Lie theory for representations up to homotopy

Florian Schätz

Departamento de Matemática, Instituto Superior Técnico

June 13th, 2011

Florian Schätz Lie theory for representations up to homotopy

...based on joint work with C. Arias Abad (University of Zurich)

Plan:

- Representations up to homotopy
- 2 Differentiation
- Integration
- Torsion

(A Lie algebroid, G Lie groupoid, both over M)

representation of A := flat A-connection ∇ on vector bundle E

representation of *G* := smooth functor $\lambda : G \rightarrow \mathfrak{gl}(E)$

 \rightsquigarrow good Lie theory

drawback: too few objects!

e.g.:

- for A = TM, topological obstructions,
- no good candidate for ad(A) (ad(G)) as a rep. of A (G)!

 \rightsquigarrow relax notion of representation...

notice:

representation of A on $E \leftrightarrow$ differential on $\Omega^{\bullet}(A, E)$ representation of G on $E \leftrightarrow$ differential on $C^{\bullet}(G, E)$

Definition

representations up to homotopy := same as RHS above, but allow *E* to be graded vector bundle Fundamental examples of rep. up to homotopy:

- (ordinary) representations,
- flat Z-graded connections,
- ∃ essentially unique and well-behaved ad(A) and ad(G) (see work by Arias Abad and Crainic)

from now on: A = Lie(G)

differentiation \Rightarrow

Theorem

• \exists natural (dg-) functor ψ

(rep. up to homotopy of G) \rightarrow (rep. up to homotopy of A).

• Corresponding chain map

$$\psi: C^{\bullet}(G, E) \to \Omega^{\bullet}(A, E)$$

induces isomorphism on cohomology in certain degrees.

(generalizing work of van Est, Weinstein/Xu, Crainic,...)

• implication (conjectured by Crainic/Moerdijk):

Corollary

Second deformation cohomology of Lie algebroid integrating to a proper source-2-connected Lie groupoid vanishes.

(generalizing $H^2(\mathfrak{g},\mathfrak{g}) = 0$ for \mathfrak{g} semi-simple of compact type)

• for (ordinary) representations:

G s-1- connected \Rightarrow differentiation functor is surjective this fails for rep.s up to homotopy \rightsquigarrow

how to integrate? where to?

consider A = TM

- integration functor ∫
 (flat connection on *E*) → (representations of π₁(*M*)),
 in terms of holonomies
- K. Igusa extended ∇ → Hol_∇ to Z-graded connections, crucial: holonomies for higher dim. simplices appear!
- flatness of \mathbb{Z} -graded connection $D \Rightarrow$

coherence equations for Hol_D ,

e.g.

formalization of Igusa's construction:

• replace $\pi_1(M)$ by simplicial set $\pi_\infty(M)$ with *k*-simplices

$$\{\sigma: \Delta_k \to M\},\$$

- replace rep. (of π₁(M)) by rep. up to homotopy (of π_∞(M)):
 rep. up to homotopy can be defined in terms of nerve NG
 → def. generalizes to simplicial sets
 → notion of rep. up to homotopy of π_∞(M)
- Igusa's construction as a map

(rep.s up to homotopy of TM) \rightarrow (rep.s up to homotopy of $\pi_{\infty}(M)$)

extending to morphisms and arbitrary Lie algebroids yields

Theorem

 \exists natural A_{∞} -functor of dg-categories

 $\int : (rep.s up to homotopy of A) \to (rep. up to homotopy of \pi_{\infty}(A)),$

generalizing usual integration

(representations of A) \rightarrow (representations of $G = \pi_1(A)$).

Here $\pi_{\infty}(A) :=$ simplicial set with k-simplices { $\sigma : T\Delta_k \to A$ }.

main contributions: K. Igusa, Block / Smith, Arias Abad / S., relying on work of: K.T. Chen, V.K.A.M. Gugenheim

classical invariant in topology (distinguishes lens spaces) focus on closed manifold M of odd dimension real coefficients \rightarrow torsion comes in two flavours:

	Ray-Singer torsion	Reidemeister torsion
nature:	norm τ_1 on det $H(M)$	norm τ_2 on det $H(M)$
flavour:	analytic	combinatorial
uses:	Hodge-theory for $\Omega(M)$	Hodge-theory for $C^{\bullet}_{\mathcal{K}}(M)$
crucial:	ζ -regularized det. of Δ	smooth triangulation K

- Theorem of Cheeger-Müller: $\tau_1 = \tau_2$.
- Def. and Theorem extend to non-trivial coefficents systems, i.e. vector bundles with flat connections.

extensions to flat \mathbb{Z} - or \mathbb{Z}_2 -graded connections:

Analytic approach:

- analytic approach extended to flat Z-graded connections early on (Quillen, Bismuth/Lott,...)
- Z₂-graded case more subtle, Mathai/Wu (2008),
 e.g. *H* closed 3-form on *M* →

twisted cohomology $H(\Omega(M), d + H \wedge)$

Combinatorial approach:

using integration result for rep.s up to homotopy \rightsquigarrow

input: triangulation K and flat superconnection D on E

output: finite-dim. complex $C_{\mathcal{K}}(M, E)$ computing H(M, E)applying Hodge-theory to $C_{\mathcal{K}}(M, E) \rightsquigarrow$

combinatorial torsion for flat superconnections

Thank you!

Florian Schätz Lie theory for representations up to homotopy