Coisotropic Submanifolds and the BFV-Complex

Florian Schätz

April 27th, 2009

Florian Schätz Coisotropic Submanifolds and the BFV-Complex

Definition (Poisson Manifolds)

- Poisson manifold: manifold M & Poisson bivector field π ,
- Poisson bivector field: π ∈ Γ(∧²TM) satisfying integrability-condition,
- Integrability condition:

$$\{\cdot,\cdot\}: \mathcal{C}^{\infty}(\mathcal{M}) imes \mathcal{C}^{\infty}(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$$

 $(f,g) \mapsto \pi(f,g)$

Lie bracket on $C^{\infty}(M)$, i.e.

 $\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}$

Definition (Poisson Manifolds)

- Poisson manifold: manifold M & Poisson bivector field π ,
- Poisson bivector field: π ∈ Γ(∧²TM) satisfying integrability-condition,
- Integrability condition:

$$\{\cdot,\cdot\}: \mathcal{C}^{\infty}(\mathcal{M}) \times \mathcal{C}^{\infty}(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$$

 $(f,g) \mapsto \pi(f,g)$

Lie bracket on $\mathcal{C}^{\infty}(M)$, i.e.

 $\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}$

Definition (Poisson Manifolds)

- Poisson manifold: manifold M & Poisson bivector field π ,
- Poisson bivector field: π ∈ Γ(∧² TM) satisfying integrability-condition,
- Integrability condition:

$$\{\cdot, \cdot\} : \mathcal{C}^{\infty}(\mathcal{M}) imes \mathcal{C}^{\infty}(\mathcal{M}) o \mathcal{C}^{\infty}(\mathcal{M}) \ (f,g) \mapsto \pi(f,g)$$

Lie bracket on $C^{\infty}(M)$, i.e.

 $\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}$

Definition (Poisson Manifolds)

- Poisson manifold: manifold M & Poisson bivector field π ,
- Poisson bivector field: π ∈ Γ(∧²TM) satisfying integrability-condition,
- Integrability condition:

$$\{\cdot,\cdot\}: \mathcal{C}^{\infty}(\mathcal{M}) \times \mathcal{C}^{\infty}(\mathcal{M}) \to \mathcal{C}^{\infty}(\mathcal{M})$$

 $(f,g) \mapsto \pi(f,g)$

Lie bracket on $\mathcal{C}^{\infty}(M)$, i.e.

$$\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}$$

Examples of Poisson manifolds

•
$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}) \rightsquigarrow$$

 $\{f, g\} = \sum_{i=1}^n \left(\frac{\partial f}{\partial x^i} \frac{\partial g}{\partial y^i} - \frac{\partial f}{\partial y^i} \frac{\partial g}{\partial x^i} \right),$

- Σ two dim. manifold equipped with any bivector field,
- \mathfrak{g} a finite dim. Lie algebra over \mathbb{R} : \mathfrak{g}^* Poisson manifold,
- symplectic manifolds

Examples of Poisson manifolds

•
$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}) \rightsquigarrow$$

 $\{f, g\} = \sum_{i=1}^n \left(\frac{\partial f}{\partial x^i} \frac{\partial g}{\partial y^i} - \frac{\partial f}{\partial y^i} \frac{\partial g}{\partial x^i} \right),$

- Σ two dim. manifold equipped with any bivector field,
- \mathfrak{g} a finite dim. Lie algebra over \mathbb{R} : \mathfrak{g}^* Poisson manifold,
- symplectic manifolds

Examples of Poisson manifolds

•
$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}) \rightsquigarrow$$

 $\{f, g\} = \sum_{i=1}^n \left(\frac{\partial f}{\partial x^i} \frac{\partial g}{\partial y^i} - \frac{\partial f}{\partial y^i} \frac{\partial g}{\partial x^i} \right),$

- Σ two dim. manifold equipped with any bivector field,
- g a finite dim. Lie algebra over ℝ: g* Poisson manifold,
 symplectic manifolds

•
$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}) \rightsquigarrow$$

 $\{f, g\} = \sum_{i=1}^n \left(\frac{\partial f}{\partial x^i} \frac{\partial g}{\partial y^i} - \frac{\partial f}{\partial y^i} \frac{\partial g}{\partial x^i} \right),$

- Σ two dim. manifold equipped with any bivector field,
- g a finite dim. Lie algebra over ℝ: g* Poisson manifold,
- symplectic manifolds

 (M, π) Poisson manifold; S submanifold;

• vanishing ideal $\mathcal{I}(S)$ of S in M is

 $\mathcal{I}(S) := \{ f \in \mathcal{C}^{\infty}(M) : f|_{S} = 0 \}.$

• *S* coisotropic : \Leftrightarrow { $\mathcal{I}(S)$, $\mathcal{I}(S)$ } \subset $\mathcal{I}(S)$,

 (M, π) Poisson manifold; S submanifold;

• vanishing ideal $\mathcal{I}(S)$ of S in M is

 $\mathcal{I}(S) := \{ f \in \mathcal{C}^{\infty}(M) : f|_{S} = 0 \}.$

• S coisotropic : \Leftrightarrow { $\mathcal{I}(S)$, $\mathcal{I}(S)$ } \subset $\mathcal{I}(S)$,

 (M, π) Poisson manifold; S submanifold;

• vanishing ideal $\mathcal{I}(S)$ of S in M is

$$\mathcal{I}(S) := \{ f \in \mathcal{C}^{\infty}(M) : f|_{S} = 0 \}.$$

• *S* coisotropic : \Leftrightarrow { $\mathcal{I}(S)$, $\mathcal{I}(S)$ } \subset $\mathcal{I}(S)$,

Examples of coisotropic Submanifolds

- $\mathbb{R}^n \oplus 0$ and $0 \oplus \mathbb{R}$ in $(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n})$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_x = 0$,
- g Lie algebra over ℝ;
 linear subspace h of g is Lie subalgebra ⇔
 annihilator h° is coisotropic submanifold of g*,
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map φ : (M, π) → (N, λ) is Poisson ⇔ graph(φ) coisotropic in (M × N, −λ + π)

- $\mathbb{R}^n \oplus 0$ and $0 \oplus \mathbb{R}$ in $(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n})$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_x = 0$,
- g Lie algebra over ℝ;
 linear subspace h of g is Lie subalgebra ⇔
 annihilator h° is coisotropic submanifold of g*,
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map φ : (M, π) → (N, λ) is Poisson ⇔ graph(φ) coisotropic in (M × N, −λ + π)

- $\mathbb{R}^n \oplus 0$ and $0 \oplus \mathbb{R}$ in $(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n})$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_x = 0$,
- g Lie algebra over ℝ;
 linear subspace η of g is Lie subalgebra ⇔
 annihilator η° is coisotropic submanifold of g*,
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map $\phi : (M, \pi) \to (N, \lambda)$ is *Poisson* \Leftrightarrow graph(ϕ) coisotropic in $(M \times N, -\lambda + \pi)$

- $\mathbb{R}^n \oplus 0$ and $0 \oplus \mathbb{R}$ in $(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n})$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_x = 0$,
- g Lie algebra over ℝ;
 linear subspace η of g is Lie subalgebra ⇔
 annihilator η° is coisotropic submanifold of g*,
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map $\phi : (M, \pi) \to (N, \lambda)$ is *Poisson* \Leftrightarrow graph(ϕ) coisotropic in $(M \times N, -\lambda + \pi)$

- $\mathbb{R}^n \oplus 0$ and $0 \oplus \mathbb{R}$ in $(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n})$,
- $x \in M$ is a coisotropic submanifold of $(M, \pi) \Leftrightarrow \pi_x = 0$,
- g Lie algebra over ℝ;
 linear subspace 𝔥 of 𝔅 is Lie subalgebra ⇔
 annihilator 𝔥° is coisotropic submanifold of 𝔅^{*},
- Lagrangian submanifolds of symplectic manifolds,
- graph of a map $\phi : (M, \pi) \to (N, \lambda)$ is *Poisson* \Leftrightarrow graph(ϕ) coisotropic in $(M \times N, -\lambda + \pi)$

Good description of $\{S \text{ coisotropic submanifold of } (M, \pi)\}$? Properties?

- group of diffeomorphisms acts on {*S* submanifold of *M*},
- Hamiltonian vector fields: f function → {f, ·} vector field, the Hamiltonian vector field of f,
- *Hamiltonian diffeomorphisms*: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on {S coisotropic submanifold of (M, π)},

Good description of $\{S \text{ coisotropic submanifold of } (M, \pi)\}$? Properties?

• group of diffeomorphisms acts on {*S* submanifold of *M*},

- Hamiltonian vector fields: *f* function → {*f*, ·} vector field, the Hamiltonian vector field of *f*,
- *Hamiltonian diffeomorphisms*: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on {S coisotropic submanifold of (M, π)},

Good description of $\{S \text{ coisotropic submanifold of } (M, \pi)\}$? Properties?

- group of diffeomorphisms acts on {*S* submanifold of *M*},
- Hamiltonian vector fields: *f* function → {*f*, ·} vector field, the Hamiltonian vector field of *f*,
- *Hamiltonian diffeomorphisms*: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on {S coisotropic submanifold of (M, π)},

Good description of $\{S \text{ coisotropic submanifold of } (M, \pi)\}$? Properties?

- group of diffeomorphisms acts on {*S* submanifold of *M*},
- Hamiltonian vector fields: *f* function → {*f*, ·} vector field, the Hamiltonian vector field of *f*,
- *Hamiltonian diffeomorphisms*: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on $\{S \text{ coisotropic submanifold of } (M, \pi)\},\$

Good description of $\{S \text{ coisotropic submanifold of } (M, \pi)\}$? Properties?

- group of diffeomorphisms acts on {*S* submanifold of *M*},
- Hamiltonian vector fields: *f* function → {*f*, ·} vector field, the Hamiltonian vector field of *f*,
- *Hamiltonian diffeomorphisms*: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on {S coisotropic submanifold of (M, π)},

Good description of $\{S \text{ coisotropic submanifold of } (M, \pi)\}$? Properties?

- group of diffeomorphisms acts on {*S* submanifold of *M*},
- Hamiltonian vector fields: *f* function → {*f*, ·} vector field, the Hamiltonian vector field of *f*,
- *Hamiltonian diffeomorphisms*: generated by Hamiltonian vector fields,
- group of Hamiltonian diffeomorphisms acts on {S coisotropic submanifold of (M, π)},

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near *S* → assume: *M* total space of a vector bundle *E* → *S*,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph (μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near *S* → assume: *M* total space of a vector bundle *E* → *S*,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near *S* → assume: *M* total space of a vector bundle *E* → *S*,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph (μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near S → assume: *M* total space of a vector bundle E → S,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near S → assume: *M* total space of a vector bundle E → S,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near S → assume: *M* total space of a vector bundle E → S,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near S → assume: *M* total space of a vector bundle E → S,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near S → assume: *M* total space of a vector bundle E → S,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

fix S coisotropic, study questions only "near" S!

- "linearize" *M* near S → assume: *M* total space of a vector bundle E → S,
- $\mu \in \Gamma(E)$ coisotropic : \Leftrightarrow graph(μ) coisotropic submanifold,
- $C(E, \pi)$ set of coisotropic sections.

Q1) How to describe $C(E, \pi)$? What are its properties?

- action of Hamiltonian diffeomorphisms → equivalence relation ~_H on C(E, π),
- $\mathcal{M}(E,\pi) :=$ equivalence classes of \sim_H .

$\mathbb{R} \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^2, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$

•
$$C(\mathbb{R}^2 \to \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong C^{\infty}(\mathbb{R}),$$

• $\mathcal{M}(\mathbb{R}^2 \to \mathbb{R} \oplus 0, \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \{*\}.$

special case of a Lagrangian submanifold in a symplectic manifold...

$$\mathbb{R} \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^2, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$$

•
$$\mathcal{C}(\mathbb{R}^2 \to \mathbb{R} \oplus \mathbf{0}, \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \mathcal{C}^{\infty}(\mathbb{R}),$$

• $\mathcal{M}(\mathbb{R}^2 \to \mathbb{R} \oplus \mathbf{0}, \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \{*\}.$

special case of a Lagrangian submanifold in a symplectic manifold...

$$\mathbb{R} \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^2, \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$$

•
$$\mathcal{C}(\mathbb{R}^2 \to \mathbb{R} \oplus \mathbf{0}, \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \mathcal{C}^{\infty}(\mathbb{R}),$$

• $\mathcal{M}(\mathbb{R}^2 \to \mathbb{R} \oplus \mathbf{0}, \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \{*\}.$

special case of a Lagrangian submanifold in a symplectic manifold...

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \cdots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

 $L \hookrightarrow (M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow (M, \pi)$ locally isomorphic to

$$\mathbb{R}^n \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \cdots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

 $L \hookrightarrow (M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow (M, \pi)$ locally isomorphic to

$$\mathbb{R}^n \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \cdots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

 $L \hookrightarrow (M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow (M, \pi)$ locally isomorphic to

$$\mathbb{R}^n \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

Definition

symplectic manifold: Poisson manifold (M, π) s.t. (M, π) locally isomorphic to

$$(\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \cdots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

 $L \hookrightarrow (M, \pi)$ is Lagrangian : $\Leftrightarrow L \hookrightarrow (M, \pi)$ locally isomorphic to

$$\mathbb{R}^n \oplus \mathbf{0} \hookrightarrow (\mathbb{R}^n \oplus \mathbb{R}^n, \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial y^1} + \dots + \frac{\partial}{\partial x^n} \wedge \frac{\partial}{\partial y^n}).$$

- symplectic manifolds special cases of Poisson manifolds,
- Lagrangian submanifolds special cases of coisotropic submanifolds.

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow (T^*L, \omega_{can})$ [universal model].

 graph of μ : L → T*L is Lagrangian ⇔ μ is closed as a one-form on L;

 $\mathcal{C}(\mathcal{T}^*L o L, \omega_{\mathsf{can}}) = \{\mu \in \Omega^1(L): \mathit{d_{DR}}(\mu) = \mathsf{0}\},$

• $\mathcal{M}(T^*L \to L, \omega_{\operatorname{can}}) = H^1(L, \mathbb{R}).$

- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $(\Omega^{\bullet}(L), d_{DR})$,
- is something similar true for coisotropic submanifolds?!

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow (T^*L, \omega_{can})$ [universal model].

 graph of μ : L → T*L is Lagrangian ⇔ μ is closed as a one-form on L;

$$\mathcal{C}(\mathcal{T}^*L o L, \omega_{\mathsf{can}}) = \{\mu \in \Omega^1(L) : d_{\mathit{DR}}(\mu) = \mathsf{0}\},$$

• $\mathcal{M}(T^*L \to L, \omega_{\operatorname{can}}) = H^1(L, \mathbb{R}).$

- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $(\Omega^{\bullet}(L), d_{DR})$,
- is something similar true for coisotropic submanifolds?!

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow (T^*L, \omega_{can})$ [universal model].

 graph of μ : L → T*L is Lagrangian ⇔ μ is closed as a one-form on L;

$$\mathcal{C}(\mathcal{T}^*\mathcal{L}
ightarrow\mathcal{L},\omega_{\mathsf{can}})=\{\mu\in\Omega^1(\mathcal{L}): \mathit{d_{DR}}(\mu)=\mathsf{0}\},$$

•
$$\mathcal{M}(T^*L \to L, \omega_{can}) = H^1(L, \mathbb{R}).$$

- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $(\Omega^{\bullet}(L), d_{DR})$,
- is something similar true for coisotropic submanifolds?!

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow (T^*L, \omega_{can})$ [universal model].

 graph of μ : L → T*L is Lagrangian ⇔ μ is closed as a one-form on L;

$$\mathcal{C}(\mathcal{T}^*\mathcal{L}
ightarrow\mathcal{L},\omega_{\mathsf{can}})=\{\mu\in\Omega^1(\mathcal{L}): \mathit{d_{DR}}(\mu)=\mathsf{0}\},$$

•
$$\mathcal{M}(T^*L \to L, \omega_{can}) = H^1(L, \mathbb{R}).$$

answers Q1) and Q2) for Lagrangian submanifolds,

- answer in terms of de Rham complex $(\Omega^{\bullet}(L), d_{DR})$,
- is something similar true for coisotropic submanifolds?!

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow (T^*L, \omega_{can})$ [universal model].

 graph of μ : L → T*L is Lagrangian ⇔ μ is closed as a one-form on L;

$$\mathcal{C}(T^*L o L, \omega_{\mathsf{can}}) = \{\mu \in \Omega^1(L) : d_{DR}(\mu) = \mathbf{0}\},$$

•
$$\mathcal{M}(T^*L \to L, \omega_{can}) = H^1(L, \mathbb{R}).$$

- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $(\Omega^{\bullet}(L), d_{DR})$,
- is something similar true for coisotropic submanifolds?!

L Lagrangian submanifold, (Darboux-Weinstein) \Rightarrow suffices to consider $L \hookrightarrow (T^*L, \omega_{can})$ [universal model].

 graph of μ : L → T*L is Lagrangian ⇔ μ is closed as a one-form on L;

$$\mathcal{C}(\mathcal{T}^* \mathcal{L}
ightarrow \mathcal{L}, \omega_{\mathsf{can}}) = \{ \mu \in \Omega^1(\mathcal{L}) : \mathcal{d}_{\mathcal{DR}}(\mu) = \mathbf{0} \},$$

•
$$\mathcal{M}(T^*L \to L, \omega_{can}) = H^1(L, \mathbb{R}).$$

- answers Q1) and Q2) for Lagrangian submanifolds,
- answer in terms of de Rham complex $(\Omega^{\bullet}(L), d_{DR})$,
- is something similar true for coisotropic submanifolds?!

- $S \hookrightarrow (E, \pi)$ coisotropic \rightsquigarrow ($\Gamma(\land E), \partial_{\pi}$), *Lie algebroid complex*
- for *L* Lagrangian this complex isomorphic to $(\Omega^{\bullet}(L), d_{DR})$,
- does $(\Gamma(\wedge E), \partial_{\pi})$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$?

● → look at more examples!

- $S \hookrightarrow (E, \pi)$ coisotropic \rightsquigarrow ($\Gamma(\land E), \partial_{\pi}$), *Lie algebroid complex*
- for *L* Lagrangian this complex isomorphic to $(\Omega^{\bullet}(L), d_{DR})$,
- does $(\Gamma(\wedge E), \partial_{\pi})$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$?

• ~> look at more examples!

- $S \hookrightarrow (E, \pi)$ coisotropic \rightsquigarrow ($\Gamma(\land E), \partial_{\pi}$), *Lie algebroid complex*
- for *L* Lagrangian this complex isomorphic to $(\Omega^{\bullet}(L), d_{DR})$,
- does $(\Gamma(\wedge E), \partial_{\pi})$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$?

• ~> look at more examples!

- $S \hookrightarrow (E, \pi)$ coisotropic \rightsquigarrow ($\Gamma(\land E), \partial_{\pi}$), *Lie algebroid complex*
- for *L* Lagrangian this complex isomorphic to $(\Omega^{\bullet}(L), d_{DR})$,
- does $(\Gamma(\wedge E), \partial_{\pi})$ control $\mathcal{C}(E, \pi)$ and $\mathcal{M}(E, \pi)$?
- ~> look at more examples!

$$\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^2, (x^2 + y^2) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$$

• $C(\mathbb{R}^2 \to \mathbb{R} \oplus 0, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong C^{\infty}(\mathbb{R}),$ • $\mathcal{M}(\mathbb{R}^2 \to \mathbb{R} \oplus 0, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \{+\} \coprod \mathbb{R} \coprod \{-\},$

isomorphism induced from
$$f \mapsto \begin{cases} + & f(0) > 0, \\ f'(0) & f(0) = 0, \\ - & f(0) < 0. \end{cases}$$

Homological prediction:

Lie algebroid complex $K^{\bullet} \cong (\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^2(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]) \Rightarrow$

• ker
$$(\mathcal{C}^{\infty}(\mathbb{R})[-1] \xrightarrow{0} 0) = \mathcal{C}^{\infty}(\mathbb{R}),$$

• $H^{1}(L^{\bullet}) \cong \mathbb{R}^{2}.$
 $\mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2}) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \neq H^{1}(L^{\bullet})!$

0

$$\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^{2}, (x^{2} + y^{2})\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$$
• $\mathcal{C}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2})\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \cong \mathcal{C}^{\infty}(\mathbb{R}),$
• $\mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2})\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \cong \{+\} \coprod \mathbb{R} \coprod \{-\},$
isomorphism induced from $f \mapsto \begin{cases} + & f(0) > 0, \\ f'(0) & f(0) = 0, \\ - & f(0) < 0. \end{cases}$

Lie algebroid complex $K^{\bullet} \cong (\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^2(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]) \Rightarrow$

• ker
$$(\mathcal{C}^{\infty}(\mathbb{R})[-1] \xrightarrow{0} 0) = \mathcal{C}^{\infty}(\mathbb{R}),$$

• $H^{1}(L^{\bullet}) \cong \mathbb{R}^{2}.$
 $\mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2}) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \neq H^{1}(L^{\bullet})!$

$$\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^{2}, (x^{2} + y^{2})\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})$$
• $\mathcal{C}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2})\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \cong \mathcal{C}^{\infty}(\mathbb{R}),$
• $\mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2})\frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \cong \{+\} \coprod \mathbb{R} \coprod \{-\},$
isomorphism induced from $f \mapsto \begin{cases} + & f(0) > 0, \\ f'(0) & f(0) = 0, \\ - & f(0) < 0. \end{cases}$

Homological prediction:

 $\text{Lie algebroid complex} \quad {\mathcal K}^{\bullet}\cong ({\mathcal C}^{\infty}({\mathbb R})[0]\xrightarrow{x^2(-)}{\mathcal C}^{\infty}({\mathbb R})[-1]) \quad \Rightarrow \quad$

• ker
$$(\mathcal{C}^{\infty}(\mathbb{R})[-1] \xrightarrow{0} 0) = \mathcal{C}^{\infty}(\mathbb{R}),$$

• $H^{1}(L^{\bullet}) \cong \mathbb{R}^{2}.$
 $\mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2}) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \neq H^{1}(L^{\bullet})!$

$$\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^{2}, (x^{2} + y^{2}) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y})$$

$$\bullet \ \mathcal{C}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2}) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \mathcal{C}^{\infty}(\mathbb{R}),$$

$$\bullet \ \mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2}) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}) \cong \{+\} \coprod \mathbb{R} \coprod \{-\},$$
isomorphism induced from $f \mapsto \begin{cases} + & f(0) > 0, \\ f'(0) & f(0) = 0, \\ - & f(0) < 0. \end{cases}$

Homological prediction:

 $\text{Lie algebroid complex} \quad K^{\bullet} \cong (\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^2(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]) \quad \Rightarrow \quad$

• ker
$$(\mathcal{C}^{\infty}(\mathbb{R})[-1] \xrightarrow{0} 0) = \mathcal{C}^{\infty}(\mathbb{R}),$$

• $H^{1}(L^{\bullet}) \cong \mathbb{R}^{2}.$
 $\mathcal{M}(\mathbb{R}^{2} \to \mathbb{R} \oplus 0, (x^{2} + y^{2}) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}) \neq H^{1}(L^{\bullet})!$

S coisotropic submanifold of (E, π) , $E \rightarrow S$ vector bundle;

Oh/Park & Cattaneo/Felder: *higher order operations*, i.e.

 $\lambda_k: \Gamma(\wedge^{i_1} E) \times \cdots \times \Gamma(\wedge^{i_k} E) \to \Gamma(\wedge^{i_1 + \cdots + i_k + 2 - k} E).$

- $\lambda_1 = \partial_{\pi}$,
- (λ_k)_{k≥1} satisfies family of quadratic relations → L_∞-algebra structure on Γ(∧E),
- *invariant* of submanifolds of arbitrary Poisson manifolds, i.e. *M* need not be total space of a vector bundle over *S* (Cattaneo/S.),
- connection to the *deformation quantization* of coisotropic submanifolds (Cattaneo/Felder).

$$\lambda_k: \Gamma(\wedge^{i_1}E) \times \cdots \times \Gamma(\wedge^{i_k}E) \to \Gamma(\wedge^{i_1+\cdots+i_k+2-k}E).$$

- $\lambda_1 = \partial_{\pi}$,
- (λ_k)_{k≥1} satisfies family of quadratic relations → L_∞-algebra structure on Γ(∧E),
- *invariant* of submanifolds of arbitrary Poisson manifolds, i.e. *M* need not be total space of a vector bundle over *S* (Cattaneo/S.),
- connection to the *deformation quantization* of coisotropic submanifolds (Cattaneo/Felder).

 $\lambda_k: \Gamma(\wedge^{i_1}E) \times \cdots \times \Gamma(\wedge^{i_k}E) \to \Gamma(\wedge^{i_1+\cdots+i_k+2-k}E).$

- $\lambda_1 = \partial_{\pi}$,
- (λ_k)_{k≥1} satisfies family of quadratic relations → L_∞-algebra structure on Γ(∧E),
- *invariant* of submanifolds of arbitrary Poisson manifolds, i.e. *M* need not be total space of a vector bundle over *S* (Cattaneo/S.),
- connection to the *deformation quantization* of coisotropic submanifolds (Cattaneo/Felder).

$$\lambda_k: \Gamma(\wedge^{i_1}E) \times \cdots \times \Gamma(\wedge^{i_k}E) \to \Gamma(\wedge^{i_1+\cdots+i_k+2-k}E).$$

- $\lambda_1 = \partial_{\pi}$,
- (λ_k)_{k≥1} satisfies family of quadratic relations → L_∞-algebra structure on Γ(∧E),
- *invariant* of submanifolds of arbitrary Poisson manifolds, i.e. *M* need not be total space of a vector bundle over *S* (Cattaneo/S.),
- connection to the *deformation quantization* of coisotropic submanifolds (Cattaneo/Felder).

$$\lambda_k: \Gamma(\wedge^{i_1}E) \times \cdots \times \Gamma(\wedge^{i_k}E) \to \Gamma(\wedge^{i_1+\cdots+i_k+2-k}E).$$

- $\lambda_1 = \partial_{\pi}$,
- (λ_k)_{k≥1} satisfies family of quadratic relations → L_∞-algebra structure on Γ(∧E),
- *invariant* of submanifolds of arbitrary Poisson manifolds, i.e. *M* need not be total space of a vector bundle over *S* (Cattaneo/S.),
- connection to the *deformation quantization* of coisotropic submanifolds (Cattaneo/Felder).

$$\lambda_k: \Gamma(\wedge^{i_1}E) \times \cdots \times \Gamma(\wedge^{i_k}E) \to \Gamma(\wedge^{i_1+\cdots+i_k+2-k}E).$$

- $\lambda_1 = \partial_{\pi}$,
- (λ_k)_{k≥1} satisfies family of quadratic relations → L_∞-algebra structure on Γ(∧E),
- *invariant* of submanifolds of arbitrary Poisson manifolds, i.e. *M* need not be total space of a vector bundle over *S* (Cattaneo/S.),
- connection to the *deformation quantization* of coisotropic submanifolds (Cattaneo/Felder).

Recall:

- consider $\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^2, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y});$
- complex $K^{\bullet} \cong (\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^2(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]).$

Higher order operations \sim

$$\mathcal{C}^{\infty}(\mathbb{R})[0] \times \mathcal{C}^{\infty}(\mathbb{R})[-1] \times \mathcal{C}^{\infty}(\mathbb{R})[-1] \rightarrow \mathcal{C}^{\infty}(\mathbb{R})[-1]$$
$$(f, g, h) \mapsto \left(\frac{df}{dx}\right)gh.$$

What to do with this piece of data?

Recall:

- consider $\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^2, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y});$
- complex $\mathcal{K}^{\bullet} \cong (\mathcal{C}^{\infty}(\mathbb{R})[0] \xrightarrow{x^2(-)} \mathcal{C}^{\infty}(\mathbb{R})[-1]).$

Higher order operations ~>>

$$\mathcal{C}^{\infty}(\mathbb{R})[0] \times \mathcal{C}^{\infty}(\mathbb{R})[-1] \times \mathcal{C}^{\infty}(\mathbb{R})[-1] \rightarrow \mathcal{C}^{\infty}(\mathbb{R})[-1]$$

 $(f, g, h) \mapsto \left(\frac{df}{dx}\right)gh.$

What to do with this piece of data?

Aim: complex
$$(C^{\bullet}, d) := (\cdots \rightarrow C^k \xrightarrow{d^k} C^{k+1} \rightarrow \cdots);$$

groupoid: category all of whose morphisms are invertible,

- groupoid attached to (C^{\bullet}, d) :
 - objects: ker $(d^1 : C^1 \rightarrow C^2)$,
 - morphisms from *x* to *y*: { $v \in C^0 : y x = d^0(v)$ };
- set of isomorphisms classes is $H^1(C^{\bullet}, d)$.

Aim: complex
$$(C^{\bullet}, d) := (\cdots \rightarrow C^k \xrightarrow{d^k} C^{k+1} \rightarrow \cdots);$$

- groupoid: category all of whose morphisms are invertible,
- groupoid attached to (C^{\bullet}, d) :
 - objects: ker $(d^1 : C^1 \rightarrow C^2)$,
 - morphisms from *x* to *y*: { $v \in C^0 : y x = d^0(v)$ };
- set of isomorphisms classes is $H^1(C^{\bullet}, d)$.

Aim: complex
$$(C^{\bullet}, d) := (\cdots \rightarrow C^k \xrightarrow{d^k} C^{k+1} \rightarrow \cdots);$$

- groupoid: category all of whose morphisms are invertible,
- groupoid attached to (C^{\bullet}, d) :
 - objects: ker $(d^1 : C^1 \rightarrow C^2)$,
 - morphisms from x to y: { $v \in C^0 : y x = d^0(v)$ };

• set of isomorphisms classes is $H^1(C^{\bullet}, d)$.

Aim: complex
$$(C^{\bullet}, d) := (\cdots \rightarrow C^k \xrightarrow{d^k} C^{k+1} \rightarrow \cdots);$$

- groupoid: category all of whose morphisms are invertible,
- groupoid attached to (C^{\bullet}, d) :
 - objects: ker $(d^1 : C^1 \rightarrow C^2)$,
 - morphisms from *x* to *y*: { $v \in C^0 : y x = d^0(v)$ };
- set of isomorphisms classes is $H^1(C^{\bullet}, d)$.

Maurer–Cartan elements and gauge-action

- this interpretation of H¹(C, d) extends to complexes enriched by higher order operations!
- kernel of $d^1 : C^1 \to C^2$ replaced by *Maurer–Cartan elements*,
- action

$$egin{array}{rcl} C^0 imes \ker{(d^1:C^1
ightarrow C^2)}&
ightarrow \ker{(d^1:C^1
ightarrow C^2)},\ (v,x)&\mapsto x+d^0(v) \end{array}$$

replaced by the gauge-action.

Maurer–Cartan elements and gauge-action

- this interpretation of H¹(C, d) extends to complexes enriched by higher order operations!
- kernel of $d^1: C^1 \to C^2$ replaced by *Maurer–Cartan elements*,
- action

$$egin{array}{rcl} C^0 imes \ker{(d^1:C^1
ightarrow C^2)}&
ightarrow \ker{(d^1:C^1
ightarrow C^2)},\ (v,x)&\mapsto x+d^0(v) \end{array}$$

replaced by the gauge-action.

Maurer–Cartan elements and gauge-action

- this interpretation of H¹(C, d) extends to complexes enriched by higher order operations!
- kernel of $d^1: C^1 \to C^2$ replaced by *Maurer–Cartan elements*,
- action

$$egin{array}{rcl} C^0 imes ext{ker}\,(d^1:C^1 o C^2)&
ightarrow & ext{ker}\,(d^1:C^1 o C^2),\ (v,x)&\mapsto &x+d^0(v) \end{array}$$

replaced by the gauge-action.

- Maurer–Cartan elements: $C^{\infty}(\mathbb{R})$,
- gauge-action → equivalence relation on C[∞](ℝ): g ~ h :⇔ ∃ f & α ∈ C[∞]([0, 1] × ℝ) s.t.

•
$$f_0 := f|_{\{0\} \times \mathbb{R}} = 0, \, \alpha_0 = g, \, \alpha_1 = h,$$

differential equation:

$$\frac{\partial \alpha(t,x)}{\partial t} = \left(x^2 + \left[\frac{1}{2}\alpha^2(t,x)\right]\right) \frac{\partial f(t,x)}{\partial x}$$

- Maurer–Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action → equivalence relation on C[∞](ℝ): g ~ h :⇔ ∃ f & α ∈ C[∞]([0, 1] × ℝ) s.t.

•
$$f_0 := f|_{\{0\} \times \mathbb{R}} = 0, \, \alpha_0 = g, \, \alpha_1 = h,$$

differential equation:

$$\frac{\partial \alpha(t,x)}{\partial t} = \left(x^2 + \left[\frac{1}{2}\alpha^2(t,x)\right]\right) \frac{\partial f(t,x)}{\partial x}$$

- Maurer–Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action → equivalence relation on C[∞](ℝ):
 g ~ h :⇔ ∃ f & α ∈ C[∞]([0, 1] × ℝ) s.t.

•
$$f_0 := f|_{\{0\} \times \mathbb{R}} = 0, \, \alpha_0 = g, \, \alpha_1 = h,$$

differential equation:

$$\frac{\partial \alpha(t,x)}{\partial t} = \left(x^2 + \boxed{\frac{1}{2}\alpha^2(t,x)}\right) \frac{\partial f(t,x)}{\partial x}$$

- Maurer–Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action → equivalence relation on C[∞](ℝ): g ~ h :⇔ ∃ f & α ∈ C[∞]([0, 1] × ℝ) s.t.

•
$$f_0 := f|_{\{0\} \times \mathbb{R}} = 0, \, \alpha_0 = g, \, \alpha_1 = h,$$

differential equation:

$$\frac{\partial \alpha(t,x)}{\partial t} = \left(x^2 + \frac{1}{2}\alpha^2(t,x)\right) \frac{\partial f(t,x)}{\partial x}$$

Back to $\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^2, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}).$

- Maurer–Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action → equivalence relation on C[∞](ℝ): g ~ h :⇔ ∃ f & α ∈ C[∞]([0, 1] × ℝ) s.t.

•
$$f_0 := f|_{\{0\} \times \mathbb{R}} = 0, \, \alpha_0 = g, \, \alpha_1 = h,$$

differential equation:

$$\frac{\partial \alpha(t,x)}{\partial t} = \left(x^2 + \frac{1}{2}\alpha^2(t,x)\right) \frac{\partial f(t,x)}{\partial x}$$

• $\rightsquigarrow (\mathcal{C}^{\infty}(\mathbb{R})/\sim) \cong \{+\} \coprod \mathbb{R} \coprod \{-\},$ • this coincides with $\mathcal{M}(\mathbb{R}^2 \to \mathbb{R} \oplus 0, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y})!$ Back to $\mathbb{R} \oplus 0 \hookrightarrow (\mathbb{R}^2, (x^2 + y^2) \frac{\partial}{\partial x} \land \frac{\partial}{\partial y}).$

- Maurer–Cartan elements: $\mathcal{C}^{\infty}(\mathbb{R})$,
- gauge-action → equivalence relation on C[∞](ℝ): g ~ h :⇔ ∃ f & α ∈ C[∞]([0, 1] × ℝ) s.t.

•
$$f_0 := f|_{\{0\} \times \mathbb{R}} = 0, \, \alpha_0 = g, \, \alpha_1 = h,$$

differential equation:

$$\frac{\partial \alpha(t,x)}{\partial t} = \left(x^2 + \frac{1}{2}\alpha^2(t,x)\right) \frac{\partial f(t,x)}{\partial x}$$

• $\sim (\mathcal{C}^{\infty}(\mathbb{R})/\sim) \cong \{+\} \coprod \mathbb{R} \coprod \{-\},$

• this coincides with $\mathcal{M}(\mathbb{R}^2 \to \mathbb{R} \oplus 0, (x^2 + y^2) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})!$

- *convergence issues*: higher order operations $(\lambda_k)_{k\geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- → need some *completion* to define Maurer–Cartan elements and gauge-action,
- main problem: algebraic completion is formal!
- ~> homotopy Lie algebroid cannot distinguish

$$\{0\} \hookrightarrow (\mathbb{R}^2, 0) \text{ from } \{0\} \hookrightarrow (\mathbb{R}^2, e^{\left(-\frac{1}{x^2+y^2}\right)} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})!$$

- *convergence issues*: higher order operations $(\lambda_k)_{k\geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- → need some *completion* to define Maurer–Cartan elements and gauge-action,
- main problem: algebraic completion is formal!
- ~> homotopy Lie algebroid cannot distinguish

$$\{0\} \hookrightarrow (\mathbb{R}^2, 0) \text{ from } \{0\} \hookrightarrow (\mathbb{R}^2, e^{\left(-\frac{1}{x^2+y^2}\right)} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})!$$

- *convergence issues*: higher order operations $(\lambda_k)_{k\geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- → need some completion to define Maurer–Cartan elements and gauge-action,
- main problem: algebraic completion is formal!
- ~> homotopy Lie algebroid cannot distinguish

$$\{0\} \hookrightarrow (\mathbb{R}^2, 0) \text{ from } \{0\} \hookrightarrow (\mathbb{R}^2, e^{\left(-\frac{1}{x^2+y^2}\right)} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})!$$

- *convergence issues*: higher order operations $(\lambda_k)_{k\geq 1}$ on $\Gamma(\wedge E)$ can be nontrivial for infinitly many $k \geq 1$,
- → need some *completion* to define Maurer–Cartan elements and gauge-action,
- main problem: algebraic completion is formal!
- ~> homotopy Lie algebroid cannot distinguish

$$\{0\} \hookrightarrow (\mathbb{R}^2, 0) \text{ from } \{0\} \hookrightarrow (\mathbb{R}^2, e^{\left(-\frac{1}{x^2+y^2}\right)} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y})!$$

... goes back to **B**atalin/**F**radkin/**V**ilkovisky (motivated by physical applications)

S coisotropic submanifold of (E, π) , $E \rightarrow S$ vector bundle;

 \rightsquigarrow (*BFV*(*E*, π), *D* = [[Ω , \cdot]], [[\cdot , \cdot]]) with [[Ω , Ω]] = 0, differential graded Poisson algebra, i.e. algebraic structure satisfying rules similar to the ones satisfied by { \cdot , \cdot }

... goes back to **B**atalin/**F**radkin/**V**ilkovisky (motivated by physical applications)

S coisotropic submanifold of (E, π) , $E \rightarrow S$ vector bundle;

 \rightsquigarrow (*BFV*(*E*, π), *D* = [[Ω , \cdot]], [[\cdot , \cdot]]) with [[Ω , Ω]] = 0, differential graded Poisson algebra, i.e. algebraic structure satisfying rules similar to the ones satisfied by { \cdot , \cdot } ... goes back to **B**atalin/**F**radkin/**V**ilkovisky (motivated by physical applications)

S coisotropic submanifold of (E, π) , $E \rightarrow S$ vector bundle;

 \rightsquigarrow (*BFV*(*E*, π), *D* = [[Ω , \cdot]], [[\cdot , \cdot]]) with [[Ω , Ω]] = 0, differential graded Poisson algebra, i.e. algebraic structure satisfying rules similar to the ones satisfied by { \cdot , \cdot }

• $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$

 taking higher order operations into account needs more work... but can be done →

Theorem (*S.)*

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_{∞} -algebras,
- ∃ homotopy category of L_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

- $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$
- taking higher order operations into account needs more work... but can be done →

Theorem (*S.)*

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_{∞} -algebras,
- ∃ homotopy category of *L*_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

- $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$
- taking higher order operations into account needs more work... but can be done →

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_{∞} -algebras,
- ∃ homotopy category of *L*_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

- $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$
- taking higher order operations into account needs more work... but can be done →

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_∞-algebras,
- ∃ homotopy category of L_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

- $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$
- taking higher order operations into account needs more work... but can be done →

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_{∞} -algebras,
- ∃ homotopy category of L_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

- $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$
- taking higher order operations into account needs more work... but can be done →

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_{∞} -algebras,
- ∃ homotopy category of L_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

- $H^{\bullet}(\Gamma(\wedge E), \partial_{\pi}) \cong H^{\bullet}(BFV(E, \pi), D),$
- taking higher order operations into account needs more work... but can be done →

Theorem (S.)

The homotopy Lie algebroid and the BFV-complex are L_∞ quasi-isomorphic.

- structures cannot be isomorphic as L_{∞} -algebras,
- ∃ homotopy category of L_∞-algebras formally invert certain morphisms,
- in the homotopy category the two structures are isomorphic,
- morally: they are "isomorphic up to a coherent system of higher homotopies".

We had some *geometric questions* in mind:

• Q1) understand $C(E, \pi)$, set of coisotropic sections, i.e.

 $\{\mu \in \Gamma(E) : \text{graph}(\mu) \text{ coisotropic in } (E, \pi)\};$

- Q2) understand M(E, π), equivalence classes of elements in C(E, π),
- \rightsquigarrow *groupoid* $\hat{\mathcal{C}}(\boldsymbol{E},\pi)$ with
 - objects: $C(E, \pi)$,
 - isomorphism classes of objects: $\mathcal{M}(E, \pi)$,

 $\hat{\mathcal{C}}(E,\pi) \approx$ homotopy classes of smooth path in $\mathcal{C}(E,\pi)$, generated by Hamiltonian diffeomorphisms.

We had some *geometric questions* in mind:

• Q1) understand $C(E, \pi)$, set of coisotropic sections, i.e.

 $\{\mu \in \Gamma(E) : \text{graph}(\mu) \text{ coisotropic in } (E, \pi)\};$

- Q2) understand M(E, π), equivalence classes of elements in C(E, π),
- \rightsquigarrow *groupoid* $\hat{\mathcal{C}}(\boldsymbol{E},\pi)$ with
 - objects: $C(E, \pi)$,
 - isomorphism classes of objects: $\mathcal{M}(E, \pi)$,

 $\hat{\mathcal{C}}(E,\pi) \approx$ homotopy classes of smooth path in $\mathcal{C}(E,\pi)$, generated by Hamiltonian diffeomorphisms.

We had some *geometric questions* in mind:

• Q1) understand $C(E, \pi)$, set of coisotropic sections, i.e.

 $\{\mu \in \Gamma(E) : \text{graph}(\mu) \text{ coisotropic in } (E, \pi)\};$

- Q2) understand M(E, π), equivalence classes of elements in C(E, π),
- \rightsquigarrow groupoid $\hat{\mathcal{C}}(m{E},\pi)$ with
 - objects: $C(E, \pi)$,
 - isomorphism classes of objects: $\mathcal{M}(E, \pi)$,

 $\hat{\mathcal{C}}(E,\pi) \approx$ homotopy classes of smooth path in $\mathcal{C}(E,\pi)$, generated by Hamiltonian diffeomorphisms.

We had some *geometric questions* in mind:

• Q1) understand $C(E, \pi)$, set of coisotropic sections, i.e.

 $\{\mu \in \Gamma(E) : \text{graph}(\mu) \text{ coisotropic in } (E, \pi)\};$

- Q2) understand M(E, π), equivalence classes of elements in C(E, π),
- \rightsquigarrow *groupoid* $\hat{\mathcal{C}}(\boldsymbol{E}, \pi)$ with
 - objects: C(E, π),
 - isomorphism classes of objects: $\mathcal{M}(E, \pi)$,

 $\hat{C}(E, \pi) \approx$ homotopy classes of smooth path in $C(E, \pi)$, generated by Hamiltonian diffeomorphisms.

Theorem (S.)

S coisotropic submanifold of (E, π) , $E \to S$ vector bundle; 1.) Groupoid $\hat{D}_{geo}(E, \pi)$:

 objects: D_{geo}(E, π) ∋ certain Maurer-Cartan elements of the BFV-complex,

X Maurer–Cartan element \Leftrightarrow [[$\Omega + X, \Omega + X$]] = 0.

• morphisms: homotopy classes of smooth "paths" in $\mathcal{D}_{geo}(E, \pi)$ generated by gauge-transformations.

2.) \exists morphism of groupoids $\phi : \hat{D}_{geo}(E, \pi) \to \hat{C}(E, \pi)$, surjective on objects and on all hom-sets. 3.) Kernel of ϕ can be characterized in terms of the BFV-complex.

Theorem (S.)

S coisotropic submanifold of (E, π) , $E \to S$ vector bundle; 1.) Groupoid $\hat{D}_{geo}(E, \pi)$:

 objects: D_{geo}(E, π) ∋ certain Maurer-Cartan elements of the BFV-complex,

X Maurer–Cartan element $\Leftrightarrow [[\Omega + X, \Omega + X]] = 0.$

• morphisms: homotopy classes of smooth "paths" in $\mathcal{D}_{geo}(E, \pi)$ generated by gauge-transformations.

2.) \exists morphism of groupoids $\phi : \hat{D}_{geo}(E, \pi) \rightarrow \hat{C}(E, \pi)$, surjective on objects and on all hom-sets.

3.) Kernel of ϕ can be characterized in terms of the BFV-complex.

Theorem (S.)

S coisotropic submanifold of (E, π) , $E \to S$ vector bundle; 1.) Groupoid $\hat{D}_{geo}(E, \pi)$:

 objects: D_{geo}(E, π) ∋ certain Maurer-Cartan elements of the BFV-complex,

X Maurer–Cartan element $\Leftrightarrow [[\Omega + X, \Omega + X]] = 0.$

• morphisms: homotopy classes of smooth "paths" in $\mathcal{D}_{geo}(E,\pi)$ generated by gauge-transformations.

2.) \exists morphism of groupoids $\phi : \hat{D}_{geo}(E, \pi) \to \hat{C}(E, \pi)$, surjective on objects and on all hom-sets. 3.) Kernel of ϕ can be characterized in terms of the BFV-complex.

Corollary

•
$$\hat{\mathcal{D}}_{geo}(\boldsymbol{E},\pi)/\ker\phi\cong\hat{\mathcal{C}}(\boldsymbol{E},\pi)$$
,

(set of isomorphism classes of objects of D̂_{geo}(E, π)) ≃
 (set of isomorphism classes of objects of Ĉ(E, π)) =
 M(E, π).

This achieves a description of the *groupoid* $\hat{C}(E, \pi)$and hence of the sets $C(E, \pi)$ and $\mathcal{M}(E, \pi)$.

Corollary

•
$$\hat{\mathcal{D}}_{geo}(\boldsymbol{E},\pi)/\ker\phi\cong\hat{\mathcal{C}}(\boldsymbol{E},\pi)$$
,

(set of isomorphism classes of objects of D̂_{geo}(E, π)) ≅
 (set of isomorphism classes of objects of Ĉ(E, π)) =
 M(E, π).

This achieves a description of the *groupoid* $\hat{C}(E, \pi)$and hence of the sets $C(E, \pi)$ and $\mathcal{M}(E, \pi)$. More structure:

- topology on Γ(E) induces one on C(E, π) and M(E, π), when is M(E, π) Hausdorff, locally path-connected,...?
- Γ(E) regarded as a ∞ dim. manifold, when does this structure descend to C(E, π) or M(E, π)?

Applications? Algebraic condition in terms of (BFV(E), D, [[\cdot , \cdot]]) that implies stability, *i.e.* $\mathcal{M}(E, \pi) \cong \{*\}$? More structure:

- topology on Γ(E) induces one on C(E, π) and M(E, π), when is M(E, π) Hausdorff, locally path-connected,...?
- Γ(E) regarded as a ∞ dim. manifold, when does this structure descend to C(E, π) or M(E, π)?

Applications? Algebraic condition in terms of $(BFV(E), D, [[\cdot, \cdot]])$ that implies stability, *i.e.* $\mathcal{M}(E, \pi) \cong \{*\}$?