Coisotropic Submanifolds and the BFV-Complex

Florian Schätz

April 27th, 2009

Coisotropic submanifolds: submanifolds of Poisson manifolds

Definition (Poisson Manifolds)

- Poisson manifold: manifold M \& Poisson bivector field π,
- Poisson bivector field: $\pi \in \Gamma\left(\wedge^{2}\right.$ TM) satisfying integrability-condition,
- Integrability condition:

$$
\begin{aligned}
\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) & \rightarrow C^{\infty}(M) \\
(f, g) & \mapsto \pi(f, g)
\end{aligned}
$$

Lie bracket on $\mathcal{C}^{\infty}(M)$, i.e.

$$
\{f,\{g, h\}\}=\{\{f, g\}, h\}+\{g,\{f, h\}\}
$$

\forall smooth functions f, g, h.

Coisotropic submanifolds: submanifolds of Poisson manifolds

Definition (Poisson Manifolds)

- Poisson manifold: manifold M \& Poisson bivector field π,
- Poisson bivector field: $\pi \in \Gamma\left(\wedge^{2}\right.$ TM) satisfying integrability-condition,
- Intearability condition:

Lie bracket on $\mathcal{C}^{\infty}(M)$, i.e.

$$
\{f,\{g, h\}\}=\{\{f, g\}, h\}+\{g,\{f, h\}\}
$$

Coisotropic submanifolds: submanifolds of Poisson manifolds

Definition (Poisson Manifolds)

- Poisson manifold: manifold M \& Poisson bivector field π,
- Poisson bivector field: $\pi \in \Gamma\left(\wedge^{2} T M\right)$ satisfying integrability-condition,
- Integrability condition:

Lie bracket on $\mathcal{C}^{\infty}(M)$, i.e.

Coisotropic submanifolds: submanifolds of Poisson manifolds

Definition (Poisson Manifolds)

- Poisson manifold: manifold M \& Poisson bivector field π,
- Poisson bivector field: $\pi \in \Gamma\left(\wedge^{2} T M\right)$ satisfying integrability-condition,
- Integrability condition:

$$
\begin{aligned}
\{\cdot, \cdot\}: \mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) & \rightarrow \mathcal{C}^{\infty}(M) \\
(f, g) & \mapsto \pi(f, g)
\end{aligned}
$$

Lie bracket on $\mathcal{C}^{\infty}(M)$, i.e.

$$
\{f,\{g, h\}\}=\{\{f, g\}, h\}+\{g,\{f, h\}\}
$$

\forall smooth functions f, g, h.

- $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{\dagger}} \wedge \frac{\partial}{\partial y^{\dagger}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right) \leadsto$

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial y^{i}}-\frac{\partial f}{\partial y^{i}} \frac{\partial g}{\partial x^{i}}\right)
$$

- Σ two dim. manifold equipped with any bivector field, - \mathfrak{g} a finite dim. Lie algebra over \mathbb{R} : \mathfrak{g}^{*} Poisson manifold,
- symplectic manifolds
- $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{\prime}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right) \leadsto$

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial y^{i}}-\frac{\partial f}{\partial y^{i}} \frac{\partial g}{\partial x^{i}}\right),
$$

- Σ two dim. manifold equipped with any bivector field,
- ga finite dim. Lie algebra over \mathbb{R} : g^{*} Poisson manifold,
- symplectic manifolds
- $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right) \leadsto$

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial y^{i}}-\frac{\partial f}{\partial y^{i}} \frac{\partial g}{\partial x^{i}}\right)
$$

- Σ two dim. manifold equipped with any bivector field,
- \mathfrak{g} a finite dim. Lie algebra over $\mathbb{R}: \mathfrak{g}^{*}$ Poisson manifold,
- symplectic manifolds
- $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right) \leadsto$

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x^{i}} \frac{\partial g}{\partial y^{i}}-\frac{\partial f}{\partial y^{i}} \frac{\partial g}{\partial x^{i}}\right)
$$

- Σ two dim. manifold equipped with any bivector field,
- \mathfrak{g} a finite dim. Lie algebra over $\mathbb{R}: \mathfrak{g}^{*}$ Poisson manifold,
- symplectic manifolds

Coisotropic Submanifolds

Definition

(M, π) Poisson manifold; S submanifold; - vanishing ideal $\mathcal{I}(S)$ of S in M is

$$
\mathcal{I}(S):=\left\{f \in \mathcal{C}^{\infty}(M):\left.f\right|_{S}=0\right\} .
$$

\square

Coisotropic Submanifolds

Definition

(M, π) Poisson manifold; S submanifold;

- vanishing ideal $\mathcal{I}(S)$ of S in M is

$$
\mathcal{I}(S):=\left\{f \in \mathcal{C}^{\infty}(M):\left.f\right|_{S}=0\right\} .
$$

- S coisotropic: $\Leftrightarrow\{\mathcal{I}(S), \mathcal{I}(S)\} \subset \mathcal{I}(S)$,

Definition

(M, π) Poisson manifold; S submanifold;

- vanishing ideal $\mathcal{I}(S)$ of S in M is

$$
\mathcal{I}(S):=\left\{f \in \mathcal{C}^{\infty}(M): f \mid s=0\right\} .
$$

- S coisotropic : $\Leftrightarrow\{\mathcal{I}(S), \mathcal{I}(S)\} \subset \mathcal{I}(S)$,
- $\mathbb{R}^{n} \oplus 0$ and $0 \oplus \mathbb{R}$ in $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{\top}} \wedge \frac{\partial}{\partial y^{\top}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_{x}=0$,
- \mathfrak{g} Lie algebra over \mathbb{R};
linear subspace \mathfrak{h} of \mathfrak{g} is Lie subalgebra \Leftrightarrow annihilator \mathfrak{h}° is coisotropic submanifold of \mathfrak{g}^{*},
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map $\phi:(M, \pi) \rightarrow(N, \lambda)$ is Poisson \Leftrightarrow graph (ϕ) coisotropic in $(M \times N,-\lambda+\pi)$
- $\mathbb{R}^{n} \oplus 0$ and $0 \oplus \mathbb{R}$ in $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{\top}} \wedge \frac{\partial}{\partial y^{\top}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_{x}=0$,
- \mathfrak{g} Lie algebra over \mathbb{R};
linear subspace \mathfrak{h} of \mathfrak{g} is Lie subalgebra \Leftrightarrow
annihilator \mathfrak{h}° is coisotropic submanifold of \mathfrak{g}^{*},
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map $\phi:(M, \pi) \rightarrow(N, \lambda)$ is Poisson \Leftrightarrow $\operatorname{graph}(\phi)$ coisotropic in $(M \times N,-\lambda+\pi)$
- $\mathbb{R}^{n} \oplus 0$ and $0 \oplus \mathbb{R}$ in $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{\top}} \wedge \frac{\partial}{\partial y^{\top}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_{x}=0$,
- \mathfrak{g} Lie algebra over \mathbb{R}; linear subspace \mathfrak{h} of \mathfrak{g} is Lie subalgebra \Leftrightarrow annihilator \mathfrak{h}° is coisotropic submanifold of \mathfrak{g}^{*},
- Lagrangian submanifolds of symplectic manifolds, - graph of a map $\phi:(M, \pi) \rightarrow(N, \lambda)$ is Poisson \Leftrightarrow $\operatorname{graph}(\phi)$ coisotropic in $(M \times N,-\lambda+\pi)$
- $\mathbb{R}^{n} \oplus 0$ and $0 \oplus \mathbb{R}$ in $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{\prime}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_{x}=0$,
- \mathfrak{g} Lie algebra over \mathbb{R}; linear subspace \mathfrak{h} of \mathfrak{g} is Lie subalgebra \Leftrightarrow annihilator \mathfrak{h}° is coisotropic submanifold of \mathfrak{g}^{*},
- Lagrangian submanifolds of symplectic manifolds,
 graph (ϕ) coisotropic in $(M \times N,-\lambda+\pi)$
- $\mathbb{R}^{n} \oplus 0$ and $0 \oplus \mathbb{R}$ in $\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{\top}} \wedge \frac{\partial}{\partial y^{\top}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_{x}=0$,
- \mathfrak{g} Lie algebra over \mathbb{R}; linear subspace \mathfrak{h} of \mathfrak{g} is Lie subalgebra \Leftrightarrow annihilator \mathfrak{h}° is coisotropic submanifold of \mathfrak{g}^{*},
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map $\phi:(M, \pi) \rightarrow(N, \lambda)$ is Poisson \Leftrightarrow $\operatorname{graph}(\phi)$ coisotropic in $(M \times N,-\lambda+\pi)$
given (M, π);

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\}$? Properties?

- group of diffeomorphisms acts on $\{S$ submanifold of $M\}$,
- Hamiltonian vector fields: f function $\leadsto\{f, \cdot\}$ vector field, the Hamiltonian vector field of f,
- Hamiltonian diffeomorphisms: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S$ coisotropic submanifold of $(M, \pi)\}$,

Good' description of $\{S$ coisotropic submanifold of $(M, \pi)\}$ modulo Hamiltonian diffeomorphisms? Properties?
given (M, π);

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\} ?$ Properties?

- group of diffeomorphisms acts on $\{S$ submanifold of $M\}$,
- Hamiltonian vector fields: f function $\leadsto\{f, \cdot\}$ vector field, the Hamiltonian vector field of f,
- Hamiltonian diffeomorphisms: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S$ coisotropic submanifold of $(M, \pi)\}$,

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\}$ modulo Hamiltonian diffeomorphisms? Properties?
given (M, π);
Good description of $\{S$ coisotropic submanifold of $(M, \pi)\} ?$ Properties?

- group of diffeomorphisms acts on $\{S$ submanifold of $M\}$,
- Hamiltonian vector fields: f function $\leadsto\{f, \cdot\}$ vector field, the Hamiltonian vector field of f,
- Hamiltonian diffeomorphisms: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S$ coisotropic submanifold of $(M, \pi)\}$

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\}$ modulo Hamiltonian diffeomorphisms? Properties?
given (M, π);
Good description of $\{S$ coisotropic submanifold of $(M, \pi)\} ?$ Properties?

- group of diffeomorphisms acts on $\{S$ submanifold of $M\}$,
- Hamiltonian vector fields: f function $\leadsto\{f, \cdot\}$ vector field, the Hamiltonian vector field of f,
- Hamiltonian diffeomorphisms: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S$ coisotropic submanifold of $(M, \pi)\}$

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\}$ modulo Hamiltonian diffeomorphisms? Properties?
given (M, π);
Good description of $\{S$ coisotropic submanifold of $(M, \pi)\} ?$ Properties?

- group of diffeomorphisms acts on $\{S$ submanifold of $M\}$,
- Hamiltonian vector fields: f function $\leadsto\{f, \cdot\}$ vector field, the Hamiltonian vector field of f,
- Hamiltonian diffeomorphisms: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S$ coisotropic submanifold of $(M, \pi)\}$,

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\}$ modulo Hamiltonian diffeomorphisms? Properties?
given (M, π);
Good description of $\{S$ coisotropic submanifold of $(M, \pi)\} ?$ Properties?

- group of diffeomorphisms acts on $\{S$ submanifold of $M\}$,
- Hamiltonian vector fields: f function $\leadsto\{f, \cdot\}$ vector field, the Hamiltonian vector field of f,
- Hamiltonian diffeomorphisms: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S$ coisotropic submanifold of $(M, \pi)\}$,

Good description of $\{S$ coisotropic submanifold of $(M, \pi)\}$ modulo Hamiltonian diffeomorphisms? Properties?

Main Questions

questions too hard! \leadsto simplify...
fix S coisotropic, study questions only "near" S!

- "linearize" M near $S \sim$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph (μ) coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of $\sim H$.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?

Main Questions

questions too hard! \leadsto simplify... fix S coisotropic, study questions only "near" S !

- "linearize" M near $S \sim$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic $: \Leftrightarrow$ graph (μ) coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of \sim_{H}.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \leadsto simplify...
fix S coisotropic, study questions only "near" S !

- "linearize" M near $S \sim$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph (μ) coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of $\sim H$.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \leadsto simplify... fix S coisotropic, study questions only "near" S !

- "linearize" M near $S \leadsto$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic $: \Leftrightarrow \operatorname{graph}(\mu)$ coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of $\sim H$.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \leadsto simplify...
fix S coisotropic, study questions only "near" S !

- "linearize" M near $S \leadsto$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic $: \Leftrightarrow \operatorname{graph}(\mu)$ coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of $\sim H$.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \sim simplify...
fix S coisotropic, study questions only "near" S!

- "linearize" M near $S \sim$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic : $\Leftrightarrow \operatorname{graph}(\mu)$ coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of $\sim H$.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \sim simplify...
fix S coisotropic, study questions only "near" S !

- "linearize" M near $S \leadsto$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic $: \Leftrightarrow \operatorname{graph}(\mu)$ coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of $\sim H$.
Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \sim simplify...
fix S coisotropic, study questions only "near" S !
- "linearize" M near $S \leadsto$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic $: \Leftrightarrow \operatorname{graph}(\mu)$ coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of \sim_{H}.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?
questions too hard! \leadsto simplify...
fix S coisotropic, study questions only "near" S !

- "linearize" M near $S \leadsto$ assume: M total space of a vector bundle $E \rightarrow S$,
- $\mu \in \Gamma(E)$ coisotropic $: \Leftrightarrow \operatorname{graph}(\mu)$ coisotropic submanifold,
- $\mathcal{C}(E, \pi)$ set of coisotropic sections.

Q1) How to describe $\mathcal{C}(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms \leadsto equivalence relation \sim_{H} on $\mathcal{C}(E, \pi)$,
- $\mathcal{M}(E, \pi):=$ equivalence classes of \sim_{H}.

Q2) How to describe $\mathcal{M}(E, \pi)$? What are its properties?

Example I

$$
\begin{aligned}
& \qquad \mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2}, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \\
& C\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong C^{\infty}(\mathbb{R}), \\
& M\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{*\} . \\
& \text { special case of a Lagrangian submanifold in a symplectic } \\
& \text { manifold... }
\end{aligned}
$$

$$
\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2}, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)
$$

- $\mathcal{C}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong \mathcal{C}^{\infty}(\mathbb{R})$,
- $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{*\}$.

special case of a Lagrangian submanifold in a symplectic manifold...

Example I

$$
\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2}, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)
$$

- $\mathcal{C}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong \mathcal{C}^{\infty}(\mathbb{R})$,
- $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{*\}$.
special case of a Lagrangian submanifold in a symplectic manifold...

Lagrangian Submanifolds of Symplectic Manifolds

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$
\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right) .
$$

$L \hookrightarrow(M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow(M, \pi)$ locally isomorphic to

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Lagrangian Submanifolds of Symplectic Manifolds

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$
\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)
$$

$L \hookrightarrow(M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow(M, \pi)$ locally isomorphic to

$$
\mathbb{R}^{n} \oplus 0 \hookrightarrow\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)
$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$
\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)
$$

$L \hookrightarrow(M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow(M, \pi)$ locally isomorphic to

$$
\mathbb{R}^{n} \oplus 0 \hookrightarrow\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)
$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$
\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)
$$

$L \hookrightarrow(M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow(M, \pi)$ locally isomorphic to

$$
\mathbb{R}^{n} \oplus 0 \hookrightarrow\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}, \frac{\partial}{\partial x^{1}} \wedge \frac{\partial}{\partial y^{1}}+\cdots+\frac{\partial}{\partial x^{n}} \wedge \frac{\partial}{\partial y^{n}}\right)
$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Lemma

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow\left(T^{*} L, \omega_{\text {can }}\right)$ [universal model].

- graph of $\mu: L \rightarrow T^{*} L$ is Lagrangian \Leftrightarrow
μ is closed as a one-form on L;

$$
C\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=\left\{\mu \in \Omega^{1}(L): d_{D R}(\mu)=0\right\}
$$

- $\mathcal{M}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=H^{1}(L, \mathbb{R})$.
- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex ($\left.\Omega^{\bullet}(L), d_{D R}\right)$,
- is something similar true for coisotropic submanifolds?!

Lemma

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow\left(T^{*} L, \omega_{\text {can }}\right)$ [universal model].

- graph of $\mu: L \rightarrow T^{*} L$ is Lagrangian \Leftrightarrow μ is closed as a one-form on L;

$$
\mathcal{C}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=\left\{\mu \in \Omega^{1}(L): d_{D R}(\mu)=0\right\}
$$

- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $\left(\Omega^{\bullet}(L), d_{D R}\right)$,
- is something similar true for coisotropic submanifolds?!

Example I, continued

Lemma

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow\left(T^{*} L, \omega_{\text {can }}\right)$ [universal model].

- graph of $\mu: L \rightarrow T^{*} L$ is Lagrangian \Leftrightarrow μ is closed as a one-form on L;

$$
\mathcal{C}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=\left\{\mu \in \Omega^{1}(L): d_{D R}(\mu)=0\right\},
$$

- $\mathcal{M}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=H^{1}(L, \mathbb{R})$.
- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex ($\left.\Omega^{\bullet}(L), d_{D R}\right)$,
- is something similar true for coisotropic submanifolds?!

Lemma

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow\left(T^{*} L, \omega_{\text {can }}\right)$ [universal model].

- graph of $\mu: L \rightarrow T^{*} L$ is Lagrangian \Leftrightarrow μ is closed as a one-form on L;

$$
\mathcal{C}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=\left\{\mu \in \Omega^{1}(L): d_{D R}(\mu)=0\right\}
$$

- $\mathcal{M}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=H^{1}(L, \mathbb{R})$.
- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex ($\left.\Omega^{\circ}(L), d_{D R}\right)$,
- is something similar true for coisotropic submanifolds?!

Lemma

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow\left(T^{*} L, \omega_{\text {can }}\right)$ [universal model].

- graph of $\mu: L \rightarrow T^{*} L$ is Lagrangian \Leftrightarrow μ is closed as a one-form on L;

$$
\mathcal{C}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=\left\{\mu \in \Omega^{1}(L): d_{D R}(\mu)=0\right\}
$$

- $\mathcal{M}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=H^{1}(L, \mathbb{R})$.
- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $\left(\Omega^{\bullet}(L), d_{D R}\right)$,
- is something similar true for coisotropic submanifolds?!

Lemma

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow\left(T^{*} L, \omega_{\text {can }}\right)$ [universal model].

- graph of $\mu: L \rightarrow T^{*} L$ is Lagrangian \Leftrightarrow μ is closed as a one-form on L;

$$
\mathcal{C}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=\left\{\mu \in \Omega^{1}(L): d_{D R}(\mu)=0\right\}
$$

- $\mathcal{M}\left(T^{*} L \rightarrow L, \omega_{\text {can }}\right)=H^{1}(L, \mathbb{R})$.
- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $\left(\Omega^{\bullet}(L), d_{D R}\right)$,
- is something similar true for coisotropic submanifolds?!

Right replacement of $\left(\Omega^{\bullet}(L), d_{D R}\right)$?

- $S \hookrightarrow(E, \pi)$ coisotropic \leadsto $\left(\Gamma(\wedge E), \partial_{\pi}\right)$, Lie algebroid complex
- for L Lagrangian this complex isomorphic to $\left(\Omega^{\bullet}(L), d_{D R}\right)$,- does $\left(\Gamma(\wedge E), \partial_{\pi}\right)$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$? - \sim look at more examples!

Right replacement of $\left(\Omega^{\bullet}(L), d_{D R}\right)$?

- $S \hookrightarrow(E, \pi)$ coisotropic \leadsto $\left(\Gamma(\wedge E), \partial_{\pi}\right)$, Lie algebroid complex
- for L Lagrangian this complex isomorphic to $\left(\Omega^{\bullet}(L), d_{D R}\right)$, - does $\left(\Gamma(\wedge E), \partial_{\pi}\right)$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$? - \sim look at more examples!

Right replacement of $\left(\Omega^{\bullet}(L), d_{D R}\right)$?

- $S \hookrightarrow(E, \pi)$ coisotropic \leadsto $\left(\Gamma(\wedge E), \partial_{\pi}\right)$, Lie algebroid complex
- for L Lagrangian this complex isomorphic to $\left(\Omega^{\bullet}(L), d_{D R}\right)$,
- does $\left(\Gamma(\wedge E), \partial_{\pi}\right)$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$?

Right replacement of $\left(\Omega^{\bullet}(L), d_{D R}\right)$?

- $S \hookrightarrow(E, \pi)$ coisotropic \leadsto $\left(\Gamma(\wedge E), \partial_{\pi}\right)$, Lie algebroid complex
- for L Lagrangian this complex isomorphic to $\left(\Omega^{\bullet}(L), d_{D R}\right)$,
- does $\left(\Gamma(\wedge E), \partial_{\pi}\right)$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$?
- \sim look at more examples!

$$
\begin{gathered}
\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \\
C\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong C^{\infty}(\mathbb{R}), \\
M\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{+\} \llbracket \mathbb{R} \llbracket\{-\}, \\
\text { isomorphism induced from } f \mapsto \begin{cases}+ & f(0)>0, \\
f^{\prime}(0) & f(0)=0, \\
- & f(0)<0 .\end{cases}
\end{gathered}
$$

Homological prediction:

Lie aigebroid complex $\quad K^{\bullet} \cong\left(C^{\infty}(\mathbb{R})[0] \xrightarrow{x^{2}(-)} C^{\infty}(\mathbb{R})[-1]\right)$

- $\operatorname{ker}\left(\mathcal{C}^{\infty}(\mathbb{R})[-1] \xrightarrow{0} 0\right)=\mathcal{C}^{\infty}(\mathbb{R})$,
- $H^{1}\left(L^{\bullet}\right) \cong \mathbb{R}^{2}$.

$$
\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \neq H^{1}\left(L^{\bullet}\right)!
$$

$$
\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)
$$

- $\mathcal{C}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong \mathcal{C}^{\infty}(\mathbb{R})$,
- $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{+\} \amalg \mathbb{R} \amalg\{-\}$,
isomorphism induced from $f \mapsto \begin{cases}+ & f(0)>0, \\ f^{\prime}(0) & f(0)=0, \\ - & f(0)<0 .\end{cases}$

Homological prediction:

Lie algobroid complex $K^{\bullet} \cong\left(C^{\infty}(\mathbb{R})[0] \xrightarrow{x^{2}(-)} C^{\infty}(\mathbb{R})[-1]\right)$

$$
\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)
$$

- $\mathcal{C}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong \mathcal{C}^{\infty}(\mathbb{R})$,
- $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{+\} \amalg \mathbb{R} \coprod\{-\}$,

$$
\text { isomorphism induced from } \quad f \mapsto \begin{cases}+ & f(0)>0 \\ f^{\prime}(0) & f(0)=0 \\ - & f(0)<0\end{cases}
$$

Homological prediction:
Lie algebroid complex $\quad K^{\bullet} \cong\left(\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^{2}(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]\right) \quad \Rightarrow$

$$
\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)
$$

- $\mathcal{C}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong \mathcal{C}^{\infty}(\mathbb{R})$,
- $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \cong\{+\} \amalg \mathbb{R} \amalg\{-\}$,

$$
\text { isomorphism induced from } \quad f \mapsto \begin{cases}+ & f(0)>0 \\ f^{\prime}(0) & f(0)=0 \\ - & f(0)<0\end{cases}
$$

Homological prediction:
Lie algebroid complex $K^{\bullet} \cong\left(\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^{2}(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]\right) \quad \Rightarrow$

- $\operatorname{ker}\left(\mathcal{C}^{\infty}(\mathbb{R})[-1] \xrightarrow{0} 0\right)=\mathcal{C}^{\infty}(\mathbb{R})$,
- $H^{1}\left(L^{\bullet}\right) \cong \mathbb{R}^{2}$.

$$
\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right) \neq H^{1}\left(L^{\bullet}\right)!
$$

S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; Oh/Park \& Cattaneo/Felder: higher order operations, i.e.

Properties:

- $\lambda_{1}=\partial_{\pi}$,
- $\left(\lambda_{k}\right)_{k \geq 1}$ satisfies family of quadratic relations L_{∞}-algebra structure on $\Gamma(\wedge E)$,
- invariant of submanifolds of arbitrary Poisson manifolds, i.e. M need not be total space of a vector bundle over S (Cattaneo/S.),
- connection to the deformation quantization of coisotropic submanifolds (Cattaneo/Felder).
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; Oh/Park \& Cattaneo/Felder: higher order operations, i.e.

$$
\lambda_{k}: \Gamma\left(\wedge^{i_{1}} E\right) \times \cdots \times \Gamma\left(\wedge_{k}^{i_{k}} E\right) \rightarrow \Gamma\left(\wedge^{i_{1}+\cdots+i_{k}+2-k} E\right) .
$$

Properties:

- $\left(\lambda_{k}\right)_{k \geq 1}$ satisfies family of quadratic relations L_{∞}-algebra structure on $\Gamma(\wedge E)$,
- invariant of submanifolds of arbitrary Poisson manifolds, i.e. M need not be total space of a vector bundle over S (Cattaneo/S.),
- connection to the deformation quantization of coisotropic submanifolds (Cattaneo/Felder).
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; Oh/Park \& Cattaneo/Felder: higher order operations, i.e.

$$
\lambda_{k}: \Gamma\left(\wedge^{i_{1}} E\right) \times \cdots \times \Gamma\left(\wedge_{k}^{i_{k}} E\right) \rightarrow \Gamma\left(\wedge^{i_{1}+\cdots+i_{k}+2-k} E\right) .
$$

Properties:

- $\lambda_{1}=\partial_{\pi}$,
- $\left(\lambda_{k}\right)_{k \geq 1}$ satisfies family of quadratic relations L_{∞}-algebra structure on $\Gamma(\wedge E)$,
- invariant of submanifolds of arbitrary Poisson manifolds, i.e. M need not be total space of a vector bundle over S (Cattaneo/S.),
- connection to the deformation quantization of coisotropic submanifolds (Cattaneo/Felder).
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; Oh/Park \& Cattaneo/Felder: higher order operations, i.e.

$$
\lambda_{k}: \Gamma\left(\wedge^{i_{1}} E\right) \times \cdots \times \Gamma\left(\wedge_{k}^{i_{k}} E\right) \rightarrow \Gamma\left(\wedge^{i_{1}+\cdots+i_{k}+2-k} E\right) .
$$

Properties:

- $\lambda_{1}=\partial_{\pi}$,
- $\left(\lambda_{k}\right)_{k \geq 1}$ satisfies family of quadratic relations \leadsto L_{∞}-algebra structure on $\Gamma(\wedge E)$,
- invariant of submanifolds of arbitrary Poisson manifolds, i.e. M need not be total space of a vector bundle over S (Cattaneo/S.),
- connection to the deformation quantization of coisotropic submanifolds (Cattaneo/Felder).
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; Oh/Park \& Cattaneo/Felder: higher order operations, i.e.

$$
\lambda_{k}: \Gamma\left(\wedge^{i_{1}} E\right) \times \cdots \times \Gamma\left(\wedge_{k}^{i_{k}} E\right) \rightarrow \Gamma\left(\wedge^{i_{1}+\cdots+i_{k}+2-k} E\right) .
$$

Properties:

- $\lambda_{1}=\partial_{\pi}$,
- $\left(\lambda_{k}\right)_{k \geq 1}$ satisfies family of quadratic relations \leadsto L_{∞}-algebra structure on $\Gamma(\wedge E)$,
- invariant of submanifolds of arbitrary Poisson manifolds, i.e. M need not be total space of a vector bundle over S (Cattaneo/S.),
- connection to the deformation quantization of coisotropic submanifolds (Cattaneo/Felder).
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; Oh/Park \& Cattaneo/Felder: higher order operations, i.e.

$$
\lambda_{k}: \Gamma\left(\wedge^{i_{1}} E\right) \times \cdots \times \Gamma\left(\wedge_{k}^{i_{k}} E\right) \rightarrow \Gamma\left(\wedge^{i_{1}+\cdots+i_{k}+2-k} E\right) .
$$

Properties:

- $\lambda_{1}=\partial_{\pi}$,
- $\left(\lambda_{k}\right)_{k \geq 1}$ satisfies family of quadratic relations \leadsto L_{∞}-algebra structure on $\Gamma(\wedge E)$,
- invariant of submanifolds of arbitrary Poisson manifolds, i.e. M need not be total space of a vector bundle over S (Cattaneo/S.),
- connection to the deformation quantization of coisotropic submanifolds (Cattaneo/Felder).

Recall:

- consider $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$;
- complex $K^{\bullet} \cong\left(\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^{2}(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]\right)$.

Higher order operations \sim

What to do with this piece of data?

Recall:

- consider $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$;
- complex $K^{\bullet} \cong\left(\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^{2}(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]\right)$.

Higher order operations \leadsto

$$
\begin{aligned}
\mathcal{C}^{\infty}(\mathbb{R})[0] \times \mathcal{C}^{\infty}(\mathbb{R})[-1] \times \mathcal{C}^{\infty}(\mathbb{R})[-1] & \rightarrow \mathcal{C}^{\infty}(\mathbb{R})[-1] \\
(f, g, h) & \mapsto\left(\frac{d f}{d x}\right) g h .
\end{aligned}
$$

What to do with this piece of data?

Geometric interpretation of $H^{1}(-)$

Aim: complex $\left(C^{\bullet}, d\right):=\left(\cdots \rightarrow C^{k} \xrightarrow{d^{k}} C^{k+1} \rightarrow \cdots\right)$;
How to interpret $H^{1}\left(C^{\bullet}, d\right)$ "geometrically"?

- groupoid: category all of whose morphisms are invertible,
- grounoid attached to (C^{\bullet}, d):
- objects: $\operatorname{ker}\left(d^{1}: C^{1} \rightarrow C^{2}\right)$,
- morphisms from x to $y:\left\{v \in C^{0}: y-x=d^{0}(v)\right\}$;
- set of isomorphisms classes is $1^{11}\left(C^{\bullet}, d^{\prime}\right)$.

Aim: complex $\left(C^{\bullet}, d\right):=\left(\cdots \rightarrow C^{k} \xrightarrow{d^{k}} C^{k+1} \rightarrow \cdots\right)$;
How to interpret $H^{1}\left(C^{\bullet}, d\right)$ "geometrically"?

- groupoid: category all of whose morphisms are invertible,

- set of isomorphisms classes is $H^{1}\left(C^{\bullet}, d\right)$.

Aim: complex $\left(C^{\bullet}, d\right):=\left(\cdots \rightarrow C^{k} \xrightarrow{d^{k}} C^{k+1} \rightarrow \cdots\right)$;
How to interpret $H^{1}\left(C^{\bullet}, d\right)$ "geometrically"?

- groupoid: category all of whose morphisms are invertible,
- groupoid attached to (C^{\bullet}, d):
- objects: $\operatorname{ker}\left(d^{1}: C^{1} \rightarrow C^{2}\right)$,
- morphisms from x to $y:\left\{v \in C^{0}: y-x=d^{0}(v)\right\}$;
- set of isomorphisms classes is $H^{1}\left(C^{\bullet}, d\right)$.

Aim: complex $\left(C^{\bullet}, d\right):=\left(\cdots \rightarrow C^{k} \xrightarrow{d^{k}} C^{k+1} \rightarrow \cdots\right)$;
How to interpret $H^{1}\left(C^{\bullet}, d\right)$ "geometrically"?

- groupoid: category all of whose morphisms are invertible,
- groupoid attached to (C^{\bullet}, d):
- objects: $\operatorname{ker}\left(d^{1}: C^{1} \rightarrow C^{2}\right)$,
- morphisms from x to $y:\left\{v \in C^{0}: y-x=d^{0}(v)\right\}$;
- set of isomorphisms classes is $H^{1}\left(C^{\bullet}, d\right)$.
- this interpretation of $H^{1}(C, d)$ extends to complexes enriched by higher order operations!
- kernel of $d^{1}: C^{1} \rightarrow C^{2}$ replaced by Maurer-Cartan elements,
- action
replaced by the gauge-action.
- this interpretation of $H^{1}(C, d)$ extends to complexes enriched by higher order operations!
- kernel of $d^{1}: C^{1} \rightarrow C^{2}$ replaced by Maurer-Cartan elements,
- action
replaced by the gauge-action.
- this interpretation of $H^{1}(C, d)$ extends to complexes enriched by higher order operations!
- kernel of $d^{1}: C^{1} \rightarrow C^{2}$ replaced by Maurer-Cartan elements,
- action

$$
\begin{aligned}
C^{0} \times \operatorname{ker}\left(d^{1}: C^{1} \rightarrow C^{2}\right) & \rightarrow \operatorname{ker}\left(d^{1}: C^{1} \rightarrow C^{2}\right) \\
(v, x) & \mapsto x+d^{0}(v)
\end{aligned}
$$

replaced by the gauge-action.

Back to $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$.

- Maurer-Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action \leadsto equivalence relation on $\mathcal{C}^{\infty}(\mathbb{R})$:

- $f_{0}:=f \mid \rho_{0 \mid} \times \mathbb{R}=0, a_{0}=g, a_{1}=h$,
- differential equation:

- $\sim\left(\mathcal{C}^{\infty}(\mathbb{R}) / \sim\right) \cong\{+\} \amalg \mathbb{R} \amalg\{-\}$,
- this coincides with $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$!

Back to $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$.

- Maurer-Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action \leadsto equivalence relation on $\mathcal{C}^{\infty}(\mathbb{R})$:

- differential equation:

- this coincides with $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$!

Back to $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$.

- Maurer-Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action \leadsto equivalence relation on $\mathcal{C}^{\infty}(\mathbb{R})$:
- differential equation:

Back to $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$.

- Maurer-Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action \leadsto equivalence relation on $\mathcal{C}^{\infty}(\mathbb{R})$:

$$
g \sim h: \Leftrightarrow \exists f \& \alpha \in \mathcal{C}^{\infty}([0,1] \times \mathbb{R}) \text { s.t. }
$$

- $f_{0}:=\left.f\right|_{\{0\} \times \mathbb{R}}=0, \alpha_{0}=g, \alpha_{1}=h$,
- differential equation:

$$
\frac{\partial \alpha(t, x)}{\partial t}=\left(x^{2}+\frac{1}{2} \alpha^{2}(t, x)\right) \frac{\partial f(t, x)}{\partial x} .
$$

- this coincides with $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$!

Back to $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$.

- Maurer-Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action \leadsto equivalence relation on $\mathcal{C}^{\infty}(\mathbb{R})$:

$$
g \sim h: \Leftrightarrow \exists f \& \alpha \in \mathcal{C}^{\infty}([0,1] \times \mathbb{R}) \text { s.t. }
$$

- $f_{0}:=\left.f\right|_{\{0\} \times \mathbb{R}}=0, \alpha_{0}=g, \alpha_{1}=h$,
- differential equation:

$$
\frac{\partial \alpha(t, x)}{\partial t}=\left(x^{2}+\frac{1}{2} \alpha^{2}(t, x)\right) \frac{\partial f(t, x)}{\partial x} .
$$

- $\sim\left(\mathcal{C}^{\infty}(\mathbb{R}) / \sim\right) \cong\{+\} \amalg \mathbb{R} \amalg\{-\}$,

Back to $\mathbb{R} \oplus 0 \hookrightarrow\left(\mathbb{R}^{2},\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$.

- Maurer-Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action \leadsto equivalence relation on $\mathcal{C}^{\infty}(\mathbb{R})$:

$$
g \sim h: \Leftrightarrow \exists f \& \alpha \in \mathcal{C}^{\infty}([0,1] \times \mathbb{R}) \text { s.t. }
$$

- $f_{0}:=\left.f\right|_{\{0\} \times \mathbb{R}}=0, \alpha_{0}=g, \alpha_{1}=h$,
- differential equation:

$$
\frac{\partial \alpha(t, x)}{\partial t}=\left(x^{2}+\frac{1}{2} \alpha^{2}(t, x)\right) \frac{\partial f(t, x)}{\partial x} .
$$

- $\sim\left(\mathcal{C}^{\infty}(\mathbb{R}) / \sim\right) \cong\{+\} \amalg \mathbb{R} \amalg\{-\}$,
- this coincides with $\mathcal{M}\left(\mathbb{R}^{2} \rightarrow \mathbb{R} \oplus 0,\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)$!

...NO! Why?

- convergence issues: higher order operations $\left(\lambda_{k}\right)_{k \geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- \sim need some completion to define Maurer-Cartan elements and gauge-action,
- main problem: algebraic completion is formal!
- \leadsto homotopy Lie algebroid cannot distinguish

...NO! Why?

- convergence issues: higher order operations $\left(\lambda_{k}\right)_{k \geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- \sim need some completion to define Maurer-Cartan elements and gauge-action,
- main problem: algebraic completion is formal! - \leadsto homotopy Lie algebroid cannot distinguish

...NO! Why?

- convergence issues: higher order operations $\left(\lambda_{k}\right)_{k \geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- \sim need some completion to define Maurer-Cartan elements and gauge-action,
- main problem: algebraic completion is forma!!

from

...NO! Why?

- convergence issues: higher order operations $\left(\lambda_{k}\right)_{k \geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- \sim need some completion to define Maurer-Cartan elements and gauge-action,
- main problem: algebraic completion is forma!!
- \leadsto homotopy Lie algebroid cannot distinguish

$$
\{0\} \hookrightarrow\left(\mathbb{R}^{2}, 0\right) \quad \text { from } \quad\{0\} \hookrightarrow\left(\mathbb{R}^{2}, e^{\left(-\frac{1}{x^{2}+y^{2}}\right)} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}\right)!
$$

... goes back to Batalin/Fradkin/Vilkovisky (motivated by physical applications)
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle;
$\leadsto(B F V(E, \pi), D=[[\Omega, \cdot]],[[\cdot, \cdot]])$ with $[[\Omega, \Omega]]=0$,
differential graded Poisson algebra,
i.e. algebraic structure satisfying rules similar to the ones satisfied by $\{\cdot, \cdot\}$
... goes back to Batalin/Fradkin/Vilkovisky (motivated by physical applications)
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle;
$\leadsto(B F V(E, \pi), D=[[\Omega, \cdot]],[[\cdot, \cdot]])$ with $[[\Omega, \Omega]]=0$,
differential graded Poisson algebra,
i.e. algebraic structure satisfying rules similar to the ones
satisfied by $\{\cdot, \cdot\}$
... goes back to Batalin/Fradkin/Vilkovisky (motivated by physical applications)
S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle; $\leadsto(B F V(E, \pi), D=[[\Omega, \cdot]],[[\cdot, \cdot]])$ with $[[\Omega, \Omega]]=0$, differential graded Poisson algebra, i.e. algebraic structure satisfying rules similar to the ones satisfied by $\{\cdot, \cdot\}$

Relation to the homotopy Lie algebroid

- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done

Theorem (S)

The homotopy Lie algebroid and the BFV-complex are L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotopy category of L_{∞}-algebras - formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".
- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done \leadsto

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are
L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotopy category of L_{∞}-algebras - formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

Relation to the homotopy Lie algebroid

- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done \leadsto

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotony category of I_{∞}-algehras - formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies"

Relation to the homotopy Lie algebroid

- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done \leadsto

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotopy category of L_{∞}-algebras - formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies"

Relation to the homotopy Lie algebroid

- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done \leadsto

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotopy category of L_{∞}-algebras - formally invert certain morphisms,

Relation to the homotopy Lie algebroid

- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done \leadsto

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotopy category of L_{∞}-algebras - formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,

- $H^{\bullet}\left(\Gamma(\wedge E), \partial_{\pi}\right) \cong H^{\bullet}(B F V(E, \pi), D)$,
- taking higher order operations into account needs more work... but can be done \leadsto

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_{∞} quasi-isomorphic.

Remark:

- structures cannot be isomorphic as L_{∞}-algebras,
- \exists homotopy category of L_{∞}-algebras - formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

We had some geometric questions in mind:

- Q1) understand $\mathcal{C}(E, \pi)$, set of coisotropic sections, i.e.

$\{\mu \in \Gamma(E): \operatorname{graph}(\mu)$ coisotropic in $(E, \pi)\} ;$

- Q2) understand $\mathcal{M}(E, \pi)$, equivalence classes of elements in $\mathcal{C}(E, \pi)$,
groupoid $\hat{C}(E, \pi)$ with
- objects: $\mathcal{C}(E, \pi)$,
- isomorphism classes of objects: $\mathcal{M}(E, \pi)$,
$\hat{\mathcal{C}}(E, \pi) \approx$ homotopy classes of smooth path in $\mathcal{C}(E, \pi)$,
generated by Hamiltonian diffeomorphisms.

We had some geometric questions in mind:

- Q1) understand $\mathcal{C}(E, \pi)$, set of coisotropic sections, i.e.

$$
\{\mu \in \Gamma(E): \operatorname{graph}(\mu) \text { coisotropic in }(E, \pi)\} ;
$$

- Q2) understand $\mathcal{M}(E, \pi)$, equivalence classes of elements in $\mathcal{C}(E, \pi)$,
groupoid $\hat{C}(E, \pi)$ with
- objects: $\mathcal{C}(E, \pi)$,
- isomorphism classes of objects: $\mathcal{M}(E, \pi)$,
$\hat{C}(E, \pi) \approx$ homotopy classes of smooth path in $C(E, \pi)$, generated by Hamiltonian diffeomorphisms.

We had some geometric questions in mind:

- Q1) understand $\mathcal{C}(E, \pi)$, set of coisotropic sections, i.e.

$$
\{\mu \in \Gamma(E) \text { : graph }(\mu) \text { coisotropic in }(E, \pi)\} ;
$$

- Q2) understand $\mathcal{M}(E, \pi)$, equivalence classes of elements in $\mathcal{C}(E, \pi)$,
groupoid $\hat{C}(E, \pi)$ with
- objects: $\mathcal{C}(E, \pi)$,
- isomorphism classe of objects: M(E, π),
$\hat{\mathcal{C}}(E, \pi) \approx$ homotopy classes of smooth path in $\mathcal{C}(E, \pi)$, generated by Hamiltonian diffeomorphisms.

We had some geometric questions in mind:

- Q1) understand $\mathcal{C}(E, \pi)$, set of coisotropic sections, i.e.

$$
\{\mu \in \Gamma(E): \operatorname{graph}(\mu) \text { coisotropic in }(E, \pi)\}
$$

- Q2) understand $\mathcal{M}(E, \pi)$, equivalence classes of elements in $\mathcal{C}(E, \pi)$,
\leadsto groupoid $\hat{\mathcal{C}}(E, \pi)$ with
- objects: $\mathcal{C}(E, \pi)$,
- isomorphism classes of objects: $\mathcal{M}(E, \pi)$,
$\hat{\mathcal{C}}(E, \pi) \approx$ homotopy classes of smooth path in $\mathcal{C}(E, \pi)$, generated by Hamiltonian diffeomorphisms.

Theorem (S.)

S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle;
1.) Groupoid $\hat{\mathcal{D}}_{\text {geo }}(E, \pi)$:

- objects: $\mathcal{D}_{\text {geo }}(E, \pi) \ni$ certain Maurer-Cartan elements of the BFV-complex, X Maurer-Cartan element $\Leftrightarrow[[\Omega+X, \Omega+X]]=0$.
- morphisms: homotopy classes of smooth "paths" in $\mathcal{D}_{\text {geo }}(E, \pi)$ generated by gauge-transformations.
2.) \exists morphism of groupoids $\phi: \hat{\mathcal{D}}_{\text {geo }}(E, \pi) \rightarrow \hat{\mathcal{C}}(E, \pi)$,
surjective on objects and on all hom-sets.
3.) Kernel of ϕ can be characterized in terms of the

BFV-complex.

Theorem (S.)

S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle;
1.) Groupoid $\hat{\mathcal{D}}_{\text {geo }}(E, \pi)$:

- objects: $\mathcal{D}_{\text {geo }}(E, \pi) \ni$ certain Maurer-Cartan elements of the BFV-complex,
X Maurer-Cartan element $\Leftrightarrow[[\Omega+X, \Omega+X]]=0$.
- morphisms: homotopy classes of smooth "paths" in $\mathcal{D}_{\text {geo }}(E, \pi)$ generated by gauge-transformations.
2.) \exists morphism of groupoids $\phi: \hat{\mathcal{D}}_{\text {geo }}(E, \pi) \rightarrow \hat{\mathcal{C}}(E, \pi)$, surjective on objects and on all hom-sets.
3.) Kernel of ϕ can be characterized in terms of the

BFV-complex.

Theorem (S.)

S coisotropic submanifold of $(E, \pi), E \rightarrow S$ vector bundle;
1.) Groupoid $\hat{\mathcal{D}}_{\text {geo }}(E, \pi)$:

- objects: $\mathcal{D}_{\text {geo }}(E, \pi) \ni$ certain Maurer-Cartan elements of the BFV-complex,
X Maurer-Cartan element $\Leftrightarrow[[\Omega+X, \Omega+X]]=0$.
- morphisms: homotopy classes of smooth "paths" in $\mathcal{D}_{\text {geo }}(E, \pi)$ generated by gauge-transformations.
2.) \exists morphism of groupoids $\phi: \hat{\mathcal{D}}_{\text {geo }}(E, \pi) \rightarrow \hat{\mathcal{C}}(E, \pi)$, surjective on objects and on all hom-sets.
3.) Kernel of ϕ can be characterized in terms of the BFV-complex.

Corollary

- $\hat{\mathcal{D}}_{\text {geo }}(E, \pi) / \operatorname{ker} \phi \cong \hat{\mathcal{C}}(E, \pi)$,
- (set of isomorphism classes of objects of $\left.\hat{\mathcal{D}}_{\text {geo }}(E, \pi)\right) \cong$ (set of isomorphism classes of objects of $\hat{\mathcal{C}}(E, \pi))=$ $\mathcal{M}(E, \pi)$.

> This achieves a description of the groupoid $\hat{\mathcal{C}}(E, \pi) \ldots$...and hence of the sets $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$.

Corollary

- $\hat{\mathcal{D}}_{\text {geo }}(E, \pi) / \operatorname{ker} \phi \cong \hat{\mathcal{C}}(E, \pi)$,
- (set of isomorphism classes of objects of $\left.\hat{\mathcal{D}}_{\text {geo }}(E, \pi)\right) \cong$ (set of isomorphism classes of objects of $\hat{\mathcal{C}}(E, \pi))=$ $\mathcal{M}(E, \pi)$.

This achieves a description of the groupoid $\hat{\mathcal{C}}(E, \pi) \ldots$
...and hence of the sets $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$.

More structure:

- topology on $\Gamma(E)$ induces one on $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$, when is $\mathcal{M}(E, \pi)$ Hausdorff, locally path-connected,...?
- $\Gamma(E)$ regarded as a ∞ dim. manifold, when does this structure descend to $\mathcal{C}(E, \pi)$ or $\mathcal{M}(E, \pi)$?

Applications?
Algebraic condition in terms of $(B F V(E), D,[[,, \cdot]])$ that implies stability, i.e. $\mathcal{M}(E, \pi) \cong\{*\}$?

More structure:

- topology on $\Gamma(E)$ induces one on $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$, when is $\mathcal{M}(E, \pi)$ Hausdorff, locally path-connected,...?
- $\Gamma(E)$ regarded as a ∞ dim. manifold, when does this structure descend to $\mathcal{C}(E, \pi)$ or $\mathcal{M}(E, \pi)$?

Applications?
Algebraic condition in terms of $(B F V(E), D,[[\cdot, \cdot]])$ that implies stability, i.e. $\mathcal{M}(E, \pi) \cong\{*\}$?

