, 0], IRn) of the continuous functions from [−r, 0] to
IRn with the uniform norm ||ξ|| = sup {|ξ(θ)| : θ ∈ [−r, 0]}. We should
then consider initial value problems of the form ẋ(t) = f(xt), x0 = ξ. If
f : X → IRn is continuous and x(t), t ∈ [0, b), is a solution, it follows from
the equation that ẋ(t) is continuous on t ∈ [0, b); consequently, if the initial
condition ξ is not continuously differentiable it is impossible to extend xt for
t < 0. More dramatically, solutions with different initial conditions may come
together and coincide after some time, as it happens for the delay differential
equation ẋ(t) = −x(t − 1)[1 + x(t)] since all solutions with initial condition
ξ satisfying ξ(0) = −1 are identically −1 for t > 0. The two preceding
observations indicate that we can only expect that solutions of initial value
problems for RFDEs will define a semidynamical system in X. This is indeed
the case if f : X → IRn is locally lipschitzian. Similarly to what happens
for ODEs, it can then be shown that solutions to initial value problems for
the equation considered exist for t > 0 , are unique, depend continuously
on t > 0 and ξ ∈ X, are continuously differentiable on t > 0, and can be
extended to maximal intervals of existence; if, in addition, f maps bounded
sets into bounded sets and the maximal interval of existence [0, b) is bounded
then the solution blows up at t = b, i.e., x(t) → ∞ as t → b−. This implies
that the solutions x(t; ξ) of initial value problems at t0 = 0 for this equation
define a smooth local semidynamical system ϕ in X by ϕ(t, ξ) = xt(ξ), t ≥ 0.
The infinitesimal generator of the associated semigroup T (t)ξ = xt(ξ) , t ≥ 0
, is

(Aξ)(θ) = lim
h→0+

1

h
[T (h)ξ − ξ] (θ) =




f(ξ) , θ = 0

ξ′(θ) , θ < 0

for ξ ∈ D(A) = {ξ ∈ C1([−r, 0], IRn) : ξ′(0) = f(ξ)}, which is a dense set in
X with empty interior.
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Figure 1.4:

1.4.2 Partial Differential Equations

As the general theory of PDEs is quite complicated we give two simple
examples.

Let us first consider a scalar equation obtained by subtracting to the wave
equation a nonlinear term corresponding to a reactive process:

utt = uxx − f(u), 0 < x < 1,

with u(t, x) satisfying Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0 and
f : IR → IR in C2 satisfying f(u)/u > 0 for u 6= 0. Similarly to what was
done above for the pendulum, we can write this equation as a system

ut = v

vt = uxx − f(u).

It is clear that points in the phase space must be pairs of functions ξ = (u, v)
on the interval [0, 1] such that u(t, 0) = u(t, 1) = 0. One possibility, would be
to try to use pairs of C2 functions on [0, 1] with the first element vanishing at 0
and 1, a space we denote by C2

0×C2, taken with the uniform C2 norm, ||ξ|| =
sup {|ξ(x)|, |ξ′(x)|, |ξ′′(x)| : x ∈ [0, 1]}. We should then consider initial value
problems for the equation with initial condition (u(0, x), v(0, x)) = ξ(x),
with ξ ∈ C2

0 × C2. Although the solutions to initial value problems for this
equation can be shown to define a local dynamical system in C2

0 × C2, this
will not happen for x in higher dimensional spaces. A natural approach is to
use a phase space based on the energy associated with the equation, given
by

E(u, v) =
∫ 1

0

[
1

2
v2 +

1

2
(ux)

2 + F (u)
]
dx,
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where F ′ = f . It is easy to verify that this quantity is conserved along so-
lutions, by taking its derivative relative to t and using the equation and an
integration by parts. This suggests taking as points in the phase space pairs
(u, v) such that v is a square integrable function in I = [0, 1] and u is a func-
tion with square integrable derivative in the same interval and vanishing at 0
and 1; these spaces are usually denoted by L2 and H1

0 when one uses Lebesgue

integrals and the norms ||v||L2 = [
∫
I v

2]
1
2 and ||u||H1

0
= max {||u||L2 , ||ux||L2},

and they are, respectively, the closure in the corresponding norm of the set
of continuous functions and the set of continuously differentiable functions
vanishing at 0 and 1. We denote this phase space by X = H1

0 ×L2. It can be
shown that solutions to initial value problems for the equation considered do,
indeed, define a local dynamical system in X. The infinitesimal generator of
the associated group T (t) is

A

(
u
v

)
= lim

h→0+

1

h

[
T (h)

(
u
v

)
−
(
u
v

)]
=

(
uxx

v − f(u)

)
.

for (u, v) ∈ D(A) = {(u, v) ∈ X : uxx ∈ L2, v ∈ H1
0}, which is a dense set

in X with empty interior. It is sometimes useful to consider the effect of a
linear damping term added to the previous equation modifying it to

utt + αut = uxx − f(u), 0 < x < 1,

where α > 0. In this case, computing the time derivative of the energy along
solutions we obtain

d

dt
E(u, v) =

d

dt

∫ 1

0

[
1

2
v2 +

1

2
(ux)

2 + F (u)
]
dx = −α

∫ 1

0
v2dx.

The time derivative of the energy is negative along solutions and, therefore,
energy is dissipated. As in the preceding example, we can take for phase space
X = H1

0 × L2 and it can be shown that solutions to initial value problems
for the equation considered also define a local dynamical system in X.

We now consider a scalar reaction-diffusion equation, obtained by adding
to the linear heat equation, which by itself describes a diffusion process, a
nonlinear term corresponding to a reactive process:

ut = uxx − f(u), 0 < x < 1,

with u(t, x) satisfying Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0
and f : IR → IR being C2 and satisfying f(u)/u > 0 for |u| large. Reaction-
diffusion equations are used as models for processes occurring in chemical and
nuclear reactions, combustion, population dynamics, genetics, etc. Similarly
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to the energy function considered in the preceding example, we define the
function

E(u) =
∫ 1

0

[
1

2
(ux)

2 + F (u)
]
dx,

where F ′ = f . Its time derivative along solutions satisfies

d

dt
E(u) =

d

dt

∫ 1

0

[
1

2
(ux)

2 + F (u)
]
dx = −

∫ 1

0
(ut)

2dx.

This derivative is negative for all time and, therefore, the function E(u)
decreases. A natural phase space in this case is X = H1

0 . Similarly to what
happens for RFDEs, we should not expect to determine past evolution from
a given initial state; as a matter of fact, like for the heat equation ut = uxx,
initial conditions are smoothed instantaneously due to the diffusion effect,
in the sense that they become C∞ for t > 0 even if they are not smooth at
t = 0. We can only hope for solutions to initial value problems in X to define
a semidynamical system. It can be shown that this is, indeed, the case, and
we obtain a semigroup T (t) defined for all t ≥ 0 . Its infinitesimal generator
is given by

Au = lim
h→0+

1

h
[T (h)u− u] = uxx − f(u),

for u ∈ D(A) = {u ∈ X : uxx ∈ L2}, which is a dense set in X with empty
interior.

Dissipative infinite dimensional systems like those associated with RFDEs
with f bounded, and with the above reaction-diffusion equations, have in
common the property of defining a semigroup T (t), t ≥ 0, that compactifies,
in the sense that it maps closed bounded sets of the phase space into compact
sets (for all t > 0 in the case of reaction-diffusion equations, and for all t ≥ r
in the case of RFDEs). The damped nonlinear wave equation considered
above also compactifies, but only in the limit t→ +∞. The asymptotic be-
havior of such dissipative systems, as t→ +∞, and therefore their stationary
dynamics, can be studied by attempting to understand the evolution they
define in a suitable finite dimensional set. Therefore, much of the methods
used for the study of dynamical systems defined in finite dimensional spaces
can be used in studying a large class of infinite dimensional dissipative sys-
tems. We will restrict our attention to finite dimensional systems, but should
keep in mind that their study is useful for understanding the dynamics in
the infinite dimensional case.
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1.5 Discrete systems

Frequently in the study of continuous systems it is useful to consider
associated discrete systems. This happens, for instance, when a continuous
system is discretized in order to compute numerically its solution by a proce-
dure that can be programmed in a digital computer. For example, if we want
to solve numerically an initial value problem for an ODE in IRn, ẋ = f(x) ,
x(t0) = x0 with the Euler method, using interval steps of length ∆, we obtain
the recurrence relation

xi+1 = xi + ∆f(xi)

which is to be solved successively for x1, x2, x3,... beginning from x0, and we
expect that this sequence of values is a good approximation for the values
of the solution x(1∆), x(2∆), x(3∆),..., provided ∆ is sufficiently small.
Clearly, the recurrence relation above defines a local semidynamical discrete
system in IRn. As another example, when studying a nonautonomous ODE
in IRn ẋ = f(t, x) with f(t, x) periodic and C1 in t, say f(t+ T, x) = f(t, x)
with T > 0, it is frequently useful to consider a local discrete dynamical
system ϕ in IRn taking only the evolution of the values of solutions of the
ODE sampled after time intervals of length T , as xi = ϕ(i, x0) = x(iT ; 0, x0),
where x(t; t0, x0) denotes de value at t of the solution of the ODE which
satisfies the initial condition x(t0) = x0; T -periodic solutions of the ODE are
just fixed points of the discrete system and the identification of the solutions
of the ODE approaching, as t→ +∞, a certain T -periodic solution amounts
to the identification of initial conditions x0 for the associated discrete system
such that ϕ(i, x0) converges, as t → +∞,to the fixed point of the discrete
system corresponding to the periodic solution of the ODE considered.

Of course, discrete systems are also of interest by themselves and not only
as discretizations of continuous systems. In fact, it is sometimes appropriate
to model particular situations of various areas of application directly in terms
of discrete systems (a simple example that matters: interest rates in bank
deposits are computed just once daily and not continuously in time). Fur-
thermore, as mathematical models for many situations are to be simulated
in digital computers, it has been advocated that those situations should be
directly modeled by discrete systems, whenever that is reasonable.

As a specific illustration, we take the application of the Euler method to
the scalar ODE ẋ = x − x2. It is clear that this equation has two constant
solutions, x = 0 and x = 1, and that all other solutions are monotonous and
converge, as t → +∞, to −∞ if the initial condition is negative and to 1 if
the initial condition is positive. The recurrence relation corresponding to the
application of the Euler method is xi+1 = xi + ∆f(xi) = (1 + ∆)xi − ∆x2

i .
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Figure 1.5:

There are two points that are mapped to the origin, namely x = 0 and x =
(1+∆)/∆. It is convenient to change variables by setting x = y(1+∆)/∆, so
that in the new variable these points do not depend on the time step ∆. That
leads to the recurrence relation yi+1 = F (yi), with F (y) = (1 + ∆)(y − y2).
Now the points mapped to the origin are y = 0 and y = 1. The evolution from
any initial condition y0 is given by successive compositions of the function
F with itself yi = F i(y0) and can be very easily described geometrically, as
shown in Figure 1.5.

If we take a small fixed time step ∆ > 0 and observe the evolution of
the discrete system beginning at different initial conditions, we discover that
there are two fixed points, y = 0 and y = ∆/(1+∆) (in the original variable:
x = 0 and x = 1), and that the evolutions beginning at initial conditions
y0 ∈ (0, 1) all approach this last fixed point, monotonically if y0 ≤ 1/(1 + ∆)
and nonmonotonically if y0 > 1/(1 + ∆), while the evolutions beginning
at initial conditions outside the interval [0, 1] all go to −∞ (see Figure 1.6).
This contrasts with the observations that all solutions of the ODE considered
are monotonous and that all solutions with initial condition larger than 1
converge to 1 , as t→ +∞.

It is also interesting to study what happens as the time step increases.
Now, we will be interested only in initial conditions y ∈ [0, 1] and, since the
maximum value of F is (1+∆)/4, it follows that the successive values assumed
throughout the evolution remain in the interval [0, 1], provided ∆ ≤ 3. For
these values of ∆, yi = Fi(y0) defines a semidynamical system; in the interval
X = [0, 1]. It is not difficult to see that the evolution described above for
the discrete system is similar for all ∆ ∈ (0,∆1), with ∆1 = 2, in particular
evolutions with initial conditions different from the two fixed points, y = 0
and y = ∆/(1 + ∆) approach the latter. However, for ∆ > ∆1 that is no
longer true: none of the evolutions beginning at points different from the
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Figure 1.6:

fixed points approach one of them. For ∆ ∈ (∆1,∆2), with ∆2 ≈ 2.45,
such evolutions approach, instead, an evolution that alternates between two
different points which, for that reason, is said to be periodic of period 2 (see
Figure 1.7); notice that evolutions of period 2 alternate between fixed points
of F 2 and, similarly, evolutions of period k alternate between fixed points of
F k.

It is possible to continue this analysis and identify an increasing sequence of
numbers ∆k such that for ∆ ∈ (∆k,∆k+1) all evolutions beginning at points
in (0, 1) outside some finite set approach a periodic evolution of period 2k (see
Figure 1.8 for k = 2); the periodic evolutions of periods 2i (i = 1, 2, ..., k− 1)
that appeared for smaller values of ∆ are also present as well as the two
fixed points, but instead of attracting points on the nearby they repell them.
Furthermore, the sequence {∆k} is bounded and approaches ∆∞ ≈ 2.57. One
can find values of ∆ larger and arbitrarily close to ∆∞ such that the infinite
number of periodic evolutions with arbitrarily long periods which appeared
for lower values of ∆ and became repelling influence the evolutions beginning
at almost any point in the interval to be highly irregular and strongly sensitive
to changes in initial conditions, rendering unpractical to predict the future
evolution from an initial point that is known only approximately.

The preceding illustration shows that a discretization of a given continu-
ous dynamical system may define a discrete dynamical system whose dynam-
ics can be much different from that of the given system and, therefore, must
be studied on its own in order to understand its behavior and, eventually, to
decide what it means regarding the original system. In particular, the study
of the dynamics of numerical schemes is important.

If you consider the above example too artificial because, after all, the
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Figure 1.9:

Euler method should be applied with ∆ sufficiently small, you may prefer
to consider the application of the method of Newton (see Figure 1.9) for
computing numerically the zeros of the function g(y) = [1−1/(λy)]λ−1. That
amounts to considering the recurrence relation yi+1 = yi − f(yi)/f

′(yi) =
λ/(λ − 1)(yi − y2

i ) which is the same as that considered above with ∆ =
1/(λ− 1).

In the illustration with the Euler method presented above, for some values
of ∆ larger but arbitrarily close to ∆∞ the evolution is highly irregular and
up to a certain extent undistinguishable from random fluctuations. For this
reason, it has been called chaotic. The occurrence of chaos in deterministic
systems has received a lot of attention, specially in the past 15 years. It
is a topic attracting the interest of many researchers in different fields of
science, in part because of its implications for modeling (e.g., probabilistic
v.s. deterministic models). It is remarkable that such a complicated behavior
can occur for such simple dynamical systems as those defined in a real interval
by the iteration of a continuous map. Not surprisingly, part of the research
on discrete dynamical systems has been addressed to systems defined by
interval maps. Dynamical systems defined by maps in the real plane or by
analytic maps in the complex plane are also being extensively studied; the
study of the latter is a fascinating topic known as analytical dynamics.

In the following chapters we concentrate on continuous systems and use
discrete systems only occasionally. This is not an excessive particularization,

17



      

since most of the methods and results presented can be readily adapted to
apply to discrete systems.

1.6 Systems defined by nonautonomous equa-

tions

We consider here only nonautonomous ODEs in IRn since the situation is
similar for equations defined in other spaces. The solutions to initial value
problems for a nonautonomous ODE in IRn

ẋ = f(t, x)

with f(t, x) bounded and C1 in IR × IRn, do not define dynamical systems
in IRn because a solution is determined not only by its initial value in IRn

but also by the initial instant of time. There are, however, several ways of
associating a dynamical system to a nonautonomous equation.

We have already encountered one of them in the previous section when it
was shown how we can associate a discrete dynamical system to a periodic
ODE, say f(t+T, x) = f(t, x) with T > 0. In fact, taking only the evolution
of the values of solutions of the ODE sampled after time intervals of length
T , we obtain a local discrete dynamical system ϕ in IRn in the form ϕ(i, y) =
x(iT ; 0, y, f), where x(iT ; s, y, f) denotes the value at t of the solution of the
ODE which satisfies the initial condition x(s) = y.

Another simple possibility, which holds even if the ODE is not periodic,
is to add time to the state variables, defining a local dynamical system ϕ
with phase space IRn × IR by ϕ(t, (y, s)) = (x(t; s, y, f), t). This describes
in the phase space the simultaneous evolution of points in IRn and of time.
It amounts to consider the local dynamical system associated with the au-
tonomous ODE in IRn × IR

ẋ = f(t, x)

ṫ = 1.

The last possiblity has a serious disadvantage for the study of certain
asymptotic properties of the evolution, as t → ±∞. In fact, even if a solu-
tion in IRn of the original nonautonomous ODE is bounded, the correspond-
ing solution in IRn × IR of the associated autonomous system is unbounded.
Accordingly, the closure of the set of values assumed by solutions of the
nonautonomous equation may be a compact set, while at the same time the
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closure of the set of values of the corresponding solution of the associated
autonomous system cannot be compact, preventing the use of methods based
on compactness for the analysis of asymptotic behavior. In order to avoid
this drawback, we observe that, for the determination of the future and past
evolution of solutions, it is not important to know the specific instants of time
throughout the evolution but only the values of the function f . We could,
therefore, think of considering a dynamical system which accounts for the
simultaneous evolution through time of points in IRn and of the function f .
The evolution of f is just a translation in time that can be easily expressed in
terms of the notation ft(s, x) = f(s+ t, x). We are led to consider a local dy-
namical system ϕ such that ϕ(t, (y, g)) = (x(t; 0, y, g), gt). Of course, before
we can refer to ϕ as a dynamical system we have to specify the phase space
and its topology. One possibility would be to consider the set of bounded
C1 functions in IRn with the topology corresponding to uniform convergence
(known as the compact open topology), define the set H(f) as the closure
in this topology of the set {ft : t ∈ IR} of the translates of f , and take for
phase space IRn × H(f). It can be easily shown that ϕ(t, g) = gt defines a
dynamical system in H(f) and that the function ϕ described above defines
a local dynamical system in IRn ×H(f). Furthermore, since H(f) is a com-
pact set in the topology considered, if a solution of the given nonautonomous
equation is bounded not only the corresponding evolution in IRn × H(f) is
bounded but its closure is compact, bypassing the difficulty previously en-
countered. A flow defined in a product space X = A×B, as ϕ above, in the
form ϕ = (σ, ψ), where ψ is a flow in B is called a skew-product flow.

1.7 Control systems

Control systems are important in many areas of technology and science,
such as machine-tool control, automated assembly lines, robotics, manipula-
tors control, quality control of production, transportation distribution and
power systems, aeroplanes and space vehicles, chemical and combustion pro-
cesses, biology, economics, etc. They may be continuous or discrete, finite
or infinite dimensional, defined in a linear space or in a manifold, etc. For
simplicity, we only introduce here continuous systems defined by ODEs in
IRn.

The distinctive feature of control systems is that their dynamics can be
changed in the course of time through a control function called the input
of the system. When they are defined by an ODE in IRn and the input has
values in IRm control systems have the form
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Figure 1.10:

ẋ(t) = f(t, x(t), u(t)),

where u is a function of real variable with values in IRm. In control system
theory, it is usual to refer to the value x(t) as the state of the system at
time t, and it is also usual to consider an output of the system which may
depend on the state and the input in the form

y(t) = h(t, x(t), u(t)).

A system S of this type is frequently represented in diagrams as in Figure
1.10. The system is said to be time-invariant if f(t, x, u) and h(t, x, u) are
independent of t.

In the most simple situation one wants to build from scratch a control
system to achieve a certain input-output behavior, but frequently control
systems are designed in order to change the input-output behavior of a given
system S which cannot be altered internally. In this case, one wants to specify
a system C, called the controller, which uses an external command signal v
and the output of S to generate an adequate input u for S (see Figure 1.11).
Often, the inputs u and v are restricted to lie in certain prescribed sets.
As simple examples of control design objectives we mention guaranteeing
that: bounded inputs v will result in bounded outputs y (stabilization),
the output y will follow the input command v in the sense of minimizing
an appropriate distance between the two (command following), the effect
of external disturbances on the input-output behavior of the system will be
minimized (disturbance rejection), the output will be driven to a target value
in minimal time (time-optimal steering), a performance functional like energy
consumption associated with the execution of a certain task will be minimized
(optimal control). One should notice that in a practical situation, the system
S should be viewed as a model for a physical process whose parameters have
to be estimated; therefore, control analysis and design must be preceded by
modeling and parameter identification.

In order to illustrate how a dynamical system can be associated to a
control system we consider, for simplicity, time invariant systems of the form
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Figure 1.11:

ẋ = f(x, u),

where f : IRn × IRm → IRn is C1 and u : IR → IRn is bounded and C1. The
solutions x(t; t0, x0, u) of initial value problems x(t0) = x0 for this equation,
with u fixed, do not define a dynamical system in IRn because a solution is
determined not only by its initial value in IRn but also by the values taken
by the input u along time. However, one can associate dynamical systems to
such a control system in similar ways as done above for nonautonomous ODEs
in IRn. In particular, we could add time to the state variables, considering a
local dynamical system ϕ in a phase space IRn × IR defined by ϕ(t, (y, s)) =
(x(t; s, y, u), t). Alternatively, we could use a skew-product flow accounting
for the simultaneous evolution through time of points in IRn and of the input
function u as ϕ(t, (y, u)) = (x(t; 0, y, u), ut) which is a local dynamical system
in the phase space IRn × H(u). Here H(u) is taken with the compact open
topology and is defined as the closure in this topology of the set {ut : t ∈ IR}
of the translates of u. Similarly to what happens for nonautomomous ODEs
in IRn, the second approach enables the use of methods based on compactness
for the analysis of the asymptotic behavior of solutions of the equation.
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Chapter 2

Geometry of the phase space

2.1 Orbits, phase portrait

In the following let ϕ denote a local dynamical system defined on a topo-
logical space X. For each x ∈ X the set γx = ∪t∈Ix{ϕ(t, x)} is called the
orbit of ϕ passing through x. It is a point or a curve in the phase space X,
the first case occurring if and only if x = ϕ(t, x). We also define the tra-
jectory corresponding to this orbit as the set ∪t∈Ix{(t, ϕ(t, x))} which is a
subset of I×X. The set of orbits of ϕ, oriented in the direction corresponding
to increasing time, is called the phase portrait.

To exemplify these concepts we consider a mechanical system described
by the following second order differential equation

ẍ− x(x− a)(x− 1) = 0, 0 < a < 1/2 .

This equation describes the one dimensional motion of a body with unit
mass under the action of the nonlinear force g(x) = x(x− a)(x− 1) without
friction. As before, we take for state variables the position x and the velocity
y = ẋ and choose IR2 for phase space. The mechanical energy for this system
is given by

E(x, y) =
1

2
y2 +G(x),

where the potential G(x) = − ∫ x0 g(s)ds is given by G(x) = −x2[3x2 − 4(1 +
a)x+ 6a]/12. It is easy to check that d

dt
E(x(t), ẋ(t)) = 0 and, therefore, each

orbit of the system is contained in one level curve of E. Conversely, each
level curve of E is entirely composed of orbits of the system, thus by tracing
these level curves one obtains the phase portait of the system (see Figure
2.1). When, as in this case, there exists a C1 function defined on the phase
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Figure 2.1:

space, not constant on any open set but constant on orbits, the system is said
to be conservative. In the case of a differential equation any such function
is called an integral of the equation.

The phase portrait of the preceding example has three different kinds of
orbits: (a) orbits consisting of only one point (those corresponding to the
constant solutions with values 0, a or 1); (b) orbits homeomorphic to a circle
(all those in the interior of the teardrop shaped region excluding the point
(a, 0) ); and (c) orbits homeomorphic to IR (all other orbits). In fact, these
are the only possibilities as asserted by the following proposition.

(2.1) Proposition: For x ∈ X let Ix denote the interval of definition of
the map Φx(t) = ϕ(t, x). Then, one of the following alternatives holds:

(i) Ix = I and Φx is constant;

(ii) Ix = I and Φx is periodic and not constant;

(iii) Φx is one-to-one on Ix.

Proof. To prove this proposition we start by noticing that the evolution
Φx is either one-to-one on Ix or else there exist r, s in Ix such that r 6= s and
Φx(r) = Φx(s). In the second case we immediately conclude that Ix = I, and
taking c = r − s 6= 0 we have Φx(t + c) = Φx(t) for all t ∈ I. If the relation
holds for a sequence {ck} and ck → c then

Φx(t+ c) = Φx(t+ limk→∞ck) = limk→∞Φx(t+ ck) = Φx(t),
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proving that the set of constants c ∈ I for which the preceding relation holds
is a closed subset of I. Let T = inf |c| for c 6= 0 in this set. If I = IR then
either T > 0 and Φx is periodic of minimum period T , or else T = 0 and
Φx is constant. An analogous conclusion is reached if I = Z in which case
T ≥ 1.

QED

Points in the phase space for which the first alternative in the proposition
holds (the corresponding orbit is the point itself) are called critical point
or equilibrium points of the dynamical system and noncritical points are
called regular points. In the case of orbits homeomorphic to a circle, these
are said to be closed or periodic orbits.

In the above example we also notice the existence of an orbit which to-
gether with the critical point (0, 0) forms the boundary of the teardrop shaped
region separating the periodic orbits from all the other nonperiodic noncon-
stant orbits. Orbits like this one, connecting a critical point to itself, are
called homoclinic orbits, and orbits connecting different critical points are
called heteroclinic orbits.

An orbit γx is said to be global if Ix = I. Clearly, equilibrium points
and periodic orbits are always global orbits but there may be others. For
instance, in the example just considered the global orbits are those in the
closure of the teardrop and the orbit consisting of the point (1, 0). In fact, it
is very simple to prove that all other orbits exhibit blow up in finite time. To
see this, let x = x(t) denote a solution of the equation satisfying x(t0) = x0

and x(t1) = x1 where t0 < t1. Then, considering again the integral E,
we can compute the time t1 − t0 in terms of x0 and x1 by performing a
quadrature. To exemplify, we assume that the solution satisfies x(t) > 0 for
t0 < t < t1 and let E0 ≡ E(x(t0), ẋ(t0)). As E(x(t), ẋ(t)) = E0 we have
(ẋ(t))2 = 2[E0)−G(x(t))] and, consequently,

t1 − t0 =
∫ x1

x0

(
dx

dt

)−1

dx =
∫ x1

x0

dx√
2[E0 −G(x)]

.

If the solution x = x(t) is unbounded, then we can take the limit x1 → ∞
and since G is a fourth order polynomial in x we conclude that the time
ellapsed for the orbit through x0 to reach infinity is

τ ≡
∫ ∞

x0

dx√
2[E0 −G(x)]

<∞
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therefore the solution blows up at time t1 = t0+τ . This is a simple application
of Wintner’s method for studying the blow up of solutions.

Notice that for a dynamical system ϕ all orbits are global since ϕ is
defined on I ×X.

For a particular differential equation it may be of great interest to de-
termine which solutions are global and which blow up. However, if we are
interested in studying a local dynamical system defined by a differential equa-
tion only in a compact set of the phase space, we can always find a differential
equation with all solutions global and defining a dynamical system whose or-
bits restricted to the compact set considered coincide, in this set, with the
orbits of the original system.

(2.2) Proposition: If K ⊂ IRn is compact and f : K → IRn is contin-
uous, then there exists a function g : IRn → IRn such that all solutions of
ẋ = g(x) are global and their restrictions to intervals of time for which they
lie entirely in K agree with solutions of ẋ = f(x).

Proof. Let (f1, ..., fn) denote an arbitrary continuous extension of the
given f to IRn and M = sup{|fi(x)| : x ∈ K, i = 1, . . . , n}. Define g =
(g1, . . . gn) in IRn by

gi(x) =





fi(x) , if |fi(x)| ≤M

M , if fi(x) > M

−M , if fi(x) < −M

Since |gi| ≤ M , the components of any solution of ẋ = g(x) satisfy |xi(t) −
xi(t0)| ≤M |t−t0| for t, t0 in its interval of definition; consequently solutions
cannot blow up and all solutions are global. As g = f on K the relationship
between the solutions of the two equations follows.

QED

It is convenient to consider here more examples of phase portraits of local
dynamical systems. Clearly, in the study of qualitative properties it is not
interesting to distinguish situations that differ only by smooth deformations
of the phase space that can be seen as possibly nonlinear changes of coordi-
nates. For example, it is appropriate to consider equivalent the dynamical
systems defined by the differential equations

26



  

      

Figure 2.2:

{
ẋ = −2x
ẏ = +3y

and
{
ẋ = y
ẏ = x

whose phase portraits are sketched in Figure 2.2. More generally, we say
that two dynamical systems or two vector fields are equivalent in subsets
S1 and S2 of their phase spaces if there exists a homeomorphism between
these sets which maps orbits of one of the systems onto orbits of the other
and preserves the direction of time. In the following examples, we consider
families of differential equations depending on parameters and identify the
phase portrait of each one of their equivalence classes. In particular, it is
observed that for some equations arbitrary small changes in the parameters
give systems in the same equivalence class while for others arbitrarily small
changes in the parameters can give systems in different equivalence classes.
The identification of these two situations plays an important role in the
qualitative theory of differential equations; in the first case, we say the system
is structurally stable and in the second we say it is a bifurcation.

(2.3) Examples:

1. We consider the scalar differential equation ẋ = λx for λ ∈ IR. The
zero function is always a solution and, consequently, x = 0 is always an
equilibrium point. When λ 6= 0 the other solutions of this equation are
exponentials which decrease for λ < 0 and increase for λ > 0; all the systems
corresponding to λ < 0 are equivalent, as well as all those corresponding
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Figure 2.3:

to λ > 0, and we have two different equivalence classes. When λ = 0
all solutions are constant and, therefore, all points in the phase space are
equilibria. The trajectories and the phase portraits are sketched in Figure 2.3.
The system corresponding to λ = 0 is a bifurcation point. As λ is decreased
through zero the orbits approaching the equilibrium, become stationary and
then pull apart from the equilibrium.

2. We consider the scalar differential equation ẋ = −(x2 − λ) for λ ∈ IR.
For λ < 0 there are no equilibria, for λ = 0 the only equilibrium point is
x = 0 and for λ > 0 there are two equilibria x = ±

√
λ. Analysing the sign of

the right hand side of the equation, we conclude that for λ < 0 all solutions
decrease with time, for λ = 0 all solutions except the zero solution decrease
with time and for λ > 0 the solutions with values below −

√
λ or above +

√
λ

decrease with time while those with values between −
√
λ and +

√
λ increase.

Again, there are three equivalence classes of the given systems: for λ < 0, for
λ = 0, and for λ > 0. The trajectories and the phase portraits are sketched
in Figure 2.4. The system corresponding to λ = 0 is a bifurcation point.
As λ is decreased through zero the two equilibria collide at λ = 0 an then
disapear for negative λ.

3. We consider the scalar differential equation ẋ = −x(x2−λ) for λ ∈ IR.
For all λ ∈ IR the point x = 0 is an equilibrium, for λ ≤ 0 there are no other
equilibria and for λ > 0 there are two other equilibria x = ±

√
λ. Analysing

the sign of the righthand side of the equation, we conclude that for λ ≤ 0 all
solutions different from zero approach zero as time increases and for λ > 0
the solutions with values smaller than zero approach −

√
λ while those with

values larger than zero approach +
√
λ as time increases. Once again, there
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Figure 2.4:

Figure 2.5:

are three equivalence classes of the given systems: for λ < 0, for λ = 0, and
for λ > 0. The trajectories and the phase portraits are sketched in Figure
2.5. The system corresponding to λ = 0 is a bifurcation point. As λ is
decreased through zero the three equilibria collide at λ = 0, a pair of them
is annihilated and only one remains for negative λ.

4. We consider the differential equation in IR2

ẋ = y − x(x2 + y2 − λ)
ẏ = −x− y(x2 + y2 − λ)

for λ ∈ IR. For all λ ∈ IR the origin (x, y) = (0, 0) is the only equilibrium
point. However, the orbits of points in a neighbourhood of the origin ap-
proach the origin as time increases for λ ≤ 0, and draw appart from it for
λ > 0. In fact, the square of the distance to the origin V (x, y) = x2 +y2 satis-
fies along solutions dV/dt = −2V (V −λ) which is an equation similar to that
considered in the preceding example. Therefore, for λ ≤ 0, V (x, y) = x2 + y2
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Figure 2.6:

decreases along solutions at points (x, y) 6= (0, 0), and it increases for λ > 0
and x2 + y2 small. From this observation we also conclude that for λ > 0
there exists a periodic orbit which is a circle of radius

√
λ with all other

orbits except the equilibrium point at the origin approaching the periodic
orbit as time increases, while for λ ≤ 0 there are no periodic orbits and all
the orbits approach the equilibrium as time increases. Once more, there are
three equivalence classes of the given systems: for λ < 0, for λ = 0, and for
λ > 0.

The trajectories and the phase portraits are sketched in Figure 2.6. As λ
is decreased through zero the periodic orbit collides with the equilibrium at
λ = 0 and disapears remaining only the equilibrium for negative λ .

5. We consider the differential equation in IR2
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ẋ = y

ẏ = x− x2 + λy

for λ ∈ IR. For all λ ∈ IR the equilibria are (0, 0) and (1, 0). The function
V (x, y) = y2−x2+2x3/3 satisfies along solutions dV (x(t), y(t))/dt = 2λy2(t).
Consequently, for λ = 0 the orbits lie in level curves of V , and for λ 6= 0
the orbits cross the level curves of V as time increases, in the direction of
decreasing values of V for λ < 0, or in the direction of increasing values of
V for λ > 0. Each one of the level curves V (x, y) = C is the union of the

graphs of the functions y(x) = ±
√
C − V (x, 0). As the graph of the function

x→ V (x, 0) is as sketched in Figure 2.7, we conclude that the phase portraits
for λ < 0, λ = 0 and λ > 0 are as drawn in Figure 2.8.

For λ = 0 there is a homoclinic orbit connecting connecting the origin to
itself and all the orbits in the region bounded by the union of this homoclinic
with the origin are periodic and encircle the equilibrium (1, 0), except for
this equilibrium itself. For λ < 0 all the orbits passing through points in
this region approach the equilibrium (1, 0) and for λ > 0 they draw appart
from this equilibrium; in either case there exists no homoclinic orbit and
instead there exists a heteroclinic orbit connecting the two equilibria from
(0, 0) to (1, 0) for λ < 0 and the reverse for λ > 0. As before, we have three
equivalence classes and the system corresponding to λ = 0 is a bifurcation
point. As λ is decreased through zero, the heteroclinic connecting (1, 0) to
(0, 0) collides with an orbit approaching the origin as time goes to−∞ to form
an homoclinic to the origin at λ = 0 which disapears for negative λ breaking
up in a heteroclinic connecting (0, 0) to (1, 0) and an orbit approaching the
origin as time goes to +∞.
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Figure 2.8:

6. To each point (x, y, z) ∈ IR3 we assign coordinates (r, θ, ϕ) ∈ [0,+∞[×
[0, 2π[×[0, 2π[ according to Figure 2.9, where R > 2. This assignment defines
a one-to-one correspondence except for points in the z-axis and in the circle
of radius R and centered at the origin in the plane xy. Each one of the points
in the z-axis has unique coordinates r = −R cos θ and θ ∈]π/2, 3π/2[ but ϕ
is arbitrary, on the other hand each one of the points in the mentioned circle
has unique coordinates r = 0 and ϕ ∈ [0, 2π[ but θ is arbitrary. Let g(r, θ) =
r + R/ cos θ if θ ∈]π/2, 3π/2[ and g(r, θ)= 0 otherwise. Let B : IR → IR
be a C∞ bump function monotonically decreasing on [0,+∞[ and satisfying
B(s) = B(−s) for all s ∈ IR, B(0) = 1, B(s) = 0 for |s| ≥ 1, and consider
the differential equation

ṙ = [1− B(g(r, θ))]r(1− r)− B(g(r, θ))R
sin θ

cos2 θ

θ̇ = 1

ϕ̇ = λ

where R = 4 and λ ∈ IR.

We begin by analysing the two dimensional system defined by the first two
equations. On the z-axis r = −R/ cos θ and r = −R[sin θ/ cos2 θ]; therefore
this axis is itself an orbit. The function g has level curves which approach
the z-axis at infinity bounding regions along this axis as shown in Figure
2.10. Along solutions we have

d

dt
[g(r, θ)] = ṙ +R

sin θ

cos2θ
= [1− B(g(r, θ))]

(
r(1− r) +R

sin θ

cos2 θ

)
.
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Figure 2.11:

For points in the region along the z-axis bounded by the curve g(r, θ) =
−1 we have θ ∈ (π/2, 3π/2). Along a solution passing through any point of
that curve we have ġ = −[1+R/ cos θ][2+R/ cos θ]+R[sin θ/ cos2 θ]. One can
check that the function on the right-hand side is negative for θ ∈ (π/2, 3π/2)
and, consequently, orbits starting at points outside the region considered
cannot enter this region for positive time. On the other hand, as θ increases
proportionally to time, an orbit starting at a point in the part of the region
with θ ∈ (π/2, 5π/4) will eventually either leave the region through the
bounding curve or else enter at some point the part of the region where
θ ∈ (5π/4, 3π/2). We denote by g0 the value of g at that point. Then along
the solution we have ġ < 0 and, consequently, ġ < −[1− B(g0)]g. It follows
that g decreases at least exponentially in that part of the region bounded
by the curve g(r, θ) = −1 and must cross it after some time. Outside the
region bounded by the curves g(r, θ) = −1 we have B(r+R/ cos θ) = 0 and,
consequently, ṙ = r(1−r), implying that the points with r = 0 are equilibria,
the solutions passing through points outside the circles r = 1 approach them
as t → +∞ and the solutions passing through points inside those circles
approach them as t → +∞ and approach the equilibrium at the center of
the circle as t→ −∞. The corresponding phase portrait is sketched in Figure
2.11.

The phase portrait for the three dimensional system is now easy to visu-
alize. The z-axis is one of the orbits, there is one circular periodic orbit in
the xy-plane centered at the origin and with radius 4, other orbits outside
the surface of the torus defined by the equation r = 1 spiral towards this
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Figure 2.12:

surface as t→ +∞, and the orbits inside the torus surface spiral as t→ −∞
to the periodic orbit in the xy-plane (see Figure 2.12). What happens on the
surface of the torus depends on the value of the parameter λ. If the parame-
ter is a rational number, λ = m/n in lowest terms, after each time interval of
length 2πn each solution passing through a point in the torus surface returns
to the same point after m complete turns in the angle ϕ around the torus;
therefore, for λ rational all orbits passing through a point in the torus surface
remain for all time in this surface and are periodic. On the other hand, if λ
is an irrational number, orbits passing through a point in the torus surface
also remain in this surface but they never close, being, however, dense in
the torus surface. These situations, respectively known as the rational flow
on the torus and the irrational flow on the torus, are illustrated in Figure
2.13. In this example there are no isolated bifurcation points: the system is
a bifurcation point for all λ ∈ IR.

2.2 Invariant sets and limit sets

A set Γ ⊂ X is said to be an invariant set of a local dynamical system
ϕ if for every x ∈ Γ the orbit through x is global and it is contained in Γ.
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Figure 2.13:

One immediately verifies that every single global orbit in the phase portrait
of a local dynamical system is an invariant set. On the other hand, the
importance of the notion of invariance stems from the fact that the restriction
of any local dynamical system to an invariant set with the induced topology is
a dynamical system. This is, for instance, what happens for the first example
in the preceding section when the local dynamical system defined by the given
ODE is restricted to the teardrop. In Example (2.3)-4 for λ > 0 one of the
invariant sets is a disc, in Example(2.3)-5 for λ = 0 one of the invariant sets
is the teardrop region bounded by the homoclinic orbit, in Example(2.3)-6
the surface r = 1 as well as the solid torus it bounds are invariant sets.

It is easy to verify that Γ ⊂ X is an invariant set for a dynamical system
if and only if ϕt(Γ) = Γ for all t ∈ I. In fact, ϕ−t(Γ) ⊂ Γ and ϕt(Γ) ⊂ Γ and,
consequently, Γ = ϕt(ϕ−t(Γ)) ⊂ ϕt(Γ) ⊂ Γ, implying that ϕt(Γ) = Γ for all
t.

For each x ∈ X we define the positive semiorbit through x as the
set γ+

x = {ϕ(t, x) : t ∈ Ix, t ≥ 0} and, similarly, the negative semiorbit
through x is γ−x = {ϕ(t, x) : t ∈ Ix, t ≤ 0}. Naturally, γx = γ+

x ∪ γ−x .
This notion of semiorbit is useful in the study of the limiting behaviour of
the evolution as t → ±∞. With this objective we define the α-limit and
ω-limit sets of a global orbit γx as the sets

α(γx) =
⋂

y∈γx
cl γ−y and ω(γx) =

⋂

y∈γx
cl γ+

y

where cl denotes the closure in X. Equivalently this can be written as

α(γx) =
⋂

s∈I
cl
⋃

t≤s
ϕ(t, x) and ω(γx) =

⋂

s∈I
cl
⋃

t≥s
ϕ(t, x),

and it is a simple exercise to verify that a point y ∈ X is an element of
ω(γx) if and only if there exists a sequence {tk} in I such that tk → +∞ and
ϕ(tk, x)→ y as k →∞ and similarly for α(γx) with tk → −∞.
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In order to illustrate these concepts we refer again to the first example
in the previous section. One immediately verifies that the α and ω-limit sets
of the critical points are the critical points themselves. Similarly, the α and
ω-limit sets of a periodic orbit are the orbit itself. For the homoclinic orbit
one verifies that its α and ω-limit sets coincide with the critical point (0, 0).
It is instructive at this point to return to Example (2.3) and identify the
limit sets for each one of the systems.

In the following, to avoid unnecessary complications we consider only
dynamical systems and establish some of the most important properties of
the limit sets.

(2.4) Theorem: α and ω-limit sets of any orbit γx of a dynamical system
ϕ are closed and invariant sets.

Proof. Closure follows from the definition. Furthermore, taking a point
y in ω(γx) there exists a sequence {tk} such that tk → +∞, ϕ(tk, x)→ y as
k → +∞ and from continuity we have that ϕ(t + tk, x) = ϕ(t, ϕ(tk, x)) →
ϕ(t, y) concluding that γy ⊂ ω(γx) as desired.

QED

As pointed out earlier, for the sake of simplicity we will restrict our atten-
tion to finite dimensional systems although the methods and results, when
carefully reformulated, do not essentially differ in infinite dimensions. From
here on we let ϕ denote a dynamical system in a closed set X ⊂ IRn, and let
d(p, S) denote the usual distance between a point p and a compact set S in
IRn.

(2.5) Theorem: If the positive semiorbit γ+
x is bounded then the ω-

limit set ω(γx) is nonempty, compact and d(ϕ(t, x), ω(γx)) → 0 as t →
+∞. Similarly, if γ−x is bounded then α(γx) is also nonempty, compact and
d(ϕ(t, x), α(γx))→ 0 as t→ −∞.

Moreover, for continuous dynamical systems these limit sets are con-
nected.

Proof. We prove these results for ω(γx) only. Since γ+
x is bounded the

set K = cl γx
+ ⊂ X is compact. The sequence {ϕ(k, x)} is contained in K
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and taking a converging subsequence to some point y ∈ K we conclude that
y ∈ ω(γx), hence ω(γx) is nonempty. Since this set is also contained in K, it
is bounded and from the previous theorem we conclude that it is compact.

It is also clear that d(ϕ(t, x), ω(γx)) → 0 as t → +∞ since other-
wise for some ε > 0 we could find a sequence tk such that tk → +∞,
d(ϕ(tk, x), ω(γx)) > ε and taking a converging subsequence of ϕ(tk, x) we
could obtain a point y ∈ ω(γx) satisfying d(y, ω(γx)) ≥ ε.

Finally, to show that ω(γx) must be connected for a continuous dynamical
system, let us assume that there exist disjoint, closed, nonempty sets A and
B such that ω(γx) = A ∪ B and define δ = min {d(y, A) : y ∈ B}. Then
δ > 0, and since both sets A and B are contained in ω(γx), we can construct
an increasing sequence {tk} such that tk → +∞, d(ϕ(tk, x), A) < δ/2 for
k even and d(ϕ(tk, x), A) > δ/2 for k odd. From the continuity there is a
sequence {t′k} for which t

′
k → +∞ and d(ϕ(t

′
k, x), A) = δ/2. But as the

set {x ∈ X : d(x,A) = δ/2} is compact, taking a converging subsequence
of ϕ(t

′
k, x) we obtain a point z ∈ ω(γx) such that z /∈ A ∪ B, which is a

contradiction.

QED

The notion of limit set was introduced for the study of the limiting be-
haviour of the evolution ϕ(t, x) as t → ±∞. This notion was defined for
orbits of the phase portrait, but it is sometimes useful to extend it to general
subsets of the phase space. If S denotes a subset of the phase space X, it is
natural to define its α and ω -limit sets as

α(S) =
⋂

s∈I
cl
⋃

t≤s
ϕ(t, S); ω(S) =

⋂

s∈I
cl
⋃

t≥s
ϕ(T, S)

where ϕ(t, S) =
⋃
y∈S ϕ(t, y). Again it is a simple exercise to verify that a

point y ∈ X is an element of ω(S) if and only if there exist sequences {tk}
in I and {yk} in S such that tk → +∞ and ϕ(tk, yk) → y as k → +∞ and
similarly for α(S) with tk → −∞. As before we have the following result.

(2.6) Theorem: If S is a subset of X such that the set of positive
semiorbits passing through points of S is bounded then the limit set ω(S) is
nonempty, invariant, compact and for every y ∈ S we have that d(ϕ(t, y), ω(S))→
0 as t → +∞. Similarly, if the set of negative semiorbits passing through
points of S is bounded then the limit set α(S) is nonempty, invariant, com-
pact and for every y ∈ S we have that d(ϕ(t, y), α(S))→ 0 as t→ −∞.
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Moreover, for continuous dynamical systems, if S is connected these limit
sets are also connected.

Proof. From the previous theorems it follows that α(S) and ω(S) are
nonempty and invariant. Again compactness follows from the definition.
Finally, the limiting behaviour and the connectedness follow from a reasoning
similar to that used in the proof of the preceding theorem.

QED

In order to illustrate these notions we consider the dynamical system
defined in IR2 by the following ordinary differential system of equations

ẋ = sin x, ẏ = −y.

The solutions of this system have the form x(t) = 2 arctan(k1e
t), y(t) =

k2e
−t and the corresponding phase portrait is shown in Figure 2.14. The

equilibrium points are the points of the form (kπ, 0) with integer k and every
orbit has one equilibrium point for ω-limit set. On the other hand only the
orbits contained in the x-axis have a nonempty α-limit set which is also an
equilibrium point. To distinguish the sets of orbits with the same ω-limit set
we introduce the notion of basin of attraction of an equilibrium point e as
the set of points z in the phase space for which ω(γz) = e. For instance, in
the above example the basin of attraction of the equilibrium (π, 0) is the open
strip {(x, y) : 0 < x < 2π, y ∈ IR} and the basin of attraction of the origin
is the y-axis. Naturally, from the point of view of specific applications it is
important to consider the relative size of the different basins of attraction; for
instance, in the example the basin of attraction of (π, 0) is a surface and the
basin of attraction of (0, 0) is a line. For dynamical systems in the plane it is
also useful to take into consideration the curves, consisting of orbits, which
separate the plane into two parts and such that not all orbits of points on
each neighbourhood of this curve exhibit the same limiting behaviour. Such
a curve is called a separatrix of the phase plane. In the above example the
x-axis and the vertical lines with abscisae 2kπ with integer k are separatrices.

To exemplify the notion of limiting set of a set S ⊂ X we present in
Figure 2.14 the disk S = {(x, y) : x2 +(y−2)2 ≤ 1} and its ω-limit set which
is the line segment ω(S) = {(x, 0) : −π ≤ x ≤ π}. This example shows that
in general the set ω(S) is larger than the union of the ω-limit sets of the
points of S. In fact, if z ∈ S then ω(γz) is the equilibrium (π, 0) if z is in
the right half plane, is (−π, 0) if z is in the left half plane and is (0, 0) if z
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Figure 2.14:

is in the y-axis. Notice that the union of these three equilibria fails to be a
connected set, even though S is connected.

We have already pointed out that single orbits of a dynamical system are
invariant sets. Since the union of invariant sets is also invariant it is impor-
tant to consider the possibility of decomposing the invariant sets into minimal
invariant sets. A subset S ⊂ X is said to be a minimal invariant set of the
dynamical system ϕ if it is a nonempty compact invariant set of ϕ and con-
tains no proper subset with these properties. Then, any nonempty compact
invariant set contains at least one minimal invariant set. This is sometimes
useful for obtaining the desired decomposition, yielding information about
the limiting behaviour of a dynamical system. On the other hand, to take
into account all the possible limiting behaviour it is important to search also
for maximal invariant sets, and in order to avoid the uninteresting invariant
set consisting of all the phase space X this search is restricted to compact
sets. Then, a subset A ⊂ X is said to be a maximal compact invariant
set of the dynamical system ϕ if it is compact, invariant and contains every
compact invariant set of ϕ. Example (2.3) shows there are systems with
minimal invariant sets equal to a point, a periodic orbit or the surface of a
torus, and there are systems with maximal compact invariant sets equal to
a point, a disc, a teardrop or a solid torus.

It is clear that the existence of a maximal compact invariant set is not en-
sured for every dynamical system (consider, for instance, the system defined
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Figure 2.15:

by the linear differential equation ẍ + x = 0). In the following section we
introduce a special class of dynamical systems, called dissipative, for which
the existence of this set is always ensured.

2.3 Dissipative systems and global attractors

Consider again a dynamical system ϕ in a closed set X ⊂ IRn. For a
subset A ⊂ X let Vε(A) denote the ε-neighbourhood Vε(A) = {y ∈ X :
|x− y| < ε, x ∈ A}. A set A is said to attract a set B under the flow ϕ if for
any ε > 0 there exists t0 > 0 such that ϕ(t, B) ⊂ Vε(A) for every t ≥ t0 (see
Figure 2.15). The dynamical system ϕ is said to be dissipative if there is a
bounded set A attracting each point of X under the flow.

From the point of view of the applications, adequate models are either
conservative, like the Hamiltonian systems, or else they involve some form of
dissipation. Furthermore, good models are sometimes obtained by consider-
ing a Hamiltonian system and adding some dissipative terms. It turns out
that in this way one usually obtains a dissipative system. Hence, the appli-
cations provide the major motivation for the study of dissipative systems.
For these systems we can determine a maximal compact invariant set and
show that it characterizes every limiting behaviour as t→ +∞.

(2.7) Theorem: If ϕ is a dissipative system then there exists a com-
pact set K that attracts every compact set under the flow ϕ. The set J =⋂
i≥0 ϕ(i,K) is the ω-limit set ω(K) and is nonempty, compact and invariant.

Furthermore, J does not depend on the set K attracting all the compact sets
and it is the maximal compact invariant set of ϕ.

Moreover, if ϕ is a continuous dynamical system then J is connected.
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Proof. To prove this theorem let B0 denote a bounded set attracting each
point of X under the flow ϕ. Then, given ε > 0 and for each point x ∈ X
there is a t0 = t0(x) such that ϕ(t, x) ⊂ Vε(B0) for t ≥ t0. By continuity
there is an open neighbourhood V (x) of x such that ϕ(t, V (x)) ⊂ Vε(B0) for
t0(x) ≤ t ≤ t0(x) + 1 (see Figure 2.16). Then, the set B = ϕ(1, Vε(B0))
is bounded and contains ϕ(t + 1, V (x)) for every t0(x) ≤ t ≤ t0(x) + 1.
Since the neighbourhoods V (x) cover the entire space X, if L denotes any
arbitrary compact subset of X there is a finite subcovering of L by open
neighbourhoods V (xi) with xi ∈ L and we let N(L) denote the smallest
integer greater than or equal to max {1 + t0(xi)}. For m = N(cl B) we
define the set K =

⋃m
i=0 ϕ(i, cl B) (see Figure 2.17). Then, K is compact,

ϕ(j, clB) ⊂ K for j ≥ m and ϕ(t, L) ⊂ ϕ(t,
⋃
i V (xi)) ⊂ K for t ≥ N(L). We

conclude that K attracts every compact set L under the flow ϕ.
The compact set J =

⋂
i≥0 ϕ(i,K) is obviously contained in the limit set

ω(K). On the other hand, taking a point x in ω(K) there exist sequences {tj}
in IR and {xj} in K such that tj →∞ and ϕ(tj, xj)→ x. If for each i ≥ 0 we
consider the sequence {ϕ(tj−i, xj)}, we have that ϕ(tj−i, xj) ∈ K for tj ≥ i.
Then, there exists a converging subsequence to some point yi ∈ ω(K) ⊂ K.
Moreover, ϕ(i, yi) = x for every i ≥ 0 implying that x is also in J , and
J = ω(K). The previous theorem then implies that J is nonempty compact
and invariant.

Let H be an arbitrary compact invariant set. Since K attracts H, for
every ε > 0 there exists t0 > 0 such that ϕ(t,H) ⊂ Vε(K) for t ≥ t0. As H
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Figure 2.17:

is invariant, we have H = ϕ(t,H) ⊂ Vε(K). Since this holds for every ε > 0,
H ⊂ K, and the invariance of H then implies H ⊂ ϕ(i,K) for every i ≥ 0.
Hence, H ⊂ J and J is the maximal compact invariant set.

To show that J does not depend on the set K, we consider another
compact set K ′ also attracting every compact subset of X. We can replace
K by K ′ in all the preceding arguments and conclude that both J(K) and
J(K ′) are equal to the maximal compact invariant set.

Finally, taking a compact connected set L containing K we have that
ϕ(t, L) ⊂ K for t ≥ N(L) and we obtain ω(L) ⊂ ω(K). Since K ⊂ L
we obtain ω(K) ⊂ ω(L) and, therefore, J = ω(L). If ϕ is a continuous
dynamical system, we conclude from the preceding theorem that J = ω(L)
is connected.

QED

The next result identifies the maximal compact invariant set of a dissipa-
tive system ϕ with the set of all bounded orbits of ϕ and establishes a very
strong result on the limiting behaviour of the orbits of the phase portrait.

(2.8) Theorem: The set A(ϕ) of all bounded orbits of a dissipative system
ϕ is the maximal compact invariant set of ϕ and attracts all bounded sets of
X.
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Proof. The previous theorem already asserts the existence of the maximal
compact invariant set J of the dissipative system ϕ. Since any orbit passing
through a point of a compact invariant set is bounded we conclude that
J ⊂ A(ϕ). On the other hand, the set Aβ(ϕ) of orbits bounded in X by a
constant β > 0, Aβ(ϕ) = {x ∈ X : |ϕ(t, x)| ≤ β, t ∈ I} , is compact and
invariant, hence Aβ(ϕ) ⊂ J for every β. But since A(ϕ) =

⋃
β Aβ(ϕ) we also

conclude that A(ϕ) ⊂ J which implies that A(ϕ) = J .
Now, to prove that A(ϕ) attracts all bounded sets it is sufficient to show

that it attracts every compact set of X. This proof will be presented in two
steps. In the first step we show that, given any x ∈ X and any constant δ > 0,
there is a constant M(x) > 0 and a sufficiently small neighbourhood V (x)
such that ϕ(M(x), V (x)) ⊂ Vδ(A(ϕ)). In the second step we show that, given
any neighbourhood Vε(A(ϕ)) with ε > 0, there is a neighbourhood Vδ(A(ϕ))
with 0 < δ ≤ ε such that ϕ(t, Vδ(A(ϕ))) ⊂ Vε(A(ϕ)) for every t ≥ 0. Since,
given any compact set L of X we can choose a finite subcovering of L by open
sets V (xi), from the above results we conclude that ϕ(t, V (xi)) ⊂ Vε(A(ϕ)
for every t ≥ M(xi) and hence ϕ(t, L) ⊂ Vε(A(ϕ)) for every t ≥ max M(xi)
proving that A(ϕ) attracts L.

To prove the first step, we consider any given xεX and let δ > 0. Since
ω({x}) ⊂ A(ϕ), there is a constant M(x) > 0 such that ϕ(t, x) ∈ Vδ/2A(ϕ)
for t ≥M(x). Then, by continuity there is a sufficiently small neighbourhood
V (x) such that ϕ(M(x), V (x)) ⊂ Vδ(A(ϕ)).

We prove the second step by contradiction. Supose then, that there exist
ε > 0 and sequences {tj}, {dj} in IR and {yj} in X, such that tj → +∞,
dj > 0, d(yj, A(ϕ)) → 0, ϕ(t, yj) ∈ Vε(A(ϕ)) for 0 ≤ t < tj and ϕ(t, yj) /∈
Vε(A(ϕ)) for tj < t < tj + dj. Since A(ϕ) is compact we can assume that
yj → y ∈ A(ϕ). Then, the set H = {y, yj : j ≥ 1} is also compact and if
K denotes the compact set attracting every compact set under the flow we
have that

⋃
t≥s ϕ(t,H) ⊂ Vε(K) for some s ≥ 0. This means that the positive

semiorbits of points in H are bounded and, consequently, their ω -limit sets
are nonempty, compact and invariant. Since A(ϕ) is the maximal compact
invariant set we conclude that ω(H) ⊂ A(ϕ). But since cl

⋃
t≥s ϕ(t,H) is

compact we also conclude that the sequence ϕ(tj + dj/2, yj) has a converging
subsequence to some point z satisfying z /∈ Vε(A(ϕ)) and z ∈ ω(H) ⊂ A(ϕ)
which is a contradiction.

QED

Due to its attracting properties it is natural to call the set A(ϕ) the
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Figure 2.18:

global attractor of the dynamical system and it is certainly the most im-
portant object to be searched for in the study of a flow. The objectives of
the geometrical theory in what concerns the study of the global attractor are
twofold: it is important to study the geometrical and topological properties
of all the orbits contained in the attractor in order to understand all the
possible limiting behaviour of the system, and it is of interest to study the
dependence of A(ϕ) on ϕ in order to understand the behaviour of the global
attractor under perturbations of the dynamical system.

To illustrate here the notions of dissipative system and global attractor
we consider again a mechanical system described by the following second
order differential equation

ẍ+ εẋ− x+ x3 = 0, ε > 0.

As in the previous example, this equation also describes the one dimensional
motion of a body with unit mass under the action of a nonlinear force g(x) =
x − x3, which is restoring if |x| > 1, and with damping proportional to the
velocity. As before, we take for state variables the position x and the velocity
y = ẋ and choose IR2 for phase space. Again the mechanical energy is given
by

E(x, y) =
1

2
y2 +G(x),
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with potentialG(x) = x4/4−x2/2. Then, we have d
dt
E(x(t), ẋ(t)) = −ε(ẋ(t))2.

For ε = 0 the system is conservative and the corresponding phase portrait
can be sketched as in Figure 2.18. For ε > 0 the energy decays with time
and all the orbits of the system must cross the level curves of the energy
in the direction of decreasing values of energy, leading for ε > 0 small to a
phase portrait as sketched in Figure 2.19. We consider ε > 0 and let c be
a positive constant. Then, the level curve corresponding to E(x, y) = c is a
simple closed curve that bounds an open connected set Bc (see the largest
dotted line in the phase portrait). Any solution starting in Bc cannot leave
this set. Furthermore, the energy is bounded below and nonincreasing along
the solutions, therefore, it must approach a constant as t→ +∞. Since the
ω-limit set of each orbit is invariant and E is continuous, the ω-limit set must
lie on a level curve of E, that is, each orbit γ(t) = (x(t), ẋ(t)) in the ω-limit
set must have 0 ≡ d

dt
E(x(t), ẋ(t)) = −ε(ẋ(t))2, implying that ẋ(t) = 0. From

the invariance of the ω-limit sets it follows that they can be either the origin
or one of the equilibria (±1, 0). This shows that the above dynamical sys-
tem is dissipative, since any bounded set containing the equilibria attracts
each point of IR2 under the flow. The corresponding global attractor A(ϕ)
is shown in Figure 2.20 and is composed of the three equilibria and the two
heteroclinic orbits connecting them. These are the only bounded orbits of the
dynamical system. The preceding reasoning involving the simultaneous con-
sideration of level sets of an energy function and the invariance of limit sets
is a simple application of the well known invariance principle of LaSalle.

The existence of a compact invariant set implies the existence of minimal
sets, but it does not directly imply that there exist minimal sets of the
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Figure 2.20:

smallest possible type, namely consisting of only one point. However, it
turns out that for dissipative systems such minimal sets do indeed exist as
a consequence of an interplay between invariance and general topological
results on the existence of fixed points of continuous maps.

2.4 Existence of equilibria

It is important to know for a particular dynamical system whether an
equilibrium point exists or not. The rational and the irrational flows on the
torus of Example (2.3)-6 or the flow defined by the equation ẋ = 1 show
there exist dynamical systems without equilibria. In fact, even if a compact
invariant set exists, and therefore there exists a minimal invariant set, it is
important to know if any of the minimal sets is just one point. The existence
of an equilibrium pointfor a dynamical system is a global question that has
been handled by a number of different methods. Here we consider only two
situations related to the concepts of invariance and dissipativeness.

The dissipativeness considered in the previous section which implied the
existence of a maximal compact invariant set — a global attractor — also
implies the existence of at least an equilibrium point; and, therefore, of a
minimal set which is as small as possible. Before establishing this, we consider
the easier question of existence of equilibria in invariant sets homeomorphic
to the closed unit ball in IRn. For this it is convenient to use a general
topological result establishing the existence of fixed points for continuous
functions. We cite the result without proof 1.

1A simple proof is given in John Milnor, The hairy ball theorem, Amer. Math. Month.
85 (1978), 521-524
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(2.9) Theorem (Brouwer’s Fixed Point Theorem) : A continuous map-
ping from the unit closed ball of IRn into itself has at least one fixed point.

We can now turn to the existence of equilibrium points for dynamical
systems.

(2.10) Theorem: If, for a dynamical system ϕ in a topological space X,
A is a positively invariant set (or negatively invariant set) homeomorphic to
the unit closed ball of IRn, then there exists at least one equilibrium point of
ϕ.

Proof. We consider a dynamical system ϕ : I ×X → X and suppose A
is positively invariant. For each T ∈ I with T > 0, the function x→ ϕ(T, x)
is a continuous mapping from A into itself. Brouwer’s Fixed Point Theorem
implies the existence of a fixed point for this mapping y = ϕ(T, y).

In case ϕ is a discrete system, taking T = 1 we obtain an equilibrium of
ϕ. If ϕ is a continuous system, we choose a sequence Tj with Tj > 0 and
Tj → 0 and points xj = ϕ(Tj, xj). As A is compact, we can suppose, without
loss of generality, that xj converges to a point x ∈ A.

For each t > 0 we have

|ϕ(t, x)− x| ≤ |ϕ(t, x)− ϕ(t, xj)|+ |ϕ(t, xj)− xj|+ |xj − x|.

The first and the last terms in the right hand side of this inequality approach
zero as j → +∞. For the middle term, as ϕ(iTj, xj) = xj for each positive
integer i, we have |ϕ(t, xj) − xj| ≤ |ϕ(t, xj) − ϕ(iTj, xj)|. Taking for each
j the integer ij such that ijTj ≤ t ≤ (ij + 1)Tj, we obtain ijTj → t and,
consequently, also this term converges to zero as j → +∞. We conclude that
ϕ(t, x) = x for all t ≥ 0, proving that x is a equilibrium point.

QED

The existence of equilibrium points for dissipative dynamical systems also
stands on a general result on the existence of fixed points which generalizes
Brouwer’s Fixed Point Theorem by relaxing the hypothesis on the mapping
considered through a condition on one of its iterates. The result, which
belongs to the class of the so called asymptotic fixed point theorems, is also
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cited here without proof2.

(2.11) Theorem: Let S0 ⊂ S1 ⊂ S2 be convex subsets of IRn with S0, S2

compact and S1 open relative to S2. If f : S2 → IRn is a continuous mapping
such that for some integer m > 0 we have f j(S1) ⊂ S2, for 1 ≤ j ≤ m − 1,
and f j(S1) ⊂ S0 , for m ≤ j ≤ 2m− 1, then f has a fixed point in S0.

The existence of equilibrium points for dissipative systems can be estab-
lished using this theorem.

(2.12) Theorem: A dissipative dynamical system ϕ in a set X ⊂ IRn has
at least one equilibrium point.

Proof. Let A(ϕ) be the maximal compact invariant set whose existence
was established in Theorem (2.7). We denote by S0 the closure of an open
ball containing A(ϕ) and by S1 an open ball containing S0. It was established
in Theorem (2.8) that A(ϕ) attracts all bounded sets, in particular it attracts
S1 and, consequently, there exists an integer m > 0 such that the function
f(x) = ϕ(T, x) satisfies f j(S1) ⊂ S0 for j ≥ m and T > 0. It follows
that the union of the sets f j(S1), for j ≥ 0, is bounded and, therefore, it is
contained in a closed ball S2. The function f and the sets S0, S1, S2 satisfy
the hypothesis of the preceding theorem and, consequently, we conclude that
f(x) = ϕ(T, x) has a fixed point xT in S0. As A(ϕ) is the maximal compact
invariant set we have x1 ∈ A(ϕ).

The existence of an equilibrium point in A(ϕ) can now be established as
in the proof of the Theorem (2.10).

QED

2A proof can be found in the papers Felix E. Browder, On a Generalization of the
Schauder fixed point theorem, Duke Math J. 26 (1959), 291-303 and W.A. Horn, Some
fixed point theorems for compact maps and flows in Banach spaces, Trans.Amer.Math.Soc.
149 (1970), 391-404
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2.5 Flow Box Theorem

To consider more detailed properties of dynamical systems, it is conve-
nient to assume some degree of smoothness. With this purpose in mind, we
take I = IR and let ϕ denote a smooth local dynamical system in an open
set X ⊂ IRn with an associated vector field of class C1. Hence, we assume
that ϕ is associated to an ordinary differential equation, ẋ = f(x), where
f(x) = ∂ϕ(0, x)/∂t defines a continuously differentiable vector field in X.
From the definition of this vector field and the ordinary differential equation
ẋ = f(x), we conclude that the equilibria of ϕ correspond to the zeros of
the vector field, that is, x̄ ∈ X is an equilibrium point of ϕ if and only if
f(x̄) = 0. In this section we show that near regular points the flow of such a
dynamical system is completely trivial in the sense that it is homeomorphic
to a parallel flow, that is, a flow whose orbits are parallel straight lines.

We say that a subset S of a hyperplane3 in IRn which is homeomorphic
to a open ball of IRn−1 is a section transverse to the orbits of ϕ if for
every x ∈ S the set of vectors y − x for y ∈ S together with the vector f(x)
span the whole space IRn (see Figure 2.21). For simplicity, we also say that
S is a transversal to ϕ.

(2.13) Proposition: If a ∈ X is a regular point of ϕ, then there is a
tranversal to ϕ containing a. Moreover, this transversal can be taken to be
diffeomorphic4 to an open ball of IRn−1.

3A hyperplane in IRn is a (n − 1)-dimensional plane in IRn, that is a translation of a
(n− 1)-dimensional subspace of IRn

4A diffeomorphism is a continuously differentiable function with continuosly differen-
tiable inverse. Two sets are said to be diffeomorphic if one is the image of the other under
a diffeomorphism.
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Figure 2.22:

Proof: Let a ∈ X denote a regular point of ϕ. Then, the corresponding
vector field satisfies f(a) 6= 0 and, consequently, there are n − 1 linearly
independent vectors vi ∈ IRn, i = 1, ..., n − 1, such that the set of vectors
{f(a), v1, ..., vn−1} forms a base of IRn. Let Bδ = {y ∈ IRn−1 : |y| < δ}
denote the open ball in IRn−1 of radius δ and centered at the origin and
define the function g : Bδ → IRn by g(y1, ..., yn−1) = a +

∑
i yivi. Then, g is

a diffeomorphism of the open ball Bδ ⊂ IRn−1 to a hyperplane in IRn. Since
D(x) = [f(x), v1, . . . , vn−1] is nonsingular for x = a, that is, detD(a) 6= 0,
and since f is continuous it follows that detD(x) 6= 0 for x ∈ Sδ = g(Bδ),
provided δ is taken sufficiently small. For such a δ, the linear span of the
vectors {f(x), v1, . . . , vn−1} is IRn and, therefore Sδ is a transversal to ϕ.

QED

The following theorem establishes that the set of orbits in a neighbour-
hood of a regular point of ϕ is, apart from a diffeomorphism, a set of parallel
line segments filling up an open set in IRn, as depicted in Figure 2.22.

(2.14) Theorem: (Flow Box Theorem) If a ∈ X is a regular point of ϕ,
then there exists a neighbourhood of a diffeomorphic to the cartesian product
of an open interval of IR with an open ball of IRn−1 such that the corresponding
diffeomorphism maps the orbits of ϕ to parallel line segments.

Proof: Let Sδ denote a transversal to ϕ containing a and diffeomorphic
to the open ball Bδ ⊂ IRn−1. Consider the function h which is the restriction
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of ϕ to (−δ, δ) × Sδ. If {v1, . . . , vn−1} is taken as a basis of the subspace
spanned by the vectors y − a for y ∈ Sδ, then for each x ∈ Sδ we have

x = a+
n−1∑

i=1

xivi and Dh(t, x) =

[
∂ϕ(t, x)

∂t
,
∂ϕ(t, x)

∂x

∂x

∂x1

, . . . ,
∂ϕ(t, x)

∂x

∂x

∂xn−1

]

Therefore, h(0, a) = a and Dh(0, a) = [f(a), v1, ..., vn−1] which is nonsingular
because Sδ is a section transverse to the orbits of ϕ. From the inverse function
theorem we conclude that the inverse mapping of h exists and is continuously
differentiable in a neighbourhood of a. Then, if δ is sufficiently small, h is a
diffeomorphism. Clearly, for every x ∈ Sδ the image of (−δ, δ)× {x} by h is
the arc of orbit {ϕ(t, x) : −δ < t < δ} and the range of h is a neighbourhood
U of a. It follows that the inverse diffeomorphism h−1, for each x ∈ Sδ, maps
γx ∩ U to (−δ, δ) × {x}, and that these sets are parallel line segments in
(−δ, δ)× Sδ.

The diffeomorphism from U to (−δ, δ)×Bδ follows immediately by notic-
ing that Sδ is diffeomorphic to Bδ.

QED

From this theorem it follows that the flow of the dynamical system ϕ
near a regular point is, in fact, diffeomorphic to a parallel flow, hence, from
the point of view of a local theory, only the characterization of flows near
equilibrium points is missing.

It is a trivial observation that a smooth parallel flow is associated with a
vector field of constant direction. It is then easy to conclude that a smooth
flow, near a regular point, is diffeomorphic to the flow generated by a constant
vector field.

2.6 Poincaré-Bendixson theory

Some of the questions arising in the global characterization of phase por-
traits involve the important and very difficult problem of finding periodic
orbits. This characterization also involves the consideration of geometrical
and topological tools which in character are very different from the ones used
in the local analysis. This was seen when the existence of equilibria in invari-
ant sets was considered in section 2.4, and, more generally, this is the case
when considering the characterization of compact invariant sets. Although
adequate tools for this characterization seem to be lacking in general, a com-
plete characterization is available in the case of two dimensional systems, due
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to the celebrated Jordan curve theorem. For a smooth dynamical system de-
fined on the plane we obtain two important results: the first states that the
only minimal invariant sets are equilibrium points and periodic orbits; and
the second is the Poincaré-Bendixson theorem, characterizing the limit sets
of bounded orbits.

To establish these results let ϕ denote a smooth dynamical system in IR2

with an associated vector field f of class C1. Again we assume that ϕ is
associated to the ordinary differential equation in the plane ẋ = f(x). Let
p ∈ IR2 denote a regular point of ϕ and L denote a transversal to ϕ containing
p. In this case L is an open line segment, and to avoid problems in its end
points we assume that L is such that cl L is contained in another transversal
to ϕ. To identify the periodic orbits of ϕ we start by studying the orbits of
ϕ that repeatedly intersect L.

(2.15) Lemma:

(i) All the orbits intersecting the transversal L cross it in the same direc-
tion.

(ii) For every point p ∈ L there exists an ε > 0 and a neighbourhood U
containing p such that for every q ∈ U the flow ϕ(t, q) intersects L
exactly once for |t| < ε.

(iii) If the flow ϕ(t, p) intersects L at the successive time instants 0 < t1 <
t2 < ..., then the intersection points pi = ϕ(ti, p) along L occur in the
same order as along the orbit γp.

Proof:
(i) If there were orbits crossing L in oposite directions, the mean value

theorem for continuous functions would imply the existence of a point of
tangency of L with an orbit, contradicting the fact of L being a transversal.

(ii) If p ∈ L then p is a regular point and, since ϕ is smooth and f(q) =
∂ϕ(0, q)/∂t, for every δ > 0 there is a neighbourhood U of p and an ε > 0
such that, for every q ∈ U and |t| ≤ ε, we have |ϕ(t, q) − q − tf(q)| < δ|t|.
Accordingly, taking δ sufficiently small the corresponding U and ε satisfy the
desired properties.

(iii) It is sufficient to consider the sequence of points p, p1, p2. Consider
the Jordan curve formed by the arc of orbit ϕ(t, p) with 0 ≤ t ≤ t1 , and the
segment of L between p and p1 (see Figure 2.23). At time t = t1 the flow
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Figure 2.23:

ϕ(t, p) enters one of the regions of the plane defined by this Jordan curve.
Since by (i) all the orbits intersecting L must cross in the same direction,
we conclude that ϕ(t, p) for t > t1 cannot leave this region of the plane.
Therefore, along L the point p2 must follow the points p and p1 in the same
order as they occur along γp.

QED

Due to the last property we say that {pi} is a monotone sequence
along L.

The following result is useful in the characterization of the limit sets.

(2.16) Proposition: The ω-limit set ω(γp) of the orbit γp can intersect
the transversal L in only one point. If ω(γp) ∩ L = {q}, then either:

(i) ω(γp) = γp and γp is a closed orbit; or

(ii) there is a sequence {tk} such that tk → +∞ and ϕ(tk, p) 6= q is a
monotone sequence along L.

The same result holds for the α-limit set of γp.

Proof: Assume that q ∈ ω(γp) ∩ L. Then, there is a sequence {tk}, such
that tk → +∞ and ϕ(tk, p)→ q (see Figure 2.24). From (ii) in the previous
lemma, for k sufficiently large, there are points pk = ϕ(t′k, p) such that {pk}
is in L and pk → q. From (iii) of the same lemma we conclude that {pk}
is monotone along L, therefore, ω(γp) ∩ L can have at most one point. The
alternative follows immediately.

QED
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Figure 2.24:

From the previous lemma we also derive the following complete charac-
terization of minimal invariant sets for systems in the plane.

(2.17) Theorem: The minimal invariant sets are either equilibrium points
or periodic orbits.

Proof: Let γp denote an orbit contained in the minimal invariant set M .
Then, α(γp) and ω(γp) are nonempty and contained also in M . Since the
limit sets of bounded orbits are compact and invariant and M is minimal
with respect to these properties, it follows that α(γp) = ω(γp) = M . If
M contains an equilibrium point p, then ω(γp) = p and, hence, M = p.
If M = ω(γp) does not contain an equilibrium point, since γp ⊂ ω(γp) it
follows that γp and ω(γp) have a regular point q in common. Let L denote a
transversal containing q. Then, there is a sequence {tk}, such that tk → +∞
, ϕ(tk, p)→ q, and, as in the previous proposition, we can take the sequence
ϕ(t′k, p) of points contained in L, ϕ(t′k, p) → q. From (ii) of the lemma,
this sequence is monotone along L, and since γp and ω(γp) have a point in
common, it cannot be strictly monotone. It follows that all the points ϕ(t′k, p)
are coincident, ϕ(t′k, p) = q, and γp = ω(γp) is a periodic orbit.

QED

(2.18) Lemma: If the ω-limit set of a positive semiorbit γ+
p contains a

periodic orbit γ then ω(γ+
p ) = γ.

Proof: Let q denote a point in γ and L be a transversal to ϕ containing q.
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From the previous proposition we have that ω(γ+
p ) ∩ L = {q}. By (ii) of the

previous lemma there is a neighbourhood U of q such that every orbit passing
through points of U intersect L. Since ω(γ+

p ) is invariant and ω(γ+
p )∩L = {q},

it follows that every orbit passing through points of U ∩ ω(γ+
p ) contains q.

Hence, U ∩ω(γ+
p ) = U ∩γ, and since this holds for every point q ∈ γ we have

ω(γ+
p ) = γ.

QED

We can now establish the famous Poincaré-Bendixson theorem.

(2.19) Theorem (Poincaré-Bendixson): If γ+
p is a bounded positive semior-

bit and ω(γ+
p ) does not contain equilibrium points, then ω(γ+

p ) is a periodic
orbit and, either ω(γ+

p ) = γ+
p , or ω(γ+

p ) = cl γ+
p \γ+

p .
An analogous result holds for negative semiorbits and the corresponding

α-limit sets.

Proof: Since γ+
p is bounded, ω(γ+

p ) is nonempty, compact connected and
invariant. Hence, there is a minimal invariant set M ⊂ ω(γ+

p ). Since ω(γ+
p )

does not contain equilibrium points, the previous theorem implies that M is
a periodic orbit γ and the previous lemma implies that ω(γ+

p ) = γ. Then, if
γ+
p = γ we have ω(γ+

p ) = γ+
p , otherwise ω(γ+

p ) = cl γ+
p \γ+

p as stated.
QED

To complete the characterization of the limit sets of bounded orbits we
present the following result.

(2.20) Theorem: Let γ+
p be a positive semiorbit in a compact subset of

the plane containing only a finite number of equilibrium points. Then, one
of the following is satisfied (see Figure 2.25):

(i) ω(γ+
p ) is an equilibrium point;

(ii) ω(γ+
p ) is a periodic orbit;

(iii) ω(γ+
p ) contains a finite number of equilibrium points and a set of ho-

moclinic and heteroclinic orbits connecting them.
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Figure 2.25:

An analogous result holds for negative semiorbits and the corresponding α-
limit sets.

Proof: The set ω(γ+
p ) contains at most a finite number of equilibrium

points. If ω(γ+
p ) does not contain regular points, then it is a single equilibrium

point since ω(γ+
p ) must be connected.

If ω(γ+
p ) contains a closed orbit γ, then the previous lemma implies that

ω(γ+
p ) = γ.
Finally, we assume that ω(γ+

p ) does not contain a periodic orbit but
contains regular points. Let γ denote an orbit in ω(γ+

p ). As ω(γ+
p ) is closed,

we have ω(γ) ⊂ ω(γ+
p ). If q0 ∈ ω(γ) were a regular point, then considering

a transversal L to ϕ containing q0, the Proposition 2.16 would imply that
ω(γ+

p ) ∩ L = ω(γ) ∩ L = {q0} and that γ intersect L at the point {q0}. For
q ∈ γ, the same proposition would imply the existence of a sequence {tk}
such that tk → +∞ and ϕ(tk, q) is a monotone sequence along L converging
to q0. Since γ ⊂ ω(γ+

p ) it would follow that ϕ(tk, q) = q0 for every k implying
that γ would be a periodic orbit. Consequently, if ω(γ+

p ) does not contain
periodic orbits and γ ⊂ ω(γ+

p ), then ω(γ) does not contain regular points.
As ω(γ) is connected, it follows that it is an equilibrium point. The same
argument applies to α-limit sets. Hence, ω(γ+

p ) is composed of orbits whose
α and ω-limit sets are equilibrium points.

QED

As an application of these results we consider the local dynamical system
defined by the second order differential equation

ẍ+ g(x)ẋ+ f(x) = 0

where f and g are C1 functions satisfying:

(i) f is odd and xf(x) > 0 for x 6= 0;
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(ii) g is even and g(0) < 0;

(iii) G defined as G(x) =
∫ x

0 g(s)ds has a positive zero x = a and is mono-
tone increasing for x ≥ a;

(iv) G(x)→ +∞ as x→ +∞.

Under these conditions, the equation considered is called a Liénard equa-
tion. It describes the one dimensional movement of a unit mass subjected, at
each point x, to a restoring force −f(x) and to a damping proportional to the
velocity with coefficient g(x). Introducing the new variable z = ẋ+G(x) we
write this differential equation as a system of first order differential equations:

ẋ = z −G(x)

ż = −f(x).

From (i) it is easy to conclude that the phase portrait of this system
contains only one equilibrium point corresponding to the origin. Moreover,
defining the function V (x, z) = 1

2
z2 +

∫ x
0 f(s)ds we have along solutions

d

dt
V (x, z) = zż + f(x)ẋ = −f(x)G(x).

By (ii) this relation implies that, close to the origin, V is nondecreasing
along solutions. Since the level curves of V are closed curves encircling (0, 0)
it follows that any solution starting away from this equilibrium point cannot
approach the origin in positive time.

Next, we will establish that the origin is contained in a positively invariant
region, that is, a region which is invariant for t ≥ 0. Then, since the ω-limit
set of any point different from the origin cannot contain the only equilib-
rium point (0, 0), the Poincaré-Bendixson theorem implies the existence of a
periodic orbit inside this region.

We start by observing that the flow on the phase space (x, z) is to the
right if z > G(x) and to the left if z < G(x). Moreover, it is horizontal on
the z-axis, and it is decreasing on the right-half plane. By (i) and (ii), if
(x(t), z(t)) represents a solution then (−x(t),−z(t)) is also a solution. From
(iv) we conclude that a solution starting at α = (0, z0) is shaped as sketched
in Figure 2.26, intersecting the graph of G exactly at one point and reaching
again the z-axis at a point β = (0,−z1). We will show that z0 > z1 if z0 is
taken sufficiently large. Then, appropriate arcs of orbits of this solution and
its symmetric, and line segments in the z-axis define a Jordan curve whose
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Figure 2.26:

interior is the desired positively invariant region (see Figure 2.26). In fact, a
simple computation leads to the relations

dx

dz
= − z −G(x)

f(x)
,

dV

dx
=
−f(x)G(x)

z −G(x)
,

dV

dz
= G(x).

We denote by x = ξ(z) the function corresponding to the solution for −z1 <
z < z0. Also, for dx/dz 6= 0 we can define this solution as a function z = z(x).
Let x = b correspond to the intersection point of the solution with the graph
of G, that is, dx(b)/dz = 0. We define the functions ζ0 , ζ1 in [0, b] such that
z = ζ0(x) and z = ζ1(x) correspond to the above solution with ζ0(0) = z0

and ζ0(0) = −z1 respectively. Then, we have

1

2
(z1

2 − z0
2) = V (0,−z1)− V (0, z0) =

∫ β

α
dV

= −
∫ a

0

f(x)G(x)

ζ0(x)−G(x)
dx+

∫ ζ1(a)

ζ0(a)
G(ξ(z)) dz +

∫ a

0

f(x)G(x)

ζ1(x)−G(x)
dx

Since for each x fixed, ζ0(x), ζ1(x) → +∞ as z0 → +∞, the first and third
integrals clearly approach zero as z0 → +∞. Moreover, if z0 is sufficiently
large we have that b > a and we can chose a0 fixed such that a < a0 < b.
Then, we obtain
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∫ −ζ1(a)

ζ0(a)
G(ξ(z)) dz = −

∫ ζ0(a)

ζ1(a)
G(ζ(z)) dz

< −
∫ ζ0(a0)

ζ1(a0)
G(ξ(z)) dz < −G(a0)[ξ0(a0)− ξ1(a0)],

concluding that the second integral tends to −∞ as z0 → +∞. Therefore, if
z0 is taken sufficiently large we will have z0 > z1 completing the proof of the
existence of a periodic orbit for this system.

The equation

ü− µ(1− u2)u̇+ u = 0, µ > 0

known as van der Pol equation is a famous example which belongs to the
above class of equations. It played an important role in the early development
of the study of nonlinear systems, providing an example for which traditional
methods based on linearizations could not be used to prove the existence of
a periodic orbit. It appeared as a model for the study of oscillating solutions
of an electronic circuit.
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Chapter 3

Linearization: behaviour near
equilibria and periodic orbits

3.1 Linear systems and linear variational equa-

tions

There exists a definitive and simple theory for linear systems, therefore,
in the study of nonlinear smooth systems it is useful to take the most possi-
ble advantage from approximating the nonlinear system by a linear one. Of
course, we can only expect to obtain in this way information on the local
behaviour of a nonlinear system around the points, orbits or sets of orbits
where the linearization is considered. Although this technique is quite gen-
eral, it will be illustrated here mostly for the study of the behaviour of a
dynamical system in neighborhoods of equilibria or periodic orbits. One of
its consequences is to complete the local analysis of a smooth dynamical sys-
tem around a point p in the phase space. In fact, as shown in the preceding
chapter, if p is a regular point the flow in a neighborhood of it is parallel and,
therefore, only the case where p is an equilibrium requires further analysis.

A dynamical system ϕ in X is said to be a linear system if the map
x→ ϕ(t, x) is linear. Clearly, if ϕ is a smooth linear system the vector field
associated to ϕ is linear and the associated ordinary differential equation is
ẋ = Ax where A represents the linear map x → ∂ϕ(0, x)/∂t. Thus, smooth
linear systems are well understood since linear differential equations form a
class for which there exists a definitive theory.

If ϕ is a smooth nonlinear system and γx denotes a particular orbit, one
might expect to understand the behaviour of ϕ in a neighborhood of γx
by considering its best linear approximation obtained from the first term
of the Taylor series expansion of ϕ around γx . This process is called a
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linearization and its justification is the subject of this chapter.

For simplicity, we consider X = IRn. The linearization of the flow ϕ
around a point p ∈ γx is given by the linear mapping z → Dxϕ(t, p)z in IRn.
As time evolves, the point where the linearization should be taken changes
along the orbit and, therefore, to describe a deterministic evolution process
we need to consider pairs (z, x) ∈ IRn × IRn containing information about
the direction of linearization and the point at which the flow is linearized.
Accordingly, the linearization of ϕ around the orbit γx can be seen as defining
a flow in IRn × IRn by π : IR × IRn × IRn → IRn × IRn with π(t, z, x) =
(Ψ(t, z, x), ϕ(t, x)), where Ψ(t, z, x) = Dxϕ(t, x)z. Immediately one verifies
that π satisfies the definition of a skew product flow. Since z → Ψ(t, z, x) is
linear, π is called a linear skew product flow this particular skew product
flow is known as the linearized flow around γx. It is the dynamical system
π that is considered in the study of the linearization of ϕ around orbits.

Since the dynamical system ϕ is smooth, let f denote its associated vector
field, f(x) = ∂ϕ(0, x)/∂t, and let ẋ = f(x) be the corresponding ordinary
differential equation. In the following we always assume that the vector field
f is of class C1. We notice that, for fixed (z, x) ∈ IRn × IRn,Ψ satisfies
a linear differential equation of the form ẏ = A(t)y. In fact, computing
the derivative of ψ relative to the time variable, and using the fact that
∂ϕ(t, x)/∂t = f(ϕ(t, x)), we obtain

∂

∂t
Ψ(t, z, x) = Dtxϕ(t, x)z = Dxf(ϕ(t, x))z

= Df(ϕ(t, x))Dxϕ(t, x)z = Df(ϕ(t, x))Ψ(t, z, x),

and the result follows by taking A(t) = Df(ϕ(t, x)). This equation de-
termines the evolution of the linearized flow around γx in the direction of
linearization which at the point x is given by z. By this reason the above
equation is known as the linear variational equation of ϕ around the orbit
γx. In general this equation is nonautonomous, that is, the corresponding
vector field depends explicitly on t. When the orbit λx is an equilibrium
point, then ϕ(t, x) = x for every t and the linear variational equation be-
comes ẏ = Ay with A = Df(x). Since this equation is autonomous we can
define the dynamical system θ on IRn by taking θ(t, z) = Ψ(t, z, x) and sub-
stitute π by θ in the linearization, calling θ the linearized flow around
the equilibrium x.
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Figure 3.1:

3.2 Stable, unstable and center manifolds for

an equilibrium

In order to be specific in a situation as simple as possible, we consider in
this section the particular case of linearization around an equilibrium point.

Let x0 be an equilibrium point for the dynamical system ϕ and let ẏ = Ay
denote the linear variational equation corresponding to the linearized flow θ
around the equilibrium point x0. Denote by σ(A) = {λ1, . . . , λm} the set of
eigenvalues of A, called the spectrum of A. If we consider the generalized
eigenspaces corresponding to the eigenvalues of A, we clearly obtain that the
behaviour of θ(t, z) for z on each of these invariant subspaces is quite differ-
ent. It is a consequence of the known theory of linear ordinary differential
equations that, if z belongs to a generalized eigenspace of A corresponding
to λ ∈ σ(A) then θ(t, z) exhibits an exponential rate of approach to zero as
t → +∞ if λ has negative real part, Re(λ) < 0; θ(t, z) exhibits an expo-
nential rate of approach to zero as t → −∞ if Re(λ) > 0; and θ(t, z) either
does not approach zero or goes to zero with a rate lower than exponential
as t → +∞ or t → −∞ if Re(λ) = 0 (in fact, if θ(t, z) → 0 as t → +∞ or
t → −∞ it does so with a polynomial rate of approach). The span of the
invariant subspaces corresponding to the eigenvalues with negative, positive
and zero real parts are linear manifolds which, due to the behaviour of θ(t, z),
are called respectively stable, unstable and center manifolds of the origin for
the linear system θ and denoted by S, U and C. Accordingly, the phase
space of the linearized flow θ can be decomposed as IRn = S ⊕ C ⊕ U (see
Figure 3.1).

The exponential behaviour of θ on each of these subspaces motivates the
following characterization of the manifolds S, U and C:
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Figure 3.2:

S = {z ∈ IRn : there exists µ > 0 such that eµtθ(t, z)→ 0 as t→ +∞}
U = {z ∈ IRn : there exists µ > 0 such that e−µtθ(t, z)→ 0 as t→ −∞}
C = {z ∈ IRn for every µ > 0, e−µ|t|θ(t, z)→ 0 as t→ ±∞}

When σ(A) does not contain eigenvalues with zero real part the decompo-
sition of the phase space of θ becomes simply IRn = S⊕U and the behaviour
of θ on each invariant subspace is characterized by an exponential rate of
approach to zero either forwards or backwards in time. In this case such
a decompositon of the phase space is called an exponential dichotomy.
Moreover, all the orbits that are neither in S nor in U will leave a neighbor-
hood of the origin both forwards and backwards in time, the phase portrait
of θ is said to have a saddle-point at the origin and the equilibrium is said
to be hyperbolic. In this case, we expect the exponential behaviour to per-
sist when the system is subjected to a small perturbation in a neighborhood
of the origin. Since the nonlinear flow ϕ near the equilibrium point x0 can
be considered a small perturbation of the linearized flow θ, we expect ϕ to
exhibit the described exponential behaviour in relation to manifolds of initial
conditions corresponding to the perturbation of the linear subspaces S and
U . In fact this is the case. We will show in the following sections that under
the above conditions the phase portrait of ϕ at the point x0 has the same
saddle-point property than its linearization θ (see Figure 3.2).

The clear separation between the exponential decay on S and the expo-
nential growth on U is important in the above reasoning. To obtain similar
results in more general situations all that is needed is a clear separation be-
tween different exponential rates. In fact, performing the change of variables
y → e−µty in the linear variational equation ẏ = Ay we obtain ẏ = Aµy
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with Aµ = A − µI and the spectrum σ(Aµ) is just a translation by µ of
σ(A). Hence we can always find µ ∈ IR such that σ(Aµ) does not contain
eigenvalues with zero real part and obtain for the phase space of θ the de-
composition IRn = Sµ ⊕ Uµ where Sµ and Uµ are the invariant subspaces
corresponding to the eigenvalues in σ(Aµ) with negative and positive real
parts respectively. When σ(A) contains eigenvalues with zero real part the
general decomposition IRn = S ⊕ C ⊕ U can be obtained from the above
decompositions by taking IRn = S−µ ⊕ U−µ = Sµ ⊕ Uµ for µ > 0 sufficiently
small, so that S = S−µ, U = Uµ and C = Sµ ∩ U−µ. We will show that
this type of decomposition also persists under small nonlinear perturbations.
With this objective in mind, we define for the nonlinear flow ϕ the local
stable and unstable sets of the equilibrium x0 that we denote respectively by
W u
loc and W u

loc in the following way. If V is neighborhood of x0 then

W s
loc = {x ∈ V : ϕ(t, x) ∈ V for t ≥ 0 and there exists µ > 0

such that eµt(ϕ(t, x)− x0)→ 0 as t→ +∞},

W u
loc = {x ∈ V : ϕ(t, x) ∈ V for t ≤ 0 and there exists µ > 0

such that e−µt(ϕ(t, x)− x0)→ 0 as t→ −∞}.

These sets will be shown to be manifolds diffeomorphic to open subsets of
S and U , and tangent at x0 to the linear manifolds S + {x0} and U + {x0},
respectively; they are called, respectively, the local stable manifold and
the local unstable manifold of the equilibrium x0. Furthermore, we
will also prove the existence of a local center manifold denoted by W c

loc

contained in the set {x0} ∪ {x ∈ V : ϕ(t, x) ∈ V for t ≥ 0 or t ≤ 0 and
for every µ > 0, eµ|t|(ϕ(t, x) − x0) + x0 leaves V both for t ≥ 0 and t ≤ 0}
diffeomorphic to C and tangent at x0 to the linear manifold C + {x0}.

The manifold structure mentioned here is important because it provides a
local set of coordinates for a neighborhood of x0 and the qualitative features
of the flow near x0, up to homeomorphisms preserving orbits and the direction
in time, are completely determined by the flow restricted to W c

loc and the
dimensions of S and U , since the solutions passing through points on W s

loc

or W u
loc are known to approach x0 with exponential rates as t → +∞ or

t → −∞ , respectively, and to leave a sufficiently small neighborhood of
x0 in the opposite time directions. Therefore, for the characterization of
the phase portrait locally around an equilibrium in a specific system, besides
computing the dimensions of the stable and unstable manifolds, S and U , for
the system obtained by linearization around the equilibrium, it is sufficient
to characterize the flow restricted to W c

loc. The flow in W c
loc depends strongly
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on the specific nonlinearities in the system; in general, it may assume any of
all the possibilities of the local flow around an equilibrium for an arbitrary
system in a phase space with the same dimension as W c

loc. As an example
in IR3, we consider a system that locally around the origin is defined by the
solutions of the ODE

ẋ = y − (x2 + y2)x

ẏ = −x− (x2 + y2)y

ż = −z − (x2 + y2)(2x2 + 2y2 − 1)

Clearly, the origin is an equilibrium and S = {(0, 0, z) : z ∈ IR}, U =
{(0, 0, 0)}, C = {(x, y, 0) : x, y ∈ IR}. It is easy to verify that, in a neighbor-
hood V of the origin, W s

loc = {(0, 0, z) ∈ V : z ∈ IR} and Wloc
u = {(0, 0, 0)}.

The function u(t) = x2(t) + y2(t), satisfies

u̇ = 2xẋ+ 2yẏ = 2xy − 2(x2 + y2)x2 − 2xy − 2(x2 + y2)y2 = −2u2 ,

and, therefore, z(t) = u(t) satisfies the last equation in the system. We
conclude that if (x(t), y(t)) is a solution of the first two equations, then
(x(t), y(t), x2(t) + y2(t)) is a solution of the overall system and the square of
its norm is u2 + u4. Solving u̇ = −2u2, we compute u(t) = 1/(2t + c) for an
appropriate constant c ∈ IR, and consequently, for every µ > 0, eµ|t|u(t) is
unbounded for t→ +∞ and t→ −∞. Therefore, one possibility for the local
center manifold in this case is W c

loc = {(x, y, x2 +y2) ∈ V : x, y ∈ IR} and the
flow restricted to W c

loc is completely determined by the equation u̇ = −2u2

(see Figure 3.3).
The sets W s

loc and W u
loc consist of semiorbits of points in V which are

bounded for, respectively, positive and negative time, and similarly, W c
loc is

a subset of the points x in V such that ϕ(t, x) is bounded either forwards or
backwards in time. Therefore, in order to study W s

loc,W
u
loc,W

c
loc it is desirable

to characterize analytically the solutions of the differential equations corre-
sponding to the flows which are bounded either for positive or for negative
time.

3.3 Bounded solutions for forced linear equa-

tions with exponential dichotomy

In this section we consider the characterization of solutions which are
bounded for positive or negative time for perturbations of the general linear
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Figure 3.3:

variational equation of the form ż = A(t)z. We begin by considering pertur-
bations of the form ẋ = A(t)x+h(t) with h being a bounded continuous func-
tion, and afterwards we consider perturbations of the form ẋ = A(t)x+g(t, x)
with g(t, 0) = 0 for all t ∈ IR and g(t, x) globally lipschitzian in x with a suf-
ficiently small lipschitz constant. In order to do the analysis, we first extend
to nonautonomous linear variational equations the notion of exponential di-
chotomy introduced in the previous section to separate the different expo-
nential behaviour in a neighborhood of the origin.

Let z = z(t, ξ) denote the solution of the linear equation ż = A(t)z
satisfying z(0, ξ) = ξ and let Ψ = Ψ(t) denote the linear operator Ψ(t) : ξ →
z(t, ξ). This operator is called the principal matrix solution of the linear
equation. It clearly satisfies Ψ(0) = I, the identity operator, and from the
theory of linear differential equations it follows that Ψ(t) is nonsingular for
every t ∈ IR.

To define an exponential dichotomy for the nonautonomous linear varia-
tional equation it is natural to look for spaces of initial conditions ξ ∈ IRn such
that the solutions z(t, ξ) = Ψ(t)ξ of this equation exhibit the adequate expo-
nential behaviour. We say that the linear variational equation ż = A(t)z has
an exponential dichotomy if there exist a linear projection P : IRn → IRn,
that is a linear operator P such that P 2 = P , and positive constants K and
α such that for every ξ ∈ IRn

|Ψ(t)Pξ| ≤ Ke−α(t−s)|Ψ(s)ξ| for every t ≥ s,
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Figure 3.4:

|Ψ(t)(I − P )ξ| ≤ Ke+α(t−s)|Ψ(s)ξ| for every t ≤ s.

If there is an exponential dichotomy we can define the linear stable and
unstable subspaces S and U corresponding to the initial conditions for which
the solutions approach zero forwards and backwards in time respectively

S = {ξ ∈ IRn : z(t, ξ)→ 0 as t→ +∞},
U = {ξ ∈ IRn : z(t, ξ)→ 0 as t→ −∞},

and again we obtain the decomposition IRn = S ⊕ U . Moreover, P is just
the projection of IRn onto S along U and, similarly, I − P is the projection
of IRn onto U along S (see Figure 3.4).

As an example we consider the linear equation ż = A(t)z defined in IR2

with

A(t) =

[
−1 a(t)
0 1

]
, a(t) =

4et + 6e2t

(1 + et)2
.

Denoting the solution with initial condition ξ = (ξ1, ξ2) by z(t, ξ) =
(z1(t, ξ), z2(t, ξ)), we have

z1(t, ξ) = e−t(ξ1 − ξ2) +
2e2t

1 + et
ξ2,

z2(t, ξ) = etξ2,

from which we can conclude that this equation has an exponential dichotomy
with projection P given by P (ξ1, ξ2) = (ξ1− ξ2, 0) and constants K = α = 1.
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Figure 3.5:

Furthermore, we have S = {(ζ, 0) : ζ ∈ IR}, U = {(ζ, ζ) : ζ ∈ IR}. If
for each fixed t ∈ IR we consider the subspaces Ψ(t)S and Ψ(t)U in IR2 we
have that Ψ(t)S = S for every t and Ψ(t)U approaches {(2ζ, ζ) : ζ ∈ IR}
as t → +∞ and {(0, ζ) : ζ ∈ IR} as t → −∞. We remark that, in general,
the spaces S and U are different from the stable and unstable manifolds
of the linear autonomous equation ż = Bz obtained by freezing the time
dependence on A, that is, by taking B = A(t0) for some fixed t0. In fact,
taking the above example one easily verifies that the unstable manifold for
the equation ż = Bz with B = A(0) is given by {(5ζ, 4ζ) : ζ ∈ IR}. For
this example we sketch in Figure 3.5 the sets of trajectories of the stable and
unstable manifolds of both equations ż = A(0)z and ż = A(t)z.

In the following we denote by BC(IR) the Banach space of bounded con-
tinuous functions h : IR → IRn, endowed with the uniform norm ||h|| =
sup{|h(t)| : t ∈ IR}. Similarly, we define the spaces BC(IR+) , BC(IR−) with
IR+ = [0,∞) and IR− = (−∞, 0], respectively, and denote the corresponding
norms by || · ||+ and || · ||−.

The question of existence and uniqueness of bounded solutions of a nonau-
tonomous linear variational equation with an exponential dichotomy can now
be settled.

(3.1) Theorem: If the equation ż = A(t)z has an exponential dichotomy
with projection P and constants K,α > 0, then for each function h ∈
BC(IR+) there is a unique solution B+h ∈ BC(IR+) of the perturbed equation
ẋ = A(t)x+h(t) satisfying PB+h(0) = 0. This solution is given by the linear
operator B+ : BC(IR+)→ BC(IR+) such that

B+h(t) =
∫ t

0
Ψ(t)PΨ−1(s)h(s)ds−

∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)h(s)ds
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and satisfies ||B+h||+ ≤ 2K
α
||h||+. Furthermore, if x = x(t, ξ) denotes the

solution with initial condition x(0, ξ) = ξ, then x(·, ξ) ∈ BC(IR+) if and only
if it has the form

x(t, ξ) = Ψ(t)Pξ +B+h(t),

or (I − P )ξ = B+h(0).
Similarly, for each function h ∈ BC(IR−) there is a unique solution

B−h ∈ BC(IR−) satisfying (I − P )B−h(0) = 0. This solution is given by
the linear operator B− : BC(IR−)→ BC(IR−) such that

B−h(t) =
∫ t

0
Ψ(t)(I − P )Ψ−1(s)h(s)ds+

∫ t

−∞
Ψ(t)PΨ−1(s)h(s)ds

and satisfies ||B−h||− ≤ 2K
α
||h||−. Furthermore, the solution x = x(t, ξ)

satisfies x(·, ξ) ∈ BC(IR−) if and only if it has the form

x(t, ξ) = Ψ(t)(I − P )ξ +B−h(t),

or Pξ = B−h(0).
Also, for h ∈ BC(IR) there is a unique solution x(t, ξ) in BC(IR) and its

initial value is ξ = B−h(0) +B+h(0).

Proof: We prove this result only for the case h ∈ BC(IR+), since the
case h ∈ BC(IR−) can be reduced to the first by reversing the time direction
t → −t. By a direct computation it can be checked that B+h verifies the
differential equation ẋ = A(t)x + h(t) and that PB+h(0) = 0. Since the
equation is linear the solution is unique. Furthermore, we have the following
estimate

||B+h||+ = sup
t≥0
|
∫ t

0
Ψ(t)PΨ−1(s)h(s)ds−

∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)h(s)ds|

≤ sup
t≥0

[∫ t

0
|Ψ(t)PΨ−1(s)h(s)|ds+

∫ +∞

t
|Ψ(t)(I − P )Ψ−1(s)h(s)|ds

]

≤ sup
t≥0

[
K
∫ t

0
e−α(t−s)|h(s)|ds+K

∫ +∞

t
e+α(t−s)|h(s)|ds

]

≤ K ||h||+ sup
t≥0

[
e−αt

∫ t

0
eαsds+ eαt

∫ +∞

t
e−αsds

]
≤ 2K

α
||h||+.
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Hence, B+h ∈ BC(IR+). Finally, the general solution of the perturbed equa-
tion is of the form

w(t) = Ψ(t)η +B+h(t) = Ψ(t)Pη + Ψ(t)(I − P )η +B+h(t),

and since supt≥0 |Ψ(t)Pη| ≤ K|η| we have Ψ(·)Pη ∈ BC(IR+). On the other
hand, we have

|Ψ(t)(I −P )η| = |Ψ(t)(I −P )(I −P )η| ≤ Ke+α(t−s)|Ψ(s)(I −P )η|, s ≥ t,

and taking t = 0 we obtain

|Ψ(s)(I − P )η| ≥ 1

K
eαs|(I − P )η|, s ≥ 0.

Hence, Ψ(s)(I − P )η is in BC(IR+) if and only if (I − P )η = 0. Since
PB+h(0) = 0, we conclude that a solution x = x(t, ξ) of the perturbed
equation is in BC(IR+) if and only if it has the form

x(t, ξ) = Ψ(t)Pξ +B+h(t).

Now, suppose h ∈ BC(IR). In order to have a solution x(t, ξ) in BC(IR),
it follows from the above that we must have Pξ = B−h(0) and (I − P )ξ =
B+h(0). Since B−h(0) ∈ P IRn and B+h(0) ∈ (I − P )IRn, this happens only
for ξ = B−h(0) +B+h(0).

QED

In Figure 3.6 we sketch, for an example, the sets of trajectories of the
stable and unstable manifolds of a linear equation of the form ż = A(t)z with
an exponential dichotomy and also the sets of trajectories of the perturbed
equation ẋ = A(t)x+h(t) which are bounded forwards or backwards in time.

3.4 Bounded solutions for weakly nonlinear

equations with exponential dichotomy

We consider now perturbations of the linear variational equation of the
form

ẋ = A(t)x+ g(t, x),
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Figure 3.6:

where g : IR × IRn → IRn is in the space Lb of continuous functions wich
satisfy g(t, 0) = 0 and are globally lipschitzian in the second variable with
lipschitz constant b, that is, for every t ∈ IR and x, y ∈ IRn we have

|g(t, x)− g(t, y)| ≤ b|x− y|.

We are interested in characterizing the sets of solutions of the perturbed
equation which are bounded for positive or negative time. We call these sets
respectively stable and unstable and, as in the autonomous case, denote by
W s and W u:

W s = {ξ ∈ IRn : x(t, ξ) is bounded for t ≥ 0},
W u = {ξ ∈ IRn) : x(t, ξ) is bounded for t ≤ 0}.

It will be shown that, under the appropriate conditions, the solutions with
initial conditions on these sets exhibit the expected exponential behaviour.
From the previous theorem, we expect to obtain an analytic characterization
of the solutions which are bounded for, respectively, positive and negative
time by considering the solutions of the integral equations

z(t, ζ) = Ψ(t)ζ +B+[g(·, z(·, ζ))](t), ζ ∈ S,
z(t, ζ) = Ψ(t)ζ +B−[g(·, z(·, ζ))](t), ζ ∈ U,
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where g(·, z(·, ζ)) denotes the function h such that h(t) = g(t, z(t, ζ)). The
solutions of these equations are fixed points of the mappings T±z(t, ζ) =
Ψ(t)ζ +B±[g(·, z(·, ζ))](t) in adequate function spaces. In order to establish
the existence and uniqueness of these solutions one can use the following well
known fixed point theorem.

(3.2) Theorem (Contraction mapping theorem): Let Z be a complete
metric space with metric d : Z2 → IR and T : Z → Z a function which
contracts distances, in the sense that there exists a constant k ∈ [0, 1) such
that d(Tz1, T z2) ≤ kd(z1, z2) for z1, z2 ∈ Z. Then T has a unique fixed point
z ∈ Z.

To establish the exponential behaviour of the solutions with initial con-
ditions on the stable or unstable sets we also need the following result.

(3.3)Lemma (Gronwall’s inequality): If c, β are nonnegative constants
and u is a continuous nonnegative function u : [0, r]→ IR+ satisfying

u(t) ≤ c+
∫ t

0
βu(s)ds

then, for t ∈ [0, r], we have

u(t) ≤ ceβt.

Proof : If c > 0, let φ(t) = c+
∫ t

0 βu(s)ds. For t ∈ [0, r] we have φ(t) > 0
and u(t) ≤ φ(t). Since dφ(t)/dt = βu(t) we also have

d

dt
log φ(t) =

dφ(t)/dt

φ(t)
=
βu(t)

φ(t)
≤ β,

and, after an integration we obtain log φ(t) ≤ log φ(0) + βt. Taking the
exponential of both sides we get

u(t) ≤ φ(t) ≤ φ(0)eβt = ceβt.

The case c = 0 is obtained by taking the limit as c→ 0.
QED

73



        

If H is a linear subspace of IRn and Ω ≥ 0 is a real number, we denote by
C(H,Ω) the cone around H with aperture Ω ,

C(H,Ω) = {ζ + η ∈ IRn : ζ ∈ H, |η| ≤ Ω|ζ|}.

(3.4) Theorem: If the linear equation ż = A(t)z has an exponential di-
chotomy with constants K,α > 0 as in the definition of exponential dichotomy
and stable and unstable linear manifolds S and U , g ∈ Lb with b > 0 suffi-
ciently small, then the stable and unstable sets W s and W u for the perturbed
equation ẋ = A(t)x + g(t, x) are graphs of globally lipschitzian functions de-
fined on S and U , respectively, which intersect exactly at the origin and are
contained in cones

W s ∈ C(S,Ω), W u ∈ C(U,Ω)

with apertures Ω = Ω(b) satisfying Ω(b) → 0 as b → 0. Moreover, there are
positive constants c , β such that

|x(t, ξ)| ≤ ce−βt|ξ| for t ≥ 0 and ξ ∈ W s,

|x(t, ξ)| ≤ ce+βt|ξ| for t ≤ 0 and ξ ∈ W u,

and β = β(b)→ α as b→ 0.
Proof: We prove this result only for the stable set, the proof for the

unstable being entirely similar.
Let Z denote the space of continuous functions z : IR × S → IRn, such

that:

(i) for each fixed ζ ∈ S, z(t, ζ) is bounded for t ≥ 0;

(ii) z(t, ζ) is globally lipschitzian in ζ with constant K+1, that is, for every
t ≥ 0 and every ζ1, ζ2 ∈ S

|z(t, ζ1)− z(t, ζ2)| ≤ (K + 1)|ζ1 − ζ2|.

For each z ∈ Z and each positive integer µ we define

||z||m = sup{|z(t, ζ)| : t ≥ 0, |ζ| ≤ m}
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Figure 3.7:

and

d(z1, z2) =
+∞∑

m=1

2−m||z1 − z2||m, z1, z2 ∈ Z.

It is easy to see that the function d : Z2 → IR defined by this formula is a
metric and that Z with this metric is a complete metric space.

We first show that the mapping T defined for z ∈ Z by

Tz(t, ζ) = Ψ(t)ζ +B+[g(·, z(·, ζ))](t), ζ ∈ S

takes Z into Z and is a contraction mapping. Given z ∈ Z, for each ζ ∈ S
the function Tz(t, ζ) is continuous and bounded for t ≥ 0. In fact, using the
exponential dichotomy for the linear equation and the inequality ||B+h||+ ≤
2Kα−1||h||+, we have

|Tz(t, ζ)| ≤ |Ψ(t)ζ|+ sup
t≥0
|B+[g(·, z(·, ζ))](t)|

≤ K|ζ|+ 2Kα−1 sup
t≥0
|g(t, z(t, ζ))| ≤ K|ζ|+ 2Kα−1b sup

t≥0
|z(t, ζ)|,

since for g ∈ Lb we obtain |g(t, z(t, ζ))| = |g(t, z(t, ζ))− g(t, 0)| ≤ b|z(t, ζ))|.
Moreover, Tz(t, ζ) is globally lipschitzian, since for ζ1, z2 ∈ S we have
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|Tz(t, ζ1)− Tz(t, ζ2)|

≤ |Ψ(t)(ζ1 − ζ2)|+ sup
t≥0
|B+[g(·, z(·, ζ1))− g(·, z(·, ζ2))](t)|

≤ K|ζ1 − ζ2|+ 2Kα−1 sup
t≥0
|g(t, z(t, ζ1))− g(t, z(t, ζ2))|

≤ K|ζ1 − ζ2|+ 2Kα−1b sup
t≥0
|z(t, ζ1)− z(t, ζ2)|

≤ [K + 2K(K + 1)α−1b]|ζ1 − ζ2)|

Also, from this expression we conclude that if b > 0 is such that 2K(K +
1)α−1b < 1 then Tz(t, ζ) is globally lipschitzian with constant K + 1, that
is, T takes Z into Z. For z1, z2 ∈ Z and any positive integer m, we have:

||Tz1 − Tz2||m = sup
|ζ|≤m

sup
t≥0
|Tz1(t, ζ)− Tz2(t, ζ)|

= sup
|ζ|≤m

sup
t≥0
|B+[g(·, z1(·, ζ))− g(·, z2(., ζ))](t)|

≤ sup
|ζ|≤m

2Kα−1 sup
t≥0
|g(t, z1(t, ζ))− g(t, z2(t, ζ))|

≤ 2Kα−1b sup
|ζ|≤m

sup
t≥0
|z1(t, ζ)− z2(t, ζ)| ≤ 2Kα−1b||z1 − z2||m.

We define k = 2Kα−1b and note that k < 2K(K + 1)α−1b < 1. Then
||Tz1 − Tz2||m ≤ k||z1 − z2||m and

d(Tz1, T z2) =
+∞∑

m=1

2−m||Tz1 − Tz2||m ≤ k
+∞∑

m=1

2−m||z1 − z2||m ≤ kd(z1, z2).

Consequently, T : Z → Z is a contraction.

Let z(t, ζ) denote the unique fixed point of T , Tz = z. Since z(·, ζ) ∈
BC(R+) for each z ∈ S and PB+h(0) = 0 for every h ∈ BC(R+) , it follows
that

Pz(0, ζ) = PTz(0, ζ) = Pζ = ζ.
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Since for each ζ ∈ S there is only one solution x of the perturbed equation
which is bounded for t ≥ 0 and satisfies Px(0) = ζ, this solution must be
x(t) = z(t, ζ) and, consequently,

W s = {z(0, ζ) : ζ ∈ S}.

Therefore, W s is the graph of the globally lipschitzian function ζ → z(0, ζ)
defined on S and satisfying z(0, ζ)− ζ ∈ U .

Next, we establish the exponential behaviour of the solutions in W s

for t ≥ 0. Let us show first that |z(t, ζ)| → 0 as t → +∞. If ρ =
lim supt→+∞ |z(t, ζ)| satisfies ρ > 0 we derive a contradiction in the following
way. For r > 1 we can find τ > 0 such that |z(t, ζ)| ≤ rρ for every τ ≥ τ .
Also for t ≥ τ we have

|z(t, ζ)| = |Tz(t, ζ)| ≤ |Ψ(t)ζ|+ |B+[g(·, z(·, ζ))](t)|

≤ Ke−αt|ζ|+
∫ τ

0
Ke−α(t−s)b|z(s, ζ)|ds+

∫ t

τ
Ke−α(t−s)brρds

+
∫ +∞

t
Ke+α(t−s)brρds ≤ Ke−αt

[
|ζ|+ eαtα−1b sup

t≥0
|z(t, ζ)|

]
+ 2Kα−1brρ.

From the relation 2K(K + 1)α−1b < 1 taking r < K + 1 we have that
2Kα−1br < 1 and letting t → +∞ we obtain ρ ≤ 2Kα−1brρ < ρ, a contra-
diction. We conclude that limt→+∞ |z(t, ζ)| = 0.

Defining u(t, ζ) = sups≥t |z(s, ζ)|, we have that for each t ≥ 0 there is
τ ≥ t such that u(s, ζ) = u(τ, ζ) = |z(τ, ζ)| for t ≤ s ≤ τ , and accordingly,
we obtain in a similar way as for the previous estimate

u(t, ζ) = u(τ, ζ) = |z(τ, ζ)| = |Tz(τ, ζ)|

≤ Ke−ατ |ζ|+
∫ τ

0
Ke−α(τ−s)b|z(s, ζ)|ds+

∫ +∞

τ
Ke+α(τ−s)b|z(s, ζ)|ds ≤ Ke−αt|ζ|

+
∫ t

0
Ke−α(t−s)bu(s, ζ)ds+

∫ τ

t
Ke−α(τ−s)bu(s, ζ)ds+

∫ +∞

t
Ke+α(t−s)bu(s, ζ)ds

≤ Ke−αt|ζ|+
∫ t

0
Ke−α(τ−s)bu(s, ζ)ds+ 2Kα−1bu(t, ζ).

Since 2Kα−1b < 1, this relation is equivalent to

eαtu(t, ζ) ≤ K(1− 2Kα−1b)−1
[
|ζ|+

∫ t

0
beαsu(s, ζ)ds

]
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and using Gronwall’s inequality we obtain

eαtu(t, ζ) ≤ K0|ζ|ebK0t, with K0 = K(1− 2Kα−1b)−1.

Denoting by x(t, ξ) the solution of the perturbed equation with initial con-
dition ξ = z(0, ζ) ∈ W s we have that ζ = Pξ and x(t, ξ) = z(t, ζ). We
conclude that

|x(t, ξ)| = |z(t, ζ)| ≤ u(t, ζ) ≤ K0|Pξ|e−(α−bK0)t

and letting c = K0 sup|ξ|=1 |Pξ|/|ξ| and β = α− bK0 we obtain

|x(t, ξ)| ≤ ce−βt|ξ|.

Clearly β = β(b) → α as b → 0. Since K ≥ 1, the inequality 2K(K +
1)α−1b < 1 implies that β > 0.

To show that W s ∈ C(S,Ω), let ξ = z(0, ζ) = ζ + η where ζ ∈ S, η ∈ U .
Since Pz(0, ζ) = ζ, we have

η = (I − P )z(0, ζ) = (I − P )Tz(0, ζ) = −
∫ +∞

0
(I − P )Ψ−1(s)g(s, z(s, ζ))ds.

From the exponential estimate for x(t, ξ) = z(t, ζ) we also obtain |z(t, ζ)| ≤
K0|ζ| for t ≥ 0. The above integral can, then, be estimated as follows

|η| ≤
∫ +∞

0
Ke−αs|g(s, z(s, ζ))|ds ≤

∫ +∞

0
Ke−αsb|z(s, ζ)|ds

≤
∫ +∞

0
Ke−αsbK0|ζ|ds =

K2α−1b

1− 2Kα−1b
|ζ| = Ω(b)|ζ|.

We conclude that Ω(b)→ 0 as b→ 0.
As S ⊕ U = IRn, C(S,Ω(b)) ∩ C(U,Ω(b)) = 0 for b > 0 sufficiently small.

Therefore, W s∩W u = {0} and x(t) = 0 is the only solution which is bounded
for t ∈ IR.

QED

It is a straightforward exercise to adapt the preceeding proof to the case
where g(t, 0) is not required to vanish, but only to be bounded for t ∈ IR
. In this case, it can be shown that W s and W u intersect at exactly one
point ξ0, with x(t, ξ0) being the unique solution which is bounded for t ∈ IR,
W s,W u belong to cones with apertures Ω(b)→ 0 as b→ 0, around the sets
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S+{ξ0}, U+{ξ0}, respectively, and the exponential estimates are satisfied by
x(t, ξ)−x(t, ξ0) in the form |x(t, ξ)−x(t, ξ0)| ≤ ce−βt|ξ−ξ0| for t ≥ 0, ξ ∈ W s

and |x(t, ξ)− x(t, ξ0)| ≤ ce+βt|ξ − ξ0| for t ≥ 0, ξ ∈ W u, with β = β(b)→ α
as b→ 0.

The last theorem establishes that W s and W u are graphs of globally
lipschitzian functions defined on S and U , respectively, whenever g(t, 0) = 0
for all t ∈ IR and g(t, x) is continuous and globally lipschitzian in x with
sufficiently small lipschitz constant b > 0. It is frequently necessary to have
more regularity.

(3.5) Theorem: If, besides the hypothesis of the preceding theorem, g(t, x)
has bounded continuous derivatives relative to x up to order r ≥ 1, then for
b > 0 sufficiently small and g ∈ Lb, W

s and W u are graphs of globally
lipschitzian functions of class Cr defined on S and U , respectively.

Proof: Again we prove this result only for the case of the stable manifold
W s. We have shown that W s = {z(0, ζ) : ζ ∈ S} where z = Tz is the
unique fixed point of the mapping T in Z . Now we will prove that the
function ζ → z(0, ζ) is of class Cr by induction in r. Let us consider the
case C1. The first idea would be to prove that z = Tz is a fixed point of
the mapping T in a subspace Z1 of globally lipschitz functions of class C1.
To ensure that Z1 is complete we need to choose a norm controlling both |z|
and |z′|, for example ||z||1 = ||z||+ ||Dζz||, otherwise there are sequences like
|ζ|1+1/n → |ζ| converging to C0 functions that are not C1. Since

Tz(t, ζ) = Ψ(t)ζ +
∫ t

0
Ψ(t)PΨ−1(s)g(s, z(s, ζ))ds

−
∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)g(s, z(s, ζ))ds

it is clear that T (Z1) ⊂ Z1 , but to show that T is a contraction we need
to estimate ||DζTz(t, ζ1)−DζTz(t, ζ2))|| in terms of the distance ||ζ1 − ζ2||,
where

DζTz(t, ζ) = Ψ(t) +
∫ t

0
Ψ(t)PΨ−1(s)

∂g

∂z
(s, z(s, ζ))Dζz(s, ζ)ds

−
∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)

∂g

∂z
(s, z(s, ζ))Dζz(s, ζ)ds.
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This can be done assuming that ∂g
∂z

is globally lipschitz, that is, if g besides
being globally lipschitz and C1 in z, has globally lipschitz derivative. Nev-
ertheless, these lipschitz conditions on the derivatives of g are unnecessary
for the result which we can establish in the following way. Since z = Tz we
must have Dζz = DζTz. Hence, we look for the derivative of z as a fixed
point of the function F defined in the Banach space V of continuous bounded
functions v : IR+×S → L(S,Rn) with the norm ||v|| = supt≥0 supζ∈S |v(t, ζ)|,
where |v(t, ζ)| = sup|ξ|≤1 |v(t, ζ)ξ| is the uniform norm in L(S, IRn),

Fv(t, ζ) = Ψ(t) +
∫ t

0 Ψ(t)PΨ−1(s)∂g
∂z

(s, z(s, ζ))v(s, ζ)ds

− ∫+∞
t Ψ(t)(I − P )Ψ−1(s)∂g

∂z
(s, z(s, ζ))v(s, ζ)ds.

We readily obtain the following estimate

|Fv(t, ζ)| = K +
∫ t

0
Ke−α(t−s)|∂g

∂z
(s, z(s, ζ)||v(s, ζ)|ds

+
∫ +∞

t
Ke+α(t−s)|∂g

∂z
(s, z(s, ζ))||v(s, ζ)|ds

≤ K +
2K

α
sup
t≥0
|∂g
∂z

(t, z(t, ζ))| sup
t≥0
|v(t, ζ)|,

and since g ∈ Lb , |∂g/∂z| ≤ b and v is bounded we conclude that Fv is
bounded. Moreover, for v1, v2 ∈ V we have

||Fv1 − Fv2|| = sup
t≥0,ζ∈S

|Fv1(t, ζ)− Fv2(t, ζ)|

≤ 2K

α
sup

t≥0,ζ∈S
|∂g
∂z

(t, z(t, ζ))v1(t, ζ)− ∂g

∂z
(t, z(t, ζ))v2(t, ζ)|

≤ 2K

α
b ||v1 − v2||,

and for sufficiently small b so that 2K
α
b < 1 we have that F is a contraction.

Let v = Fv be its unique fixed point in V . We need to show that v = ∂z
∂ζ

.
For this we define

γ(ε) = sup
t≥0,|∆|≤ε

|z(t, ζ + ∆)− z(t, ζ)− v(t, ζ)∆|
|∆|
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for every ε > 0 sufficiently small, and prove that γ(ε) → 0 as ε → 0. Let
d(t, ζ,∆) = z(t, ζ + ∆)− z(t, ζ)− v(t, ζ)∆. From v = Fv, z = Tz and using
the first order Taylor approximation for g we obtain

d(t, ζ,∆) =
∫ t

0
Ψ(t)PΨ−1(s)G(s, ζ,∆) ds

−
∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)G(s, ζ,∆) ds

=
∫ t

0
Ψ(t)PΨ−1(s)

∂g

∂z
(s, z(s, ζ)) d̄(s, ζ,∆) ds

−
∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)

∂g

∂z
(s, z(s, ζ)) d̄(s, ζ,∆) ds.

where for convenience we wrote G(s, ζ,∆) = g(s, z(s, ζ+∆))−g(s, z(s, ζ))−
∂g
∂z

(s, z(s, ζ))v(s, ζ)∆ and d̄(s, ζ,∆) = d(s, ζ,∆) + o(|z(s, ζ + ∆) − z(s, ζ)|).
From this expression and for ε sufficiently small we obtain the estimate

γ(ε) ≤ 2K

α
b[γ(ε) + (K + 1) o(ε)]

and, since 2K
α
b < 1 we have

γ(ε) ≤ K + 1

1− 2K
α
b
o(ε)

and we conclude that γ(ε) → 0 as ε → 0. This completes the proof for the
case of r = 1. To prove the general case by induction on r we assume that
the result holds for r ≥ 1 and that the hypothesis is verified for r+1. Letting

w =
∂rz

∂ζr

and differentiating (r − 1) times v = Fv we obtain

w(t, ζ) =
∫ t

0
Ψ(t)PΨ−1(s)

∂g

∂z
(s, z(s, ζ))w(s, ζ)ds

− ∫+∞
t Ψ(t)(I − P )Ψ−1(s)

∂g

∂z
(s, z(s, ζ))w(s, ζ)ds+R(t, ζ),

where R(t, ζ) contains the terms of lower order derivatives, hence not involv-
ing w. Then, we need to show that ∂w

∂ζ
exists and is continuous. We use the
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same procedure we used before. The derivative , if it exists, must be a fixed
point of the mapping H defined by

Hu(t, ζ) =
∫ t

0
Ψ(t)PΨ−1(s)

∂g

∂z
(s, z(s, ζ))w(s, ζ)ds

−
∫ +∞

t
Ψ(t)(I − P )Ψ−1(s)

∂g

∂z
(s, z(s, ζ))w(s, ζ)ds+R(t, ζ)

in the space U of continuous bounded functions u : IR+×S → L(S, L((IRn)r, IR))
with the uniform norm. One easily verifies that H : U → U and

||Hu1 −Hu2|| ≤
2K

α
b ||u1 − u2||,

hence H is a contraction in U for 2K
α
b < 1. Denoting by u the unique fixed

point u = Hu and defining

γ(ε) = sup
t≥0,|∆|≤ε

|w(t, ζ + ∆)− w(t, ζ)− u(t, ζ)∆|
|∆|

as it was done before one proves that γ(ε)→ 0 as ε→ 0 completing the proof
that ∂r+1z

∂ζr+1 exists and is equal to u.
QED

3.5 Solutions with bounded exponential rates

for weakly nonlinear equations

The separation between the different exponential rates can be obtained
in a similar way as before. For µ ∈ IR, performing the change of variables
y = e−µtx transforms the linear equation

ẋ = A(t)x

to

ẏ = Aµ(t)y.

where Aµ(t) = A(t) − µI. If this equation has an exponential dichotomy,
then there exist a projection Pµ and constants K, α such that
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|Ψµ(t)Pµξ| ≤ Ke−α(t−s)|Ψµ(s)ξ|, t ≥ s

|Ψµ(t)(I − Pµ)ξ| ≤ Ke+α(t−s)|Ψµ(s)ξ|, t ≤ s,

and since Ψµ(t) = e−µtΨ(t), taking P = Pµ we obtain

|Ψ(t)Pξ| ≤ Ke(µ−α)(t−s)|Ψ(s)ξ|, t ≥ s

|Ψ(t)(I − P )ξ| ≤ Ke(µ+α)(t−s)|Ψ(s)ξ|, t ≤ s.

This implies that the set of initial conditions is a direct sum of two spaces;
solutions with initial conditions in one of them exhibit exponential rates
lower than e(µ−α)t for t ≥ 0, and those with initial conditions in the other
exhibit exponential rates greater than e(µ+α)t for t ≤ 0. The only solution
with an exponential rate above µ − α for t ≥ 0 and below µ + α for t ≤
0 is the trivial solution. Hence, the exponential rate corresponding to eµt

does not occur and can be separated from the exponential rates that can
occur. Naturally, we denote by Sµ and Uµ the subspaces corresponding to
this separation of exponential rates, Sµ ⊕ Uµ = IRn, and again we have that
this type of decomposition is persistent under small nonlinear perturbations.
In fact, if we consider the equation ẋ = A(t)x+g(t, x) with g ∈ Lb and b > 0
sufficiently small we have that the sets

W s
µ = {ξ ∈ IRn : e−µtx(t, ξ)→ 0 as t→ +∞}

W s
µ = {ξ ∈ IRn : e−µtx(t, ξ)→ 0 as t→ −∞}

are graphs of globally lipschitz functions defined on Sµ and Uµ and contained
in cones C(Sµ,Ωu) and C(Uµ,Ωs), respectively, with apertures approaching
zero as b → 0. Moreover, if we assume g to be of class Cr then these
functions will be of class Cr. If γ < µ < λ are such that the linear equation
has an exponential dichotomy for γ and λ but not for µ, then we define as
before the sets C = Sλ∩Uγ, S = Sγ and U = Uλ obtaining the decomposition
IRn = S⊕C⊕U . Similarly, we define W c = W s

λ∩W u
γ and since Sλ⊕Uλ = IRn

with Uλ ⊂ Uγ we conclude in the C1 case thatW c is the graph of a C1 function
defined on C and contained in a cone around C with aperture Ω→ 0 as b→ 0.

As it was shown above, it is important to distinguish the values of µ for
which the linear equation ẏ = [A(t)−µI]y has an exponential dichotomy from

83



         

the others. In the autonomous case, A(t) = A, these values of µ correspond
to values different from the real part of any eigenvalue of A. Generalizing
this idea, we call spectrum Σ(A) of the equation ẋ = A(t)x the set of real
numbers µ for which the equation ẏ = Aµ(t)y has no exponential dichotomy,
thus corresponding to exponential rates e−µt that cannot be separated by gaps
from the exponential rates occuring in the solutions of the given equation.
When A(t) = A we have that Σ(A) = {Reλ : λ is an eigenvalue of A} is
a finite union of points. In general this is not the case when A(t) depends
on t. As a simple example consider the scalar equation ẋ = a(t)x where a
is a continous function defined on IR and such that a(t) = 0 for t ≤ 0 and
a(t) = 1 for t ≥ 1. For this equation we have aµ(t) = a(t) − µ and the
solutions of the equation ẏ = aµ(t)y are given by

y(t, ξ) =

{
e−µtξ, t ≤ 0
e(1−µ)ty(1, ξ) t ≥ 1

We immediately conclude that Sµ = IR if µ > 1, Sµ = 0 if µ ≤ 1, Uµ = 0
if µ ≥ 0 and Uµ = IR if µ < 0. Hence, we have Sµ ⊕ Uµ = IR if µ > 1 or
µ < 0 but Sµ ∩Uµ = {0} if 0 ≤ µ ≤ 1, and consequently the spectrum of the
equation is the closed interval Σ(a) = [0, 1].

We have seen that the spectrum of a linear equation can contain intervals.
The general situation is not whorse as stated in the following theorem.

(3.6) Theorem: If A(t) is continuous and bounded then the spectrum
Σ(A) is the finite union of disjoint compact intervals that may degenerate to
points

Σ(A) =
k⋃

i=1

[ai, bi]

with 1 ≤ k ≤ n and ai ≤ bi. To each spectral interval [ai, bi] there is
associated a linear subspace Vi ⊂ IRn, called the spectral fiber with dimVi =
ni and satisfying

(i) ni ≥ 1 and n1 + . . .+ nk = n

(ii) Vi ∩ Vj = {0} if i 6= j and IRn = V1 ⊕ . . .⊕ Vk

(iii) Vi = Sλ ∩ Uµ if (µ, λ) ∩ Σ(A) = [ai, bi].
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We remark that the spectral fibers Vi correspond to the set of initial
conditions of solutions exhibiting exponential rates greater than eλt for t ≥ 0
and smaller than eµt for t ≤ 0.
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