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Synopsis

The object of primary interest of this thesis is a certain algebraic structure —
known as the BFV-complex — associated to coisotropic submanifolds of Poisson
manifolds. Coisotropic submanifolds form a natural class of subobjects of Poisson
manifolds, e.g. Lagrangian submanifolds of symplectic manifolds, hypersurfaces,
Lie subalgebras and graphs of Poisson maps yield examples of coisotropic subma-
nifolds. Moreover, it was recently realized that coisotropic submanifolds arise in
the study of physical objects known as “branes” in the framework of topological
string theory ([KO]) and the Poisson sigma model ([CF2]). Any coisotropic sub-
manifold comes along with a foliation and a certain quotient algebra which carries
the structure of a Poisson algebra. There are two cochain complexes whose zero’th
cohomologies are isomorphic to the quotient algebra: the Lie algebroid complex
(see [Mc]) , and the BFV-complex (see [BF] and [BV]) respectively. Moreover it
is well-known that the cohomologies of both complexes match in all degrees.

In [OP] and [CF] the Lie algebroid complex was enriched by higher order ope-
rations that encode the Poisson bracket on the quotient algebra. The higher or-
der operations are not natural but depend on certain choices. However, we prove
that different choices lead to isomorphic structures. On the other hand the BFV-
complex carries the structure of a graded Poisson algebra which also encodes the
Poisson bracket on the quotient algebra. The question arises how tightly the Lie
algebroid complex enriched by higher order operations on the one hand and the
algebraic structure on the BFV-complex on the other hand are related. We give
an affirmative answer to this question by proving that these two structures are
“isomorphic up to homotopy” — more technically speaking, they are L., quasi-
isomorphic.

Although the two structures described above are tightly related, there are some
subtle difference between them. While the enriched Lie algebroid complex only
captures information about the jets of the Poisson structure on the coisotropic
submanifold under investigation, the BFV-complex yields an invariant that de-
pends on the germ of the Poisson structure. This has drastic consequence for the
associated smooth deformation problems: it is possible to understand the nearby
deformations of the coisotropic submanifold with the help of the BFV-complex,
while this is not possible in general if one uses the enriched Lie algebroid complex
instead.

Let L be a Lagrangian submanifold of a symplectic manifold. As mentioned above,
Lagrangian submanifolds are special cases of coisotropic submanifolds. It is well-
known that the space of Lagrangian submanifolds near L is described by the
de Rham complex of L. Moreover the moduli space of Lagrangian submanifolds
near L corresponds to H'(L,R). One can try to generalize this in two ways. On
the one hand, one can try to incorporate effects of a global nature. This is usually
done by “counting” pseudo-holomorphic objects. This idea goes back to Gromov
([Gr]) and Floer ([F1]) and was developed into a full-fledged theory in [FOOO|.



On the other hand, one can try to understand the local deformation problem of
more general objects than Lagrangian submanifolds. The deformation problem of
coisotropic submanifolds of symplectic manifolds was considered in [OP] and a de-
scription of nearby coisotropic submanifolds in terms of the enriched Lie algebroid
complex was given. However, this connection between the deformation problem
of coisotropic submanifolds and the enriched Lie algebroid complex fails in the
category of Poisson manifolds.

We give a description of the set of nearby coisotropic submanifolds with the help
of the BFV-complex, which holds even for coisotropic submanifolds of Poisson
manifolds. Moreover a “categorification” of the moduli space of nearby coisotropic
submanifolds is introduced. This yields a certain groupoid. A second groupoid is
constructed using data of the BFV-complex only. Moreover this groupoid comes
along with a natural surjective morphism to the groupoid of nearby coisotropic
submanifolds. The kernel of this morphism can be described in terms of the BF'V-
complex and as a corollary we obtain a bijection between the moduli space of
nearby coisotropic sections and the moduli space of certain Maurer—Cartan ele-
ments of the BFV-complex.

The connection between the two groupoids mentioned above can be read in two
directions. First it provides a new approach to the deformation problem of coiso-
tropic submanifolds. Second it clarifies the geometric information encoded in the
BFV-complex which is usually introduced as the starting point for a very different
problem: the (geometric or deformation) quantization of coisotropic submanifolds.

For a more detailed exposition of the content of this thesis, we refer the reader to
the Introduction, see Chapter 1.

Parts of the material presented here appeared in [Schl], [Sch2]| and [Sch3] and
in the joint article [CS] with Cattaneo respectively.

The structure of this thesis is a follows: In Chapter 1 we give a introduction to
the thesis. We briefly explain the most relevant concepts — Poisson manifolds,
Hamiltonian diffeomorphisms, and coisotropic submanifolds — and state the main
motivating problem: to find a description of the set of coisotropic submanifolds
near a given one. In examples we demonstrate the connection to the Lie algebro-
id complex and the homotopy Lie algebroid. Both structures contain important
information but are not sufficient to solve the main problem. Finally we give a
rough description of the BFV-complex and explain how one can solve the main
problem with its help.

In Chapter 2 we introduce the necessary background material. In particular we
recall the basic definitions concerning L..-algebras (Section 1), explain the transfer
of differential graded Lie algebras along contractions (Section 2), give an account of
the higher derived brackets formalism (Section 3) and explain parts of the theory
of smooth graded manifolds (Section 4).

Chapter 3 covers basic facts about Poisson geometry (Section 1), introduces coi-
sotropic submanifolds (Section 2) and explains the construction of the enriched
Lie algebroid complex (Section 3).



In Chapter 4 we introduce the BFV-complex and establish some of its properties.
As a preparation we construct a certain L., quasi-isomorphism from the space of
multivector fields on a manifold M to the space of multivector fields on a smooth
graded manifold with body M. In Section 2 we use this L., quasi-isomorphism
to give a conceptual construction of the BEF'V-bracket. Moreover we recall the
construction of a differential on the BFV-complex. This differential and the BF'V-
bracket equip the BFV-complex with the structure of a differential graded Poisson
algebra. The dependence of this algebraic structure on the choices involved in its
construction is clarified. In Section 3 the connection between the BFV-complex
on the one hand and the enriched Lie algebroid complex on the other hand is
established, see Theorem 3.6.

The geometric content of the BFV-complex is investigated in more detail in Chap-
ter 5. The BFV-complex comes along with a certain equation — called the Maurer—
Cartan equation — and we study the set of solutions of this equation in Section 1.
It turns out that this set is tightly related to the set of coisotropic sections, see
Theorem 1.13. In Section 2 we take the inner symmetries of the Poisson manifold
and of the differential graded Poisson algebra structure on the BFV-complex into
account. We conclude with Theorem 2.25 where the moduli space of coisotropic
sections is identified with the moduli space of certain Maurer—Cartan elements of
the BFV-complex. In Section 3 this relation is “categorified” and extended to the
level of groupoids.

Finally Chapter 6 contains the proofs of various facts that we use in the main
body of the text but that would have disturbed the main line of argument there.

More detailed information can be found in the introduction to the individual
Chapters where we also give references to the literature.



Zusammenfassung

Koisotrope Untermannigfaltigkeiten bilden eine natiirliche Klasse von Unterobjek-
ten von Poisson Mannigfaltigkeiten; so liefern etwa Lagrangesche Untermannigfal-
tigkeiten von symplektischen Mannigfaltigkeiten, Hyperflichen, Lie Unteralgebren
und Graphen von Poisson-Abbildungen Beispiele von koisotroper Untermannigfal-
tigkeiten. Ausserdem hat sich in herausgestellt, dass koisotrope Untermannigfaltig-
keiten bei der Untersuchung gewisser physikalischer Objekte — genannt “branes”
— in der topologischen Stringtheorie ([KOJ) beziehungsweise im Poisson Sigma
Modell ([CF]) eine wichtige Rolle spielen. Zu jeder koisotropen Untermannig-
faltigkeit gehort eine Blétterung und eine gewisse Quotientenalgebra, welche die
Struktur einer Poisson Algebra tréigt. Es sind zwei Koketten-Komplexe bekannt,
deren nullte Kohomologien isomorph zu der Quotientenalgebra sind: der Lie Al-
gebroid Komplex (siche [Mc]) und der BFV-Komplex (sieche [BF] und [BV]).
Die Kohomologien der beiden Komplexe stimmt in allen Graden miteinerander
iiberein.

In [OP] und [CF] wurde der Lie Algebroid Komplex mit héheren Operationen
ausgestattet, welche die Poisson Klammer auf der Quotientenalgebra kodieren.
Diese hoheren Operationen sind nicht natiirlich und héngen von gewissen Wahlen
ab. Wir zeigen, dass unterschiedliche Wahlen zu isomorphen Strukturen fiihren.
Ausserdem ist der BFV-Komplex mit der Struktur einer graduierten Poisson Al-
gebra ausgestattet, welche auch die Poisson Klammer auf der Quotientenalgebra
kodiert. Es stellt sich die Frage, inwieweit der Lie Algebroid Komplex ausgestat-
tet mit den hoheren Operationen einerseits und die algebraische Struktur auf dem
BFV-Komplex andererseits zusammenhéngen. Wir beantworten diese Frage, in-
dem wir beweisen, dass die beiden Strukturen ”isomorph bis auf Homotopie” —
oder L., quasi-isomorph — sind.

Obwohl die beiden Strukturen also eng miteinander verbunden sind, gibt es sub-
tile Unterschiede zwischen ihnen. Wéhrend der Lie Algebroid Komplex mit den
hoheren Operationen nur Informationen iiber die Jets der Poisson Struktur auf der
gegebenen koisotropen Untermannigfaltigkeit beinhaltet, liefert der BFV-Komplex
eine Invariante, die vom Keim der Poisson Struktur abhéngt. Das hat drastische
Konsequenzen fiir die assozierten glatten Deformationsprobleme: es ist moglich,
kleine Deformationen der koisotropen Untermannigfaltigkeit mit Hilfe des BFV-
Komplexes zu verstehen — wihrend das im Allgemeinen nicht mit Hilfe des Lie
Algebroid Komplex und dessen hoheren Operationen moglich ist.

Sei L eine Lagrangsche Untermannigfaltigkeit einer symplektischen Mannigfal-
tigkeit. Wie bereits bemerkt sind Lagrangsche Untermannigfaltigkeiten Beispiele
von koisotropen Untermannigfaltigkeiten. Es ist bekannt, dass der Raum der La-
grangschen Untermannigfaltigkeiten nahe L durch den de Rham Komplex von L
beschrieben wird. Ausserdem wird der Modulraum der Lagrangschen Unterman-
nigfaltigkeiten nahe L durch H'(L,R) beschrieben. Man kann versuchen, diese
Aussagen in zwei Richtungen zu erweitern. Einerseits kann man versuchen, glo-
bale Effekte zu verstehen. Hierbei verwendet man zumeist pseudo-holomorphe



Objekte. Diese Idee geht auf Gromov ([Gr]) und Floer ([Fl]) zuriick und wurde
in [FOOO)] zu einer vollsténdigen Theorie entwickelt.

Andererseits kann man versuchen, das lokale Deformationsproblem fiir Unter-
mannigfaltigkeiten, die allgemeiner als Lagrangsche Untermannigfaltigkeiten sind,
zu verstehen. Das Deformationsproblem koisotroper Untermannigfaltigkeiten von
symplektischen Mannigfaltigkeiten wurde in [OP] untersucht und eine Beschrei-
bung von kleinen Deformationen mit Hilfe des Lie Algebroid Komplexes und sei-
nen hoheren Operationen wurde geliefert. Allerdings gilt diese Beziehung zwischen
dem Deformationsproblem koisotroper Untermannigfaltigkeiten und dem Lie Al-
gebroid Komplex mit hoheren Operationen nicht in der Kategorie der Poisson
Mannigfaltigkeiten.

Wir beschreiben die Menge der koisotropen Untermannigfaltigkeiten nahe einer
vorgegeben mit Hilfe des BF'V-Komplexes — diese Beschreibung ist sogar fiir koiso-
trope Untermannigfaltigkeiten von Poisson Mannigfaltigkeiten giiltig. Ausserdem
wird eine ”Kategorifizierung” des Modulraums von koisotropen Untermannigfal-
tigkeiten nahe einer vorgegebene eingefiihrt. Dies liefert ein gewisses Groupoid.
Mit Hilfe des BFV-Komplexes wird ein anderes Groupoid konstruiert. Es gibt
einen surjektiven Morphismus von diesem zweiten Groupoid in das Groupoid, das
die kleinen Deformationen der koisotropen Untermannigfaltigkeit beschreibt. Der
Kern des Morphismuses kann mit Hilfe des BF'V-Komplexes einfach charakterisiert
werden und als Korollar erhélten wir eine Bijektion zwischen dem Modulraum der
kleinen Deformationen und dem Modulraum gewisser Maurer-Cartan Elemente
des BFV-Komplexes.

Die Verbindung zwischen den beiden oben erwéhnten Groupoiden kann auf zwei
Arten interpretiert werden. Erstens liefert sie einen neuen Zugang zum Deforma-
tionsproblem koisotroper Untermannigfaltigkeiten. Zweitens hilft sie, den geome-
trischen Inhalt des BFV-Komplexes zu verstehen. Hier ist anzumerken, dass der
BFV-Komplex gewohnlicherweise als Startpunkt fiir die Konstruktion einer (geo-
metrischen oder Deformations-) Quantisierung von koisotropen Untermannigfal-
tigkeiten betrachtet wird — ein Problem, dass nicht direkt mit dem geometrischen
Deformationsproblem zu tun hat.

Fiir eine detailliertere Beschreibung der Dissertation verweisen wir auf die Einlei-
tung, siehe Kapitel 1.

Teile des hier beschriebenen Ergebnisse sind in [Schl], [Sch2] und [Sch3] sowie
der gemeinsamen Arbeit [CS] mit Cattaneo erschienen.

Die Dissertation ist wie folgt aufgebaut: Kapitel 1 enthélt eine Einfiihrung in
die Dissertation. Wir erkédren kurz die wichtisten Konzepte — Poisson Mannigfal-
tigkeiten, Hamiltonische Diffeomorphismen und koisotropic Untermannigfaltigkei-
ten — und formulieren das Hauptproblem, namlich eine Beschreibung der Menge
der koisotropen Untermannigfaltigkeiten nahe einer gegebenen zu finden. An Bei-
spielen demonstrieren wir die Verbindung zum Lie Algebroid Komplex und zu
den hohreren Operationen, die man auf dem Lie Algebroid Komplex konstruie-
ren kann. Beide Strukturen enhalten wichtige Information, aber reichen nicht aus,



das Hauptproblem zu 16sen. Schlussendlich geben wir eine grobe Beschreibung des
BFV-Komplexes und erkéren, wie man mit seiner Hilfe das Hauptproblem l6sen
kann.

In Kapitel 2 wird das nétige Hintergrundmaterial erldutert. Insbesondere erin-
nern wir an die grundlegenden Definitionen im Zusammenhang mit L..-Algebren
(Abschnitt 1), erkédren den Transfer von L.-Algebren entlang von Kontraktionen
(Abschnitt 2), beschreiben den ”higher derived brackets”-Formalismus (Abschnitt
3) und fiiheren Teile der Theorie der glatten graduierten Mannigfaltigkeiten ein
(Abschnitt 4).

In Kapitel 3 werde grundlegenden Tatsachen aus der Poisson Geometrie behandelt
(Abschnitt 1), koisotrope Untermannigfaltigkeiten eingefiihrt (Abschnitt 2) und
die Konstruktion der hohren Operationen auf dem Lie Algebroid Komplex erklart.

Kapitel 4 beinhaltet eine Einfithrung in die Konstruktion des BFV-Komplexes so-
wie einige seiner Eigenschaften. Als Vorbereitung konstruieren wir einen gewissen
L., Quasi-isomorphismus vom Raum der Multivektorfelder auf einer Mannigfal-
tigkeit M in den Raum der Multivektorfelder auf einer gewissen glatten gradu-
ierten Mannigfaltigkeit iiber M. In Abschnitt 2 verwenden wir diesen L., Quasi-
Isomorphismus fiir eine konzeptuelle Konstruktion der BFV-Klammer. Ausserdem
erlautern wir die Konstruktion eines Differentials auf dem BFV-Komplex. Dieses
Differential und die BFV-Klammer statten den BFV-Komplex mit der Struktur
einer differentiell graduierten Poisson Algebra aus. Die Abhéngigkeit dieser alge-
braischen Struktur von den Wahlen, welche in ihrer Konstruktion involviert sind,
wird geklart. In Abschnitt 3 wird die Verbindung zwischen dem BFV-Komplex
einerseits und dem Lie Algebroid Komplex mit hoheren Operationen andererseits
hergestellt (Theorem 3.6).

Der geometrische Inhalt des BFV-Komplexes wird in Kapitel 5 eingehender un-
tersucht. Der BFV-Komplex liefert eine gewisse Gleichung — Maurer—Cartan Glei-
chung genannt — und wir untersuchen die Menge der Losungen dieser Gleichung
in Abschnitt 1. Es zeigt sich, dass es einen Zusammenhang zwischen dieser Menge
und der Menge der sogenannten koisotropen Schnitte gibt (Theorem 1.13). In Ab-
schnitt 2 beziehen wir die inneren Symmetrien der Poisson Mannigfaltigkeit und
der differentiall graduierten Poisson Algebra Struktur auf dem BFV-Komplex in
unsere Untersuchungen mit ein. Dies fiithrt zu Theorem 2.25 in dem der Modulraum
von koisotropen Schnitten mit dem Modulraum gewisser Maurer—Cartan Elemen-
te identifiziert wird. In Abschnitt 3 wird dieser Zusammenhang ”kategorifiziert”
und auf Groupoide ausgedehnt.

Kapitel 6 beinhaltet schlussendlich die Beweise verschiedener Aussagen, welche
wir im Hauptteil des Textes anwenden, aber deren Aufnahme in den Hauptteil
unsere Argumentationsliene zu sehr gestort hétte.

Detaillierte Angaben finden sich in der Einleitung der unterschiedlichen Kapitel,
wo wir auch Verweise zur bestehenden Literatur geben.
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CHAPTER 1

Introduction

1. Geometric Background

This thesis is about algebraic structures — and their geometric content — associated
to coisotropic submanifolds of Poisson manifolds.

A Poisson manifold is a manifold M equipped with an additional structure, a
Poisson bivector field I1. Poisson bivector fields are sections of A*T'M that satisfy
a certain integrability condition. One way to express this condition is to require
that the Poisson bracket associated to II via

{dm: C°(M) x C*(M) — C*(M), (f,g9) —<m,dprf Ndprg >

equips the algebra of smooth function C* (M) with the structure of a Lie algebra.
This means that {-, - }1 is bilinear, skew-symmetric and satisfies the Jacobi identity,
ie.

il hynn = {{f, 9w, bt + {9, {f, hlutn
holds for all smooth functions f, g and h.

The following list of Poisson bivector fields and Poisson manifolds respectively is
intended to give the reader a flavor of what kind of objects live in the “Poisson
world”:

(a) the zero section 0 € T'(A*T'M) is always a Poisson bivector field on M,

(b) let ¥ be a two dimensional manifold; any section of A*T'Y is a Poisson
bivector field,

(c) let g be a finite dimensional Lie algebra over R; the linear dual g* carries
a natural linear Poisson bivector field which encodes the Lie bracket on

g,
(d) any symplectic manifold (M,w) yields a Poisson manifold.

Coisotropic submanifolds constitute a natural class of submanifolds of Poisson
manifolds. Let (M,II) be a manifold equipped with a Poisson bivector field II.
The vanishing ideal of a submanifold S of M is the multiplicative ideal

Z(S) = A{f € C*(M) : fls = 0}

1
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of C>*(M). The submanifold S is coisotropic if and only if the vanishing ideal of
S in M is a Lie subalgebra of (C*(M),{-, }n), i.e.

{Z(5), Z(5)}u C Z(5).

Observe that the condition on the ideal Z(S) also arises in the theory of inte-
grable Hamiltonian systems: assume we are given a system of constants of mo-
tions {fi,..., fn} which are in involution. Then the ideal Z(f1,..., f.) generated

by {fi,..., fn} satisfies
{Z(f1,- s [o)s Z(f1y o ) dn CTZ(f1y- -y fr)-

It follows that whenever certain non-degeneracy conditions are satisfied, the zero
set of {f1,..., fu} is a coisotropic submanifold.

Other examples of coisotropic submanifolds are listed below:

(a) any submanifold of (M, 0) is coisotropic,

(b) any open subset of a Poisson manifold (M, II) is coisotropic — in particular
that applies to M itself,

(¢) any codimension 1 submanifold of a Poisson manifold (M, IT) is coisotropic,

(d) a point = € (M,II) is coisotropic if and only if II, = 0,

(e) let g be a finite dimensional Lie algebra over R; a linear subspace b of g is
a Lie subalgebra of g if and only if the annihilator h° of b is a coisotropic
submanifold of g*,

(f) Lagrangian submanifolds of symplectic manifolds are always coisotropic
submanifolds.

Given a Poisson manifold (M, IT), one might wonder what the space of all coisotropic
submanifolds contained in (M, IT) looks like. To render this problem more tractable,
we will restrict our attention to a small part of this question. First, we are only

interested in coisotropic submanifolds “near” a given one. More technically speak-

ing, this amounts to “linearizing” M near S, i.e. we choose an embedding of the

normal bundle of S into M and assume from now on that M is the total space

of a vector bundle £ — S. Second, we restrict our attention to a special class of

submanifolds of M, namely those which arise as graphs of sections of £. A section

w € I'(E) is called coisotropic if its graph is a coisotropic submanifold of (£, II)

and we denote the set of coisotropic sections by C(E,II). Our initial question

simplifies to:

Given (E,1I), what is a good way to describe C(E,I1) and what are its properties?

The above considerations do not account for the important fact that every Poisson
manifold comes along with a special group of symmetries, the group of Hamiltonian
diffeomorphisms. These are diffeomorphisms arising as flows of Hamiltonian vector
fields: If {-, -} is the Poisson bracket corresponding to a Poisson bivector field I1
on M, every smooth function f yields a derivation Dy of C®(M) via

Dy :C*(M) — C*(M),  Dy(g) :={f g}n.
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It is well-known that derivations of C>°(M) are in one-to-one correspondence with
vector fields on M. The vector field corresponding to Dy is the Hamiltonian vector
field associated to f.

Hamiltonian diffeomorphisms map coisotropic submanifolds to coisotropic sub-
manifolds and hence the group of Hamiltonian diffeomorphisms acts on the set
of all coisotropic submanifolds. From the geometric point of view two coisotropic
submanifolds should be considered equivalent if there is a Hamiltonian diffeomor-
phisms mapping one to the other, i.e. one should try to understand the quotient
of the set of coisotropic submanifolds under the action of Hamiltonian diffeomor-
phisms. If we translate this into our framework, we obtain an equivalence relation
~y on the set of coisotropic sections C(E,II). We denote the set of equivalence
classes by M(FE,II) and call it the modular space of coisotropic sections. We arrive
at a new problem:

Given (E,11), what is a good way to describe M(E,11) and what are its
properties?

2. Some Examples

First we consider two simple examples of coisotropic submanifolds of Poisson man-
ifolds where the set of coisotropic sections and the corresponding moduli space can
be easily computed.

Let g be a finite dimensional Lie algebra over R. The origin is always a coisotropic
submanifold of g* and g* is already a vector bundle over {0} since g* is a vector
space. As remarked before, a point £ € g* is a coisotropic submanifold if and only
if the Poisson bivector field vanishes at &. It is easy to check this is the case if
and only if £ € g* annihilates all elements of the form [z, y] for  and y in g. This
means that ¢ is an element of the annihilator ([g, g])° of [g, g]. Consequently we
obtain

Clg" — {0}, lg) = ([g,0])°.
Vanishing of the Poisson bivector field at a point y implies that all Hamiltonian
vector fields vanish at y too. Hence every Hamiltonian diffeomorphism leaves such
points invariant and consequently points that are coisotropic submanifolds cannot
be moved by Hamiltonian diffeomorphisms. So one obtains

M(g" — {0}, g) = ([g, 9])°.

Another basic example is the z-axis R x {0} as a coisotropic submanifold of
(R%, 2 A 8%). Recall that in dimension 2 every bivector field is Poisson and that
every codimension 1 submanifold is automatically coisotropic. We consider R? as

a vector bundle over R x {0} and sections of that bundle are just smooth functions
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on R x {0} = R. Since the graph of such a function is again of codimension 1 and
hence coisotropic, we obtain

C(R? — R x {0}, % A (%) ~ 0= (R).

Furthermore it turns out that any two graphs of smooth functions can be connected
by a Hamiltonian diffeomorphism. In fact, given two functions f and g it suffices
to consider the Hamiltonian vector field generated by the function

H:R* = R, (x,y)H/Ox(f—g)(t)dt.

This implies
0

M(R?* — R x {0}, a% A 8—y) >~ 4},

Remarkably, in both examples the set of coisotropic sections and the moduli space
of coisotropic sections are tightly related to certain cochain complezes. In the case
of {0} — g* the relevant complex is the Chevalley—FEilenberg complex of the Lie
algebra g with values in the trivial g-module R

R—>g*—>/\2 ..
Observe that

e the kernel of g* — A?g* is exactly ([g, g])°, the annihilator of [g, g] and
e the first cohomology group H} (g, R) is also equal to ([g, g])°.

For

ag 0
2_ —_—
RX{O}(—}(R73.I‘/\8$)

one considers the de Rham complex of R given by
C®(R) L QY(R) = C®(R).
One can compute easily that
e the kernel of Q!(R) 4, (Q%(R) = {0}) is isomorphic to C*°(R) and
e the first cohomology group H'(R,R) is isomorphic to {0}.
Observe that in both examples

e the set of coisotropic sections coincides with the space of closed elements
of degree 1 and
e the moduli space of coisotropic sections coincides with the first cohomol-

ogy group.

One is naturally led to wonder:

Given (E,11), is there a complex (C*,d) such that
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e the set of coisotropic sections C(E,1I) coincides with the kernel of C! 4,
C? and
e the moduli space of coisotropic sections M(E,I1) coincides with H'(C, d)?

It is well-known that this question can be answered affirmatively in the case of
Lagrangian submanifolds of symplectic manifolds. A symplectic manifold is a man-
ifold M together with a closed two form w € Q?(M) such that the vector bundle
map

Wt TM — T*M

given by contraction is an isomorphism. A submanifold L of M is Lagrangian if
the pull back of w to L vanishes and the dimension of L is half the dimension
of M. It turns out that symplectic manifolds and their Lagrangian submanifolds
can be interpreted as special cases of Poisson manifolds and their coisotropic sub-
manifolds. The most basic example of a Lagrangian submanifold of a symplectic
manifold corresponds to

0 0
R x {0} — (R? =— A =).
(0} = @ oA )
The calculations of the set of coisotropic sections and of the associated moduli
space can be generalized vastly with the help of the Darboux—Weinstein Theorem
which implies that it suffices to consider L < (T* L, Wcan) Where weay is a universal
symplectic structure on the cotangent bundle 7% L. One obtains

PROPOSITION 2.1. (a) A graph of a section of T*L — L is coisotropic if and
only if the section — seen as a one-form on L — is closed with respect to
the de Rham differential. Consequently

C(T*L — L,Wean) = {p € Q' : dppu = 0}.

(b) Let p and v be two one-forms on L which are closed with respect to the
de Rham differential. Then the graphs of p and v are equivalent (with
respect to ~y ) if and only if [u] = [v] € H'(L,R). Consequently

M(T*L — L,wean) = H (L, R).

A proof can be found in Chapter 5, Section 2.

Thus, in case we are considering Lagrangian submanifolds of symplectic manifolds,
the de Rham complex is connected to the set of coisotropic sections and the moduli
space of coisotropic sections in the predicted manner. One is tempted to suspect
an analogous solution for arbitrary coisotropic submanifolds of Poisson manifolds,
so the question arises:

What s the right replacement of the de Rham complex for an arbitrary
coisotropic submanifold?
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There is a well-known complex associated to every coisotropic submanifold S of
a Poisson manifold, its Lie algebroid complex. Assume that the Poisson manifold
under consideration is the total space of a vector bundle £ — S over the coisotropic
submanifold S. Then the graded vector space underlying the Lie algebroid complex
of S is I'(AE). For a proper definition of the differential we refer the reader to
Chapter 3, Section 2. Let us just make two remarks about this complex:

e for a Lagrangian submanifold of a symplectic manifold, the Lie algebroid
complex is isomorphic to the de Rham complex of the Lagrangian sub-
manifold,

e for {0} — g* — g a finite dimensional Lie algebra over R — the Lie algebroid
complex is the Chevalley—Filenberg complex of g with coefficients in the
trivial g-module R.

Hence in both examples we considered so far — the origin inside g* and a Lagrangian
submanifold of a symplectic manifold — the Lie algebroid complex allows us to
recover C(E,II) and M(E,II) as described above. This motivates the question:

Can one always recover C(E,I1) and M(E,II) from the Lie algebroid complex?

The next example shows that this is not the case: Consider the z-axis Rx{0} inside

(R?, (2% + y*) & A a%)' By dimensional reasons this is a coisotropic submanifold

and one can compute

o C(B? — R x {0}, (a2 +y) & A 2) = C(R),
o M(BZ R x {0, (22 + y)2 A 2) = (+} TIRTI{-).

The geometric meaning of M(R* — R x {0}, (z* + y*) 2 A a%) is the following:
Let f be a smooth function on R and denote its equivalence class under ~py by
[f]. Now one distinguishes three cases: either f(0) < 0, or f(0) > 0 or f(0) =

If £(0) < 0, the graph of f can be mapped to any other graph of a function g
with ¢g(0) < 0 by a Hamiltonian diffeomorphism. We denote the corresponding

equivalence class of functions by “—". In case f(0) > 0, the graph of f is equivalent
to all the graphs of functions whose value at zero is bigger than 0. We denote the
corresponding equivalence class by “+”7. If f(0) = 0 one can show that f is

equivalent to an other function g with g(0) = 0 if and only if f'(0) = ¢’(0). So
we can identify equivalence classes of functions which vanish at the origin with
their first derivative at the origin. All this can be summarized in the following
commutative triangle

C=(R) L {+}IR]I{-}

\ Tg

MR = R x {0}, (2 + ) 2 A ).
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Here p denotes the natural projection which maps functions to their equivalence
classes and ® is given by

+ f£(0) >0,
f= . 1(0) f(0)=0,
- f(0) < 0.

The Lie algebroid complex of R x {0} — (R?, (z* + y?)Z A a%) is isomorphic to

0 — C=(R)[0] 22 ¢ (R)[~1] — 0.

The numbers inside [—] refer to the fact that the first copy of the algebra of smooth
functions lives in degree 0 while the second one lives in degree 1. Consequently

e the kernel of C*°(R)[—1] — 0 is C*(R),
e the first cohomology group is isomorphic to R? and the isomorphism is
induced by

C¥(R) = R?,  f— (f(0), f(0)).

Thus, do not recover M(R? — R x {0}, (2> + y*) 2 A &) = {+}[[R]I{-}.
We remark that the Lie algebroid complex of R x {0} as a coisotropic submanifold

of (R%, (22 +y*)Z A a%) coincides with the Lie algebroid complex of R x {0} as a

coisotropic submanifold of (R?, (22 +y?) & A 8%). One can verify that in the latter
case the Lie algebroid complex actually yields the right answer since

e C(R? > R x {0},222 A 2) = C*(R) and
e M(R* = R x {0}, 2%2 A 2) = R?, where the isomorphism is induced
from

C¥(R) = R?,  f = (f(0), f(0)).

Furthermore observe that M(R? — R x {0}, (22 +y?)2 A a%) cannot be equipped
with the structure of a vector space such that the projection from

8 8
2 2 2 ~ (00
CR* = R x {0}, (=" +y )—% /\—y) = C*(R)

becomes a linear map. This implies that there is no way to obtain

ME = R x {0}, (22 + ) A 20 = (TTRTTE)

using constructions from linear algebra alone — some non-linearity has to be added.
An appropriate “non-linear enrichment” of the Lie algebroid complex can be
achieved and is known as the homotopy Lie algebroid.
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3. The homotopy Lie Algebroid

In the previous Section we saw that it is not always possible to recover the set
of coisotropic sections and the corresponding moduli space from the Lie algebroid
complex of the coisotropic submanifold. In [OP] higher order operations on the
Lie algebroid complex for coisotropic submanifolds of symplectic manifolds were
defined and applications to the formal deformation problem of coisotropic subman-
ifolds were given. The construction of these operations was extended to arbitrary
submanifolds of Poisson manifolds in [CF] and connections to the deformation
quantization of coisotropic submanifolds were investigated. We will restrict our
exposition to the case of coisotropic submanifolds of Poisson manifolds in the fol-
lowing. The Lie algebroid complex together with the higher order operation is
referred to as the homotopy Lie algebroid of the coisotropic submanifold.

So what are these higher order operations? Let S be a coisotropic submanifold
of (E,1I) and assume that £ — S is a vector bundle. Oh, Park and Cattaneo,
Felder defined an infinite sequence of multi linear maps

Aw:T(AE) x -+ x T(AE) — T(AE)[2 — n],

i.e. m sections (&1,...,&,) of AE get mapped to a section of AE. If the sum of
the degrees of the individual &s is m, the section A, (1, ..., &,) will be of degree
m + 2 —n. We refer the reader to Chapter 3, Section 2 for a proper definition of
the higher order operations.

Let us give a list of some properties of the higher order operations (\,)n>1:

e for n = 1 we obtain the coboundary operator of the Lie algebroid complex
of S,

e the family (\,),>1 satisfies a family of quadratic relations that makes it
into an Ls,-algebra on I'(AE); in particular:

— the first quadratic relation is A\; o \; = 0,

— the second one implies that the coboundary operator of the Lie al-
gebroid complex is compatible with Ay (it is a graded derivation of
)\2)7

— the third one implies that A, is a graded Lie bracket on I'(AE) up to
a violation of the graded Jacobi identity by a Aj;-exact term,

e one can define the higher order operations also without assuming the
Poisson manifold (F,II) to be a vector bundle over S; then the higher
order operations are not uniquely defined but their isomorphism class is
(see [CS)).

Let us describe what these higher order operations amount to in the case of

Rx {0} = (B (2 + ) A o)
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Only a single operation
Az CE(R)[0] x C¥(R)[-1] x C*(R)[-1] — C*(R)[—1]
df

h L gh
(f,g,h) — e

is added to the differential A\; on (C*(R)[0] — C>*(R)[—1]). One is naturally led
to ask

What is the appropriate replacement of

e closed elements of degree 1,
e the first cohomology group

in the presence of higher order operations?

Let (C*,d) be a complex enriched by higher order operations (Ax)r>1 (we assume
d = A\1). It turns out that the set of closed elements of degree 1 should be replaced
by the set of all elements of degree 1 that satisfy the Maurer—Cartan equation

1
ng\k(a,...,a):().

k>1

Every such element « is called a Maurer—Cartan element. Moreover the action of
(" on the set of closed element of degree 1 given by

C”xker (d:C' — C?) — ker(d:C' — C?)
(v,z) — x+d(v)

is replaced by the gauge action. The gauge action induces an equivalence-relation
— known as the gauge equivalence — on the set of Maurer—Cartan elements. The
first cohomology group H'(C*®,d) is replaced by the set of equivalence classes of
Maurer—Cartan elements with respect to the gauge equivalence.

If we apply this abstract machinery to the Lie algebroid complex of

0
R x {0} — (R?, (2% + y*) = A —
(0} = (B, (0 + 1) A )
together with the operation A3 that was spelled out above, we arrive at the follow-
ing picture: The set of Maurer—Cartan elements is C*°(R)[—1]| and two functions
g and h are gauge equivalent if and only if there are two smooth functions f and
a on [0,1] x R such that

o fo:= f‘{O}xR =0,
® g =g, 01 = h,

e for all t € [0,1] and = € R the following differential equation holds:
da(t,z) ( 1 ) of(t, x)

5 2% + §a2(t, x)

ox
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Here the higher order operation A3 causes the term %oﬂ (t, ) to appear in the above
differential equation. This makes the gauge equivalence non-linear. Without that
term, the equivalence relation could be reduced to

d
g~h & h—g:xQ—f
dz

and we would recover the first cohomology group of the Lie algebroid complex.

However, if one takes the higher order operations into account, the result is
({Maurer—Cartan elements}/gauge equivalence) = {+} H R H{—}

and the isomorphism is induced by

+ f£(0) >0,
CR) — {+}[[R]]{-}. F—<r(0) f0)=o0,
- f(0) < 0.

Observe that

{Maurer—Cartan elements}/gauge equivalence

. : 2 2,20 A D
coincides with M(R* — R x {0}, (2 4+ y*) 5 A 5,)!
This is an indication that the higher order operations on the Lie algebroid complex
add the information which is needed to recover the set of coisotropic sections and
the moduli space of coisotropic sections respectively.

Can one always recover C(E,I1) and M(E,II) from the Lie algebroid complex
equipped with the higher order operations?

Oh and Park proved that this question can be answered positively for C(FE,II)
in case the Poisson bivector field IT comes from a symplectic structure. However
in genereal — i.e. including M(F,II) and arbitrary Poisson bivector fields — the
question cannot be answered affirmatively. The problem is that for a coisotropic
submanifold S of a Poisson manifold (£, II), there might be infinitely many k£ > 1
such that the higher order operation A\ is non-trivial. Thus, one needs some
kind of completion to make sense of the notion of Maurer—-Cartan elements and
gauge equivalence respectively because both are defined via infinite sums. From
an algebraic point of view the natural completion is a formal one and this does not
take all the relevant geometric information into account. For instance the higher
order operations of

{0} — (R?,T0)
where
M= {0 (.T,y):(0,0)
Tl ERIZAL @) £0.0)

all vanish, i.e. the higher order operations cannot distinguish {0} < (R?,II) from
{0} — (R?,0). Observe that the two Poisson manifolds are quite different: II is
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only zero at the origin and so the only point in R? that is a coisotropic subman-
ifold is 0. On the other hand, every point is coisotropic as a submanifold of (R?,0).

Although the higher order operations added important information to the Lie al-
gebroid complex of a coisotropic submanifold, we saw that in general this structure
is not sufficiently fine to detect all the relevant geometry. It turns out that there
is another structure associated to a coisotropic submanifold which overcomes this
problem and which we explain next.

4. The BFV-Complex

The BFV-compler is an algebraic structure which was originally developed by
physicists to handle Hamiltonian systems with complicated symmetries. Its first
incarnation goes back to the BRST-formalism which was developed by Becchi,
Rouet and Stora and independently by Tyutin [BRST] — the Hamiltonian version
which is relevant for the following discussion was spelled out in detail in [KSt]|. The
Hamiltonian BRST-formalism was extended by Batalin, Fradkin and Vilkovsiky
([BF], [BV]) to coisotropic submanifolds which are given in terms of constraints.
Later on Stasheff ([Sta2]) provided an interpretation of their construction using
homological algebra. Bordemann and Herbig adapted the BFV-complex to the
setting of coisotropic submanifolds of (finite dimensional) Poisson manifolds, see
[B], [He]. Some parts of Bordemann and Herbig’s work were given a conceptual
interpretation in [Sch1]. This led to a clarification of the dependence of the BFV-
complex on certain auxiliary data, see [Sch2].

To give the reader an idea of the BFV-construction, we will explain the Hamilton-
ian BRST-formalism following Kostant and Sternberg’s work ([KSt|). Let (M, )
be a Poisson manifold and g be a finite dimensional Lie algebra over R. Assume
that there is a Poisson map J : M — g*, i.e.

S ghng.) = {7°(f), J*(9) }u

holds for all smooth functions f and g on g*. Recall that {-,-}; denotes the
Poisson bracket associated to the Poisson bivector field II. Any such map J is
called an equivariant momentum map and it defines a Lie algebra action of g on
M, i.e. there is a Lie algebra anti homomorphism

g— F(TM)
given by
g2 (g")" —C>(g") L (M) — D(TM)
f — Xf.

Here X; denotes the Hamiltonian vector field of f.

If one assumes in addition that 0 is a regular value of J : M — g*, the set
C:={reM:Jx)=0}
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is a coisotropic submanifold. Moreover the action of g on M restricts to an action
on C. If the quotient C := (/g is smooth, it carries a Poisson bivector field
inherited from (M, II). In this case C equipped with this Poisson bivector field is
called the reduced phase space. If the quotient C' is not smooth, one still obtains
a Poisson bracket on the set (C*°(C))? of g-invariant functions on C.

The aim of the Hamiltonian BRST-formalism is to describe the algebra (C*=(C'))*?
together with the induced Poisson bracket in a cohomological fashion. To achieve
this one combines the Koszul complex of the vanishing ideal Z(C') of C'in M with
the Chevalley—Filenberg complex of g with values in the g-module C*(M) — the
module structure corresponds to the Lie algebra action. In more detail, this works
as follows:

e The Koszul-complex of Z(C') is A"*g®C>(M) equipped with a cobound-
ary operator

d: Nfg® C®(M) — AN"lg®C>™(M)

which is defined to be d(X) = J(X) on g and is extended as a graded
derivation of degree —1 on all of A*g ® C*°(M). Due to the regularity
condition on J, the cohomology of this complex is concentrated in degree
0 and it is isomorphic to the algebra C*(C).

e The Chevalley—Eilenberg complex is A*g* ® C*°(M) equipped with a dif-
ferential ¢ that takes the Lie bracket on g and the action of g on M into
account.

e It can be checked that the Koszul-differential and the Chevalley-FEilenberg
differential commute. So if one defines D on A*g ® Alg* @ C(M) to be
d + (—1)*9 one obtains a new complex

(A g @ N°g* ®@C>®(M), D).

By a spectral sequence argument the cohomology of total degree 0 of this
complex is isomorphic to the algebra (C*(C))®.

e The Poisson bracket {-, -} on C*(M) extends to A™°g ® A*g* @ C*(M)
via

{(X@o f,Y0C@gtn = (-1)MXAY)® (EA)@{f g}

Moreover the contraction between g and g* can also be extended as a
graded biderivation to A™°g ® A*g* ® C*(M). We denote the resulting
operation by < -, - >.

e The sum

[l = ot <y >

satisfies rules analogous to the ones satisfied by {-, -}11 — the only difference
is that additional signs appear. Thus the graded algebra A™°g ® A®g* ®
C®(M) together with [[-,-]] is an example of a graded Poisson algebra.
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e The crucial point of the whole construction is the fact that the differential
D can be written as

D(-) =10, ]]
for a certain element 6 — called the BRST-charge — of
(Ag™ @ (g @ A°g")) @ C(M).

This implies that D and [[-, -]] are compatible, i.e. D is a graded derivation
of degree 1 with respect to [[-,]]. Consequently

(/\_’g X /\'El* ® COO(M)a D? [[7 ]])

is an example of a differential graded Poisson algebra.

e Because D and [[-,-]] are compatible, the bracket [[-,-]] descends to the
zero cohomology group, which is isomorphic to (C*(C))?, and yields an
ordinary Poisson bracket there.

It turns out that this procedure can be generalized to arbitrary coisotropic sub-
manifolds S of Poisson manifolds (M, ) — a careful construction is presented in
Chapter 4, Section 2 for instance. Again, one obtains a differential graded Poisson
algebra

(BFV(E,IT), D = [Q, |grv, [, |BFV)-

Here Q corresponds to 6 and [-, -] pry corresponds to [[-, -]].The differential graded
Poisson algebra depends on certain auxiliary data. Nevertheless it can be used
to construct an invariant of the Poisson manifold, since the dependence on the
auxiliary data is well-controlled, see [Sch2].

Now that we found a second algebraic structure associated to a coisotropic sub-
manifold S of (E,II) the following question arises:

What is the connection between the homotopy Lie algebroid — i.e. the Lie
algebroid complex equipped with the higher order operations — and the
BFV-complex?

It is easy to show that the underlying complexes have isomorphic cohomology, i.e.
H*(BFV(E,1),D) = H*(T'(AE), \y).

If we want to take all the higher order operations on the Lie algebroid complex
and the bracket [-, |y into account, the situation is more involved. However, it
was proved in [Schl] that the following Theorem holds:

THEOREM 1. The BFV-complex (BFV (E,11), D, |-,"|grv) and the homotopy Lie
algebroid (I'(AE), (An)n>1) are Lo quasi-isomorphic.

A proof of this Theorem can be found in Chapter 4, Section 3. A few clarifying re-
marks concerning the Theorem are in order: The BFV-complex and the homotopy
Lie algebroid are both objects of the category of L.,-algebras. Since their under-
lying graded vector spaces are not isomorphic, they cannot be isomorphic in this



14 1. INTRODUCTION

category. However, there is a natural homotopy category of L..-algebras which is
constructed by formally inverting a certain class of morphisms of L..-algebras — the
L quasi-isomorphisms. The Theorem asserts that in this homotopy category the
BFV-complex and the homotopy Lie algebroid are isomorphic objects. So morally
speaking, the BFV-complex and the homotopy Lie algebroid are “isomorphic up
to a coherent system of higher homotopies”.

5. The Groupoid of coisotropic Sections

Let (M,II) be a Poisson manifold. Recall that our initial motivation was to find
a description of the set of all coisotropic submanifolds of (M, II). Moreover, we
observed that the set of coisotropic submanifolds is acted upon by the group of
Hamiltonian diffeomorphisms and it is natural to study the quotient of this group
action.

To simplify these problems, we restricted our attention to submanifolds near a
fixed coisotropic one. One way to formalize this is

e to choose an embedding of the normal bundle £ of S into M and
e only to take graphs of sections of £ — S into account.

In this setting we defined the set of coisotropic sections of £ — S, which we de-
noted by C(F,II). The action of Hamiltonian diffecomorphisms mentioned above
can be encoded in an equivalence relation ~y on C(F,II) and we denoted the cor-
responding set of equivalence classes by M(FE, II), the moduli space of coisotropic
sections. Then we observed that the Lie algebroid complex of S allows us to
recover C(E,II) and M(E,II) in some cases, but in general the complex alone
does not contain enough information. We tried to cure this insufficiency by taking
the higher oder operations, which were constructed by Oh, Park and Cattaneo,
Felder, into account. In fact, this improves the situation, but there are still exam-
ples where one does not obtain the right answer.

In [Sch3] a way around this problem was found: it turns out that instead of the
homotopy Lie algebroid — i.e. the Lie algebroid complex enriched by higher order
operations — one should use the BFV-complex. The precise way in which C(E, II)
and M(E,II) are related to the BFV-complex is described in Chapter 5. In the
following we outline the relevant constructions and the final results.

First of all it is convenient to combine C(FE,II) and M(E,II) into a single object,
known as a groupoid. A groupoid is a category all of whose morphisms are invert-
ible. For the purposes we have in mind, it suffices to consider small groupoids,
i.e. we assume that the objects form a set. Such a groupoid can be described as
follows:

e there is a set X, the set of objects,
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e for all z, y in X, there is a set Hom(x, y), the set of homomorphisms from
T to v,
e for all z, y and 2z in X there is a map

o: Hom(z,y) x Hom(y, z) — Hom(x, z),

called the composition, such that for all f € Hom(z,y), g € Hom(y, 2)
and h € Hom(z, w)

ho(gof)=(hog)of
holds,
e for every x in X there is id, € Hom(x, z) such that
— for all y € X and f € Hom(z,y): foid, = f and
— for all z € X and g € Hom(z, z): id, 09 = g,
e for every f € Hom(z,y) there is ¢ € Hom(y, z) such that go f = id, and
fog=idy.
Note that if X contains exactly one element z, all the axioms simplify to the
statement that Hom(z, z) is a group.

One can construct a groupoid C (E,1I) with the following properties:

e the set of objects of C(E,II) is the set of coisotropic sections C(E, II),
e if we identify two objects in C(E,II) whenever there is at least one
morphism between them, we obtain the moduli of coisotropic sections

M(B, ).

The morphisms of C (E,1I) are obtained by considering homotopies of coisotropic
sections which are generated by Hamiltonian diffeomorphisms. This means that
— given two coisotropic sections g and v — we consider smooth one-parameter
families of coisotropic sections p; such that

® flo = My 1 =V,
e the graph of u; is given by applying a Hamiltonian diffeomorphism ¢; to
the graph of p.

To obtain a well-defined composition, one has to mod out homotopies of such
homotopies and the morphisms of C (E,1I) are homotopy classes of pairs (pu, ¢;)
as described above. Observe that this whole construction is analogous to the con-
struction of the fundamental groupoid of a topological space.

Let

(BFV(E,11), D = [Q, |grv, [, |8Fv)
be a BFV-complex for the coisotropic submanifold S of (F,II). This also yields a
groupoid, which we denote by Dye,(E, I1):

e objects of Dyeo(E, T1) are certain Maurer-Cartan elements of the BFV-
complex, i.e. elements [ of degree 1 such that
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— [ satisfied the Maurer—Cartan equation; this means that
[Q+ 8,2+ Blprv =0

holds,
— [ satisfied a certain non-degeneracy condition,
we call any any such element ( a geometric Maurer—Cartan element,

e morphisms of f)geo(E ,1I) are given in terms of homotopies of geometric
Maurer—Cartan elements, i.e. we consider one-parameter family of geo-
metric Maurer—Cartan elements (3, and require that (3, gets mapped to [
by a gauge transformation 1)y,

e again one has to mod out homotopies of such homotopies to obtain a well-
defined composition, i.e. morphisms of ﬁgeo(E, IT) are homotopy classes
of pairs (3, 1) as described above.

Now we can state the main result which first appeared in [Sch3]:

THEOREM 2. Let S be a coisotropic submanifold of a Poisson manifold (E,11) and
assume that . — S s a vector bundle.

There is a morphism of groupoids
Lyeo : Dyeo( B, ) — C(F, 1)

that is surjective on objects and on all homomorphism sets.

Moreover, the kernel of Ly, is a subgroupoid of ﬁgeo(E ,IT) that can be intrinscially
characterized with the help of the BFV-complex. Hence we obtain a descrip-
tion of the groupoid ¢ (E,1I) and consequently of the set of coisotropic sections
C(E,TI) and the moduli space of coisotropic sections M (E,II) in terms of the
BFV-complex:

COROLLARY 3. In the situation of the above Theorem, the following statements
hold:

(a) The groupoids Dyeo(E, 1)/ ker (L) and C(E, 1) are isomorphic. In par-
ticular their underlying set of objects are in bijection. Recall that the set
of objects of é(E, II) is C(E,1II).

(¢) Furthermore the set of isomorphisms classes of objects of f)geo(E,H) is

tsomorphic to the set of isomorphism classes of objects of é(E, IT). Note
that the latter set is equal to M(FE,1I).



CHAPTER 2

Tools

Most of the material contained in this Chapter is standard. In Section 1 we re-
view the basic definitions concerning L..-algebras. Following [Stal]| we give the
interpretation in terms of coalgebras and codifferentials. Section 2 describes the
transfer of L..-algebra structures along contraction data. This procedure is well-
known to the experts. But since it is one of our main tools throughout Chapter 4
and we could not find an exposition in the literature that really matches what we
need for the applications we have in mind, this Section is rather detailed. However
[GL], [Me] and [KSo| contain most of the ingredients. Chapter 3 describes the
higher derived brackets formalims due to Th. Voronov. It also contains our only
really original contribution to the material presented in this Chapter: Theorem 3.7
(which was proved in a slightly more general form in a joint paper with Cattaneo
[CS]). Finally Section 4 recalls rudiments of the theory of smooth graded mani-
folds and introduces P,.-algebras. Readers familiar with the topics mentioned so
far should feel free to skip this Chapter.

1. L.-algebras

DEFINITION 1.1. Let k£ be a field and G a group. A G-graded vector space V over k
is a collection (V}),eq of vector spaces over k. The homogeneous elements of degree
g € G of a G-graded vector space V' are the elements of V. The h’th suspension
V[h] of a G-graded vector spaces V' is the G-graded vector space (Vin.q))gec-

A morphism f from the G-graded vector space V to the G-graded vector space W
is a collection of linear maps (f, : V;, — Wy)seq. The h’th suspension f[h] : V[h] —
Wh] of f:V — W is given by the collection of linear maps (fy.n : Vg, — Wyn).

We denote the vector space of morphisms from a G-graded vector space V' to a G-
graded vector space W by Hom(V, W). Moreover, Hom(V, W) is the graded vector
space whose homogeneous component of degree g is given by Hom(V, W1g]).

REMARK 1.2. The class of all G-graded vector spaces over a field k forms a cate-
gory Vect? and the k’th suspension [k] defines an automorphism of Vect{.

All the examples we will consider are Z-graded vector spaces over R. Whenever
we talk about graded vector spaces without further specifications this refers to the
special case k =R and G = Z.

17
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DEFINITION 1.3. Let V and W be graded vector spaces. The tensor product VW
is the graded vector space given by the collection

(VOW)n = Bitj=nVi @ Wj.

Given f € Hom(V, A[|f]]) and g € Hom(W, B]|g|]), the tensor product f ® g €
Hom(V @ W — (A® B)[|f| + |g]]) is determined by setting
(f®g)(v@w) = (=1)"f(v) @ g(w)

on all homogeneous f € A and g € W.

DEFINITION 1.4. Let V be a graded vector space.

The tensor algebra T (V') is the graded vector space given by the collection
(T(V)m = Ok20 Djr+-tip=m Vis ® *+» @ Vi Jmez.
For k = 0 we set the above summand equal to R (concentrated in degree 0)-

LEMMA 1.5. Let V be a graded vector space. The deconcatenation product A :
TV)—=TV)RT(V) given by
k
Ay @ mp) =Y (1@ @) @ (2(i41) © - @ )

=0

defines the structure of a coassociative coalgebra on the tensor algebra T (V'), i.e.
the maps

(A®id)o A and (id®A)oA
from T (V) to T(V)@T(V)RT(V) coincide.

ProOF. That is an easy verification. U

REMARK 1.6. Every component 7 (V'),, of the tensor algebra of a graded vector
space V' can be decomposed with respect to the tensor product degree, i.e. every
element of 7(V),, can be uniquely written as a sum of elements of the vector
spaces T®)(V),, := T(V),, NV® for k > 1 and 7 (V) = R. The vector space
T®)(V),, carries two natural actions of the group of permutations Y, of a set of
k elements. The even representation is given by defining

. ($1 R ® xk) = (_1)|$i||$(i+1)|x1 ® QT DT Q- QT

where 7 is the transposition of the ¢’th and the (i 4+ 1)’th element. This extends
uniquely to an action of ¥, on 7®)(V),,. The odd representation is given by
defining

- ($1 R ® fk) — _(_1)\wi\\w(i+1)\$1 QR T(i41) QT; @ ® T
where 7 is the transposition of the i’th and the (i 4+ 1)’th element.
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DEFINITION 1.7. Given a graded vector space V, the graded symmetric algebra
S(V) of V is the graded vector space given componentwise by the invariants of
the even representation on T'(V'),,. The graded skew-symmetric algebra A(V') is
the graded vector space given componentwise by the invariants of the odd repre-
sentation on T'(V),y,.

REMARK 1.8. The graded symmetric and the graded skew-symmetric algebra
S(V) and A(V) come along with an additional degree with is inherited from the
degree on 7 (V) with respect to ®. We denote the homogeneous elements with
respect to this degree with S® (V) and A®) (V) respectively. These also form
graded vector spaces.

The two graded vector spaces S(V') and A(V[—1]) are isomorphic as vector spaces
(forgetting the grading). Defining dec,, by

decn(xl ® e ® xk) = (—]_)Zf:l(k_z)'ifz'xl ® e ® Ty
yields an isomorphism between S®™(V)[—k] and A®)(V[—1]) which is known as
the décalage-isomorphism.

The graded symmetric algebra S(V') of a graded vector space V' inherits the struc-
ture of a coassociative coalgebra from (T'(V'),A), see [Stal] for instance: the re-
striction of the coproduct A to S(V') has image in S(V) ® S(V). Moreover it is
graded cocommutative, i.e. its image is again invariant under the even action of
the permutation groups.

DEFINITION 1.9. Let V be a graded vector space. Given a family of morphisms
(mg = SB(V) = V[ )ren
of graded vector spaces, the associated family of Jacobiators is the family of mor-
phisms
(Ji : SP(V) = VI2)pen
given by
Je(x1 @ -+ @ xp) 1=

=3 Y siE)mp(mi(an © @) @iy © - © )
r+s=k o€ (r,s)—shuffles

on the tensor product of homogeneous elements 1, . .., z, € V. Here (r, s)-shuffles
are all permutations o of a set with k elements such that (1) < --- < o(r)
and o(r +1) < --- < o(k) holds and sign(o) is the sign induced by the even
representation of ¥, on 7®) (V).

A family of morphisms

defines an Ly [1]-algebra on the graded vector space V if the associated family of
Jacobiators vanishes.
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An L-algebra on V' is an L.[1]-algebra on V[1].

REMARK 1.10. Observe that our definition of L., [1]-algebra is slightly non-standard
because it includes a possible non-vanishing R-linear map mg : R — V5[2] which
can be interpreted as an element of V5. We refer to L..-algebras with vanishing
zero order term as flat.

It is straightforward to check that the notion of L..-algebra from above specializes
to the notion of a differential graded Lie algebra if all structure maps m,, except
my and mgy vanish.

DEFINITION 1.11. A triple (V. d, [-,-]) is a differential graded Lie algebra (over R)
if
(a) V is a graded vector space,

(b) d is a morphism from V' to V[1],
(¢) [-,-] is a morphism from V@V to V

such that the following conditions are fulfilled:

(a’) d is a coboundary operator, i.e. dod =0,
(b’) [-,+] is a graded Lie bracket, i.e. [-,-] is graded skew-symmetric —

[ZE, y] - _(_1)‘93“@/' [yv I]
— and the graded Jacobi identity
[ZB, [ya ZH = H:B,y], Z] + (_1)‘96“11'[?/7 [ZB, Z]]

is satisfied for all homogeneous z, y and z in V' and
(¢') the graded Leibniz-identity

d([z,y)) = [dz,y] + (—=1)"I[z, dy]
holds for all homogeneous x and y in V.

DEFINITION 1.12. Let V and W be two graded vector spaces equipped with
Ly [1]-algebra structures (my)reny and (ng)gen respectively. A morphism from
(V, (my)ken) to (W, (mg)ren) is a family of morphisms

Fi=(fi: SOV) = W)gen
such that the two families of morphisms S®) (V) — W/[1] given by

Yo > sien(0) e (me(Ten) @ - @ Tor) @ Toprin) ® - @ To(m)  and
r+s=k o€(r,s)—shuffles

Z Z Z l|SZgn f]l(xO'(l) K- - ® xajl) Q.-

=1 j1+-+j=k 7€
@ i (Toth—(r - tig) ©  ® To(m)))

on homogeneous elements x1,...,x; € V coincide.
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REMARK 1.13. The definition of an Ly [1]-morphism given in Definition 1.12 is
rather cumbersome to work with. For instance it is not evident from the Definition
that the classes of L.,-algebras and morphisms from a category. A conceptual
approach to L. [1]-algebras and their morphisms was given by Stasheff in [Stal].
As mentioned in Remark 1.8, the symmetric algebra S(V) of a graded vector space
V inherits the structure of a coalgebra from (7 (V'), A). Stasheff noticed that every
family of maps

(my, : SV(V) = V[1])ren

yields a coderivation M of (S(V'),A) of degree +1, i.e. an endomorphism M of
the graded vector space S(V') such that

AoM=(M®id+id® M)oA

holds. Here ® is the tensor product which takes the even representation on 7 (V)
into account, i.e. (id ® M)(zx ® y) := (—1)1*lz ® M(y) for all homogeneous x and
y in S(V).
The formula for M in terms of (my)key is

M ® - Q) :=

= > ) sign(0)me(e, @ Zo(r) @ Toran) @ -+ @ Togr
r+s=k o€(r,s)—shuflles
where x1,...,x; are homogeneous elements of V. It is straightforward to check
that M is a coderivation.

On the other hand any coderivation M yields a family of maps (my)gen. Just
consider the composition

SEHV) = S(V) L s(V)[1] — V(1]

where the last map denotes the first suspension of the projection S(V') — V. One
can check that the association between family of maps (my)ren and coderivations
M 1is a bijection, i.e. there is only one way to extend a family of structure maps
to a coderivation and it is given by the above formula.

In Definition 1.9 a family of Jacobiators (Ji)ren was associated to any family
of maps (my)ren. Stasheff observed that the family of Jacobiators can also be
interpreted in terms of coderivations. The vector space of coderivations of the
coalgebra (S(V),A) of some fixed degree comes along with the structure of a
graded Lie algebra: let @)1 and Q3 be two coderivation of degree |Q1| and |Qs|
respectively. We define

[Q1,Qs] := Q1 0Qy — (1)1, 0 @,

which can be easily checked to be a coderivation of degree |Qi| + |Q2|. Con-
sider the coderivation M of degree 1 corresponding the a family of morphisms
(my : S®(V) — V[1])ren. Then 1/2[M, M] is a coderivation of degree 2 which
corresponds to the family of Jacobiators associated to (my)gen-
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Consequently there is a one-to-one correspondence between L[1]-algebra struc-
tures on a graded vector space V' and degree 1 coderivations of the coalgebra
(S(V), A) that satisfy the equation [M, M| = 0. Because the degree of M is odd,

we obtain
(M, M] =2(M o M),

i.e. [M,M] vanishes if and only if M o M does. A coderivation M of degree 1
that satisfies M o M = 0 is called a codifferential. Hence there is a one-to-one
correspondence between L. [1]-algebra structures on a graded vector space V' and
codifferentials on (S(V'), A).

Now suppose F' is a morphism of coalgebras from (S(V), A) to (S(W), A), i.e.
FRQFoA=AoF
holds. Any such morphism yields a family of morphisms ( fx)xen of graded algebras
SH(V) = SsV) L sw) - w.
On the other hand any family of morphisms

(fi : SV(V) = W)en

yields a morphism of coalgebras F' from (S(V'), A) to (S(W), A). The formula for
F in terms of (fx)ren is

sign(T
Flr1® - ®xy) Z Z Zl' fj1 $0(1)®"'®$a]-1)®"'

=1 j1+-+j=k 7€
- fjl (xU(ler'“Jrj(l,DJrl) K- ® ‘Ia(n))

where x1, . .., 2y are homogeneous elements of V. Given any family of maps (fx)ren
as above the formula for F' just given is the unique extension to a morphism
of coalgebras. Hence there is a one-to-one correspondence between families of
morphisms

(fi : S(V) = Wgen
and morphisms of coalgebras from (S(V'), A) to (S(W), A).

Let V and W be two graded vector spaces equipped with the structure of L.,[1]-
algebras. We saw that this is equivalent to coderivations M and N of the coalge-
bras (S(V),A) and (S(W), A) respectively. We denote the corresponding family
of morphisms by (my : S® (V) — V[1])ren and (ny : S® (W) — W1])ren respec-
tively. Given a morphism of coalgebras F': (S(V),A) — (S(W),A) both F o @,
and @y o F yield families of maps (az : S®(V) — W[1])rey and (by, : S® (V) —
W1])ken which are given by

FoQ:

SH(V) = S(V) —= S(W)[1] & W[1] and
SH(V) = S(V) Q2oF, SW)[1] & W1] respectively.
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The left-hand side of the defining identity for (fi)ren to be an Lo, [1]-morphism
from (V, (mg)ken) to (W, (ng)ren) in Definition 1.12 is exactly ay, while the right-
hand side is exactly by.

If we assume that F': S(V) — S(W) is not only a morphism of coalgebras but a
morphism of complexes, i.e. FoQ)y = Q20F hold, then (ax)ren = (b )ren and hence
the family of morphisms (fy : S® (V) — W/1])rey corresponding to F defines
a morphism of L. [1]-algebras from (V, (my)gen) to (W, (ng)ren). On the other
hand suppose (fi : S®(V) — W)en is an Log[1]-morphism from (V, (mg)ren)
to (W, (nk)ken). The family of maps (ax)reny and (bg)ren are equal, i.e. proF o
()1 = proQs o F holds. It can be check that this implies F' o )1 = Qs o F,
ie. F: (S(V),A) — (S(W),A) is a morphism of complexes. Summing up,
there is a one-to-one correspondence between L, [1]-morphisms and morphisms of
coalgebras that are additionally morphisms of complexes.

We equip the class of L [1]-algebras with the composition inherited from the one-
to-one correspondence with certain morphisms of coalgebras and complexes. In
particular an Lo[1]-isomorphism is an L [1]-morphism with an inverse.

Suppose V' and W are graded vector spaces equipped with the structures of flat
Loo[1]-algebras, i.e. (V) (mg)ren) and (W, (ng)ren) are Lo [1]-algebras such that
mo : R — V5[2] and ng : R — W5[2] vanish identically. The structure maps
my : V — V[1] and ny : W — W[1] both square to zero, hence they are coboundary
operators on V' and W. We denote the associated cohomologies by H(V,m;) and
H(W,n,) respectively. Assume the family of maps (fy, : S®) (V) — W)gen defines
an Ly [1]-morphism between (V, (my)ren) and (W, (ng)ren). This implies that
fi : (V;my) — (W,ny) is not only a morphism of graded vector spaces but of
complexes. In particular it induces a morphism [f1] : H(V,my) — H(W,ms)
between the cohomologies. If this morphism is an isomorphism of graded vector
spaces the Luo[1]-morphism (f, : S®(V) — W)iey is called an Lo[1] quasi-
1somorphism. This special class of morphisms plays an important role in the
homotopy theory of L..-algebras.

The notion of L..-morphism, -isomorphism and quasi-isomorphism is the transla-
tion of the corresponding notion for L. [1]-algebras with the help of the décalage-
isomorphism, see Remark 1.8.

DEFINITION 1.14. Let (V, (mg)ken) be an Ly-algebra. A Maurer—Cartan element
of (V, (mg)ren) is an element = € V} such that

1
ngk(x®---®a:) =0 holds.

k>0

REMARK 1.15. Observe that our notion of Maurer—Cartan elements is not com-
plete: the statement requires a notion of convergence of the series

>

| —

,mk(l’ ® -+ ®T))NeN-

3
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One way around this lack of information is to introduce a formal parameter \ and
to work with the A-linear extension of the L.-algebra (V, (my)ren) to V[[A]]. If one
only consideres elements of AV4[[A]] the series Y°, . 4k (2®- - - @) automatically
converges in the A-adic topology. We refer to Maurer—Cartan elements in AV;[[\]]
as formal Maurer—Cartan elements of (V, (mg)ken)-

However we will be only interested in Maurer—-Cartan elements of L..-algebras
whose family of structure maps (my)ren is bounded, i.e. my = 0 for N sufficiently
large. In fact we are interested primarily in the case where all structure maps my,
except for £ = 1 and 2 vanish, i.e. the case of differential graded Lie algebras.
Then the series (3, 77k (2®- - -@x)) reduces to a finite sum and no convergence
issues arise.

It is well-known that every L.-morphism from (V) (my)ren) to (W, (ng)ren) in-
duces a map from the set of formal Maurer-Cartan elements of (V) (mg)ren) to
the set of formal Maurer—Cartan elements of (W, (ng)ken). It can be shown that
L., quasi-isomorphisms induce bijections between the sets of equivalence classes
of formal Maurer—Cartan elements.

2. Homological Transfer

DEFINITION 2.1. Let (X, d) be a chain complex whose cohomology H(X,d) we
denote by H. We interpret H as a complex with vanishing coboundary operator.

A set of contraction data for (X,d) is a triple of morphisms (i, p, h) of graded
vector spaces where

(i) i: (H,0) — (V,d) is an injective morphism of chain complexes,
(ii) p: (V,d) — (H,0) is a surjective morphism of chain complexes and
(iii) A is a morphism from V' to V[—1]

such that
(") poi=idy,
(i) [h,d] :==hod+doh=1id—iop and
(ii"’) hoh=0,hoi=0and poh =0
hold.
We sum up this situation diagrammatically as

(H,0) == (X, d), h.

p

THEOREM 2.2. Let (X,d) be a chain complex and (i,p, h) contraction data for
(X,d). Furthermore we assume that X is equipped with the following structures:

1.) there is a finite filtration of X, i.e. a collection of graded vector subspaces
X =Fo(X) 2 F(X) 2+ 2 Fp(X) 2 Froern(X) 2 -+

such that the following conditions are satisfied:
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o Fn(X) ={0} for N sufficiently large,
o d(Fi(X)) C Fip(X) for all k >0 and
o W(Fr(X)) C Fr(X) for all k > 0.
2.) (X, D,[-,-]) is a differential graded Lie algebra such that

(D —d)(Fr(X)) C Fer1)(X) holds for all k > 0.

Then the cohomology H of (X, d) inherits an induced L..-algebra structure which
comes along with a well-defined Lo,-morphism to (X, D, [-,-]).

REMARK 2.3. Theorem 2.2 is one of the central tools throughout Chapter 4. Since
we are not primarily interested in this transfer-procedure of L..-algebras along
contraction data for its own sake but rather as a tool, we did not state Theorem
2.2 in the largest possible generality. In particular, one can check that the L..-
morphism from H equipped with the induced L..-algebra structure to (X, D, [-,-])
is actually an L., quasi-isomorphism. But this is easy to check by hand in all the
cases of interest to us.

The conceptual proof of Theorem 2.2 is straightforward and can be found in [GL]
for instance. One uses the interpretation of the differential graded Lie algebra
structure on X as a codifferential on S(X|[1]), see Remark 1.13. Explicit transfer
formulae for this codifferential exist and one obtains a codifferential on S(H[1]).
This in turn yields the induced L..-algebra structure on H. Additionally one
obtains a morphism of coalgebras and complexes from S(H[1]) to S(X[1]). By
Remark 1.13 such a morphism is equivalent to a morphism of L.-algebras from
H to X.

Although Theorem 2.2 establishes the existence of a transfer-procedure along con-
traction data, we need a more concrete description of the induced L..-algebra and
of the L., quasi-isomorphism between H and X. Such a description was first given
in the setting of A-algebras: in [Me] inductive formulae were presented for the
structure maps of the induced structure and in [KSo| an interpretation in terms
of certain graphs was provided. Similar descriptions are known to exist for the
transfer of L..-algebras as well, but we need a slight generalization of the setting
presented in [Me] and [KSo] since we allow the coboundary operator D to deviate
from d.

REMARK 2.4. For the moment we assume that the graded Lie bracket [-,-] on X
vanishes. In that case we only have to care about the coboundary operator D on
X and the induced L,.-algebra structure will reduce to a coboundary operator on

H=H(X,d).

LEMMA 2.5. Let (X,d) be a complex equipped with contraction data (i,p,h) and a
filtration

X =Fo(X) 2 F(X) 2 2 Fi(X) 2 Fryny(X)

1)

such that the following conditions are satisfied:



26

2. TOOLS

Fn(X) = {0} for N sufficiently large,

Fi(X) for all k >0 and

) €
X)) C Fu(X) for all k > 0.

Moreover (X, D) is a complex such that

(D —d)(Fr(X)) C Fer1)(X) holds for all k > 0.

Set Dp := D —d. The formula

poDpgo (Z(—hDR)k>

k>0

defines a coboundary operator D on H. Furthermore

(Z(—hDR)k> i

k>0

defines a morphism of complexes i from (H,D) to (X, D).

PROOF. Observe that the term (—hDg)* maps F;(X) to Fe1)(X). Since the
filtration F,(X) is bounded from above, the series that define D and 1 respectively

are finite sums.

The identities D? = (d + Dg)* = 0 and d* = 0 imply

DROd+dODR+DRODR=0.

We set D := Dy o Zkzo(_hDR)k and compute

—dD

= (~dDg) <Z(—hDR>’“>
— (DgDg) (Z(—hDR)k> + (Dgd) <Z(—hDR)k>

= DgD + (Dgd) — (Drdh)D
= Dgd + DgripD + DyhdD.

Applying this formula iteratively and observing that Dghd increases the filtration
degree by 1 yields

—dD = Dd + DipD

and consequently

D? = p(DipD)i = p(—dD — Dd)i = 0.
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Finally we rewrite i as (id —hD)i and calculate
Doi = (d+ Dg)(id—hD)i = d(—hD)i + Di
— ipDi + hdDi = ipDi — hDipD
= (id— hD)iopDi=10D,
i.e. 7 is a chain map from (H, D) to (X, D). O

REMARK 2.6. In the special case treated in Lemma 2.5 the induced L..-algebra
structure on H (X, d) was given as the sum of terms — Dg o (—hDg)" — associated
to every integer k € N. It turns out that the right generalization to the setting of
Theorem 2.2 is given by associating morphisms to certain graphs.

A decorated oriented trivalent tree T is a finite connected graph without any loops
that consists of

(i) interior vertices that are all trivalent,
(i) exterior vertices of valency 1,
(iii) oriented edges

such that

(") at every interior vertex v two edges are oriented towards v and one is
oriented away from v and

(ii’) the set of exterior vertices is a disjoint union of the set consisting of
vertices such that the connected edges point away from them — we call
them [leaves — and a unique vertex of valency 1 with an edge oriented
towards it — we call it the root.

An orientation of such a tree is given by an order of all incoming edges at the
interior vertices, i.e. for every interior vertex, one of the incoming edges is the
“left” one and the other one is the “right” one. The decoration is an assignment of
a natural number to every edge of the tree. We will sometimes refer to edges not
connected to any leaf or to the root as interior edges and to all others as exterior
edges. Moreover we require that the edge of the graph that only consists of a single
leaf which is connected directly to the root to be decorated by a positive natural
number.

leaves

exterior edge

2

interior edge

root
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We denote the set of all such decorated oriented trivalent trees by T. Clearly we
have a decomposition

T=||T(n)

n>1
where T(n) is the set of decorated oriented trivalent trees with exactly n leaves.

Forgetting the orientation data assigned to the interior vertices yields decorated
unoriented trivalent trees. We denote the set of decorated unoriented trivalent
trees by [T]. There is a natural projection

[]: T — [T}
that respect the decomposition of T and that of [T]:

(1) = |_|[T](n) = [ |IT(n)].

n>1 n>1

We define | Aut(7")| for T" a decorated oriented trivalent tree to be the cardinality
of the group of automorphisms of the underlying decorated unoriented tree [T7].

Observe that the set of leaves of a decorated oriented trivalent tree is ordered
thanks to the orientation: consider two leaves L and L’. There is a unique oriented
path from each of these leaves to the root. These paths will meet at some vertex
v for the first time. If the edge e; that lies on the path from L to the root and
points towards v is left from the edge ey, that lies on the path from L’ to the root
and points towards v we say that L is left from L’. This relation equips the set
of leaves with an total ordering and we number the leaves corresponding to this
order.

REMARK 2.7. Consider the complex (X, d) equipped with all the structures of
Theorem 2.2, i.e. contraction data (i,p,h), a compatible finite filtration Fy(X)
and the structure of a differential graded Lie algebra (X, D,[,:]). Differential
graded Lie algebras are special cases of Ly.-algebras, so X[1] comes along with
the structure of an L..[1]-algebra. The differential is unchanged but the bracket
[-,-] picks up additional signs from the décalage-isomorphism, see Remark 1.8.
We denote the shifted bracket by {-,-} from now on, ie. (X[1},D,{--}) is an
L. [1]-algebra.

To any decorated oriented trivalent tree T with k leaves we associated a map
m(T) = (X[ — X[2]

by the following procedure: first embed the tree into the plane in a way compatible
with its orientation. Put a {-, -} at every trivalent vertex and [ copies of Dr = D—d
on every edge decorated by [. Between any two such consecutive operations place
—h along the tree. Compose all these maps in the order given by the orientation
of the edges. Given 71 ® -+ ® z; € (X[1])®" place x,, at the n’th vertex and
compute the image under the composed structure maps.



2. HOMOLOGICAL TRANSFER 29

It is easy to check that the map
. 1
T) := E ——o"'m(T
) 2 [Au(T)]” T)
o k

does not depend on the orientation of 7. Here ¢* is the action of ¢ € ¥, on
(X[1])®* — X[2] induced from the even representation of ¥, on (X[1])®*, see
Remark 1.6. Hence we get a map well-defined map

M(IT)) : SW(X[1)) — X[2], M([T)) =) ’A%a*m(T).

Finally we set

M SO(X) - X[, M= Y N(T))
[T1€[T](k)

and Mj, := po My o i®,

PROPOSITION 2.8. Let (X,d) be a complex equipped with all the structures of
Theorem 2.2, i.e. contraction data (i,p,h), a compatible finite filtration Fo(X)
and the structure of a differential graded Lie algebra (X, D, [-,-]).

Then (H[1], (M, : S®(H[1]) — H[2])ren) s an Loo[1]-algebra where (My)ren is
the family of structure maps introduced in Remark 2.7. We call the corresponding
Loo-algebra structure on H the induced L..-algebra.

PRroOOF. First observe that if we fix the number of leaves there are only finitely
many decorated oriented trivalent trees 7' with that number of leaves for which
m(T) is non-zero because if a edge is decorated by [ the filtration degree increases
by [ and the filtration degree is bounded from above. Hence M}, is well-defined.

We have to check that the family of Jacobiators (Jy)gen associated to (My)ren
vanishes. We define a family of maps (J; : S®(X[1]) — X[3])ren by
jk(ah Q- Qx)) 1=

Z Z Sign(a>M(s+1)(ier(xal K- Q xr) X x(rJrl) K- ® xk)

r+s=k o€(r,s)—shuffles

Observe that Jj, = pJii®* holds.
We claim that

—dM,, 0 i®F = J, 0 i®F

is true. This would immediately imply that the family of Jacobiators (Jg)ren
vanishes.

In order to prove this claim we extend the set of decorations for the trees we

(1P

consider: we allow to add one special edge which is either marked by a “e” or a

(13 2

x” and require that this special edge is decorated by two natural numbers:
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e

We call decorated oriented trivalent trees with a special edge of the first kind
pointed and with a special edge of the second kind truncated. We denote the set of
pointed decorated oriented trivalent trees by T® and the set of truncated decorated
oriented trivalent trees by T* respectively.

Moreover we extend the map m that associates to any decorated oriented trivalent
tree with k leaves a morphism (X [1])®* — X[2] to the set of pointed and truncated
decorated oriented trivalent trees. So let T" be a pointed or truncated decorated
oriented trivalent tree. The first step of the procedure to build m(7) is the same
as if we would replace the special edge decorated by (m,n) be an ordinary edge
decorated by m+n. Then remove the —h placed after m copies of Dg at this edge
and replace it by ¢p in case the special edge was a pointed one and by id in case
the special edge was a truncated one. Finally one adds the sign given by (—1) to
the sum of the degrees of all inputs left to the special edge.

It is straightforward to check that
jk($1®---®$k) =

- XY X e
| Aut(S)|| Aut(R)]
€%y r+s=k [S]€[[T])(s+1) [R]€[[T])(r)
m(S) ((me(R)(IBg(l) K- Q .TU(T))) QD To(r+1) @ -+ & xg(k))
s1gn
2N ) m(P(T)) (o) @+ @ i)
UEEk T]E

holds. Here P(T') is the sum of all ways to turn an ordinary decorated edge of T’
into a pointed decorated edge.

Consequently the claimed equality —dM;i®% = Ji® is equivalent to

—dMi®F = [ ) Z ( ac*m(P(T)) | i®*.

o€Xy [T e[T](k

We prove the latter identity by induction over the number of leaves. For k£ = 1
the identity simply reduces to —dDi = DipDi where D = Dp, > nso(—hDg)", see
the proof of Lemma 2.5.

The inductive step uses the identities

—din(——) = > i = STe—) + Y (o) 4 i(—R—)d

r+s=n+1 r4+s=n r+s=n

~d{X,Y} = {dX,Y}+ (-1D)F¥X,dy} +
+ {DpX,Y}+ (-1)* X, DY} + Dp{X,Y}.
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Iterative use of these identities in the computation of

—dMi® = —d [ Y Z ( o*m(T) | i®*

o€ [T]E[T)(K)

leads to
DD I ) R PO I E L
oEY [T G[T](k UGEk T]E

where X (T) is the sum of all ways to change an ordinary edge of T" that is decorated
by 0 into a truncated one decorated by (0,0). The second sum contains terms of
the form

Q- Q=

> > ! > <{<{_hm(U)(xa(l)®"'®$a(r))7"'

2
o€X; r+t+s=l  [U]€[T|(r),[VIE[T](s),[W]€[T](¢)

) _hm(v)(ﬁa(ﬂ—l) Q- ma(H—S))})a _hm(W) (xU(T—I—s—f—l) Q- ® xU(l))‘

Since the expression in the last two lines is of the form {{a,b},c} and the sum
runs over all permutations with appropriate signs, the total sum vanishes thanks
to the graded Jacobi identity for {-,-}. Consequently

S = 3 B TRway e M) | = A

O'EEk T]E
and J;, := pJi®" vanishes. d

REMARK 2.9. We start with the same input data as in Remark 2.7: (X,d) is

a complex equipped with contraction data (i,p, h), a compatible finite filtration

Fo(X) and the structure of a differential graded Lie algebra (X, D, [-, -]) such that

all conditions stated in Theorem 2.2 are satisfied. Again we translate the graded

Lie bracket |-, -] into a graded symmetric operation {-,-} on X[1].

To any decorated oriented trivalent tree T with k leaves we associated a map
a(T) : (X[1)*F — X[

by setting ny := —h o m(7T"). This yields a map

. 1 .
T) = Uezzk ma n(T)

which does not depend on the orientation of T. Consequently we obtain a well-
defined map

N(T]) : SW(X[1]) — X[1], N(T]):= Y ‘A%mm.
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Finally we set
Nt S®(X[1)) = X[1], Npw=id+ Y N([T))
(T]€[T] (k)
and Ny, := N, 0 i®*,
PROPOSITION 2.10. Let (X, d) be a complex equipped with all the structures of

Theorem 2.2, i.e. contraction data (i,p,h), a compatible finite filtration Fo(X)
and the structure of a differential graded Lie algebra (X, D, [-,-]).

Then the family of maps (Ny, : S®(H[1]) — X[1])ren introduced in Remark 2.9
defines an Loo-morphism from H equipped with the induced Lo, -algebra structure
o (X,D,[,"]). We call this Ls-morphism the induced L.,-morphism.

PROOF. Recall the proof of Proposition 2.8 where pointed and truncated dec-
orated oriented trivalent trees were introduced. The claim that (Ny)gey is @ mor-
phism of Ly [1]-algebras from (H[1], (My)ken) to (X[1], D, {:,-}) is equivalent to
the family of relations

+1/2 Z Z Sign(a){hOMr(lL’a(l) R ® To(ry),

rs=k o€ (r,s)—shuffles
Jho My(Torin) ® -+ ® o)) }
= ipMy(11 ® - - @ x)
— Z Z sign(o)h o My 1) (ip 0 My(Tp0) ® -+ ® To(r) @ - - -

r+s=k o€(r,s)—shuflles
C® To(r) B @ Ty
with xq, ...,z arbitrary homogeneous elements of H[1], see Definition 1.12.

Applying hd + hd = id — ip shows that the left-hand side of the above claimed
identity is equal to

(—Drth — hdNl, — N, + ipMk)> + (M, + DrhMy,)
= ipMy, — hd M.
On the other hand
—(hd]\Z/k)(xl ® - Q@ x)
= | Z o m(P(T)) | (11 @+ @ xy)
o€y, [T]E[T

= — Z Z sign(o)h o M(rJrl)(z'p o Mq(xa(l) R @ Tory) -

r+s=k o€(r,s)—shuffles
Q@ To(ri1) ® 0 @ To(k))
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holds, see the proof of Proposition 2.8. Consequently (Nj := Ny o i) ren vields
an L [1]-morphism from (H[1], (M)ren) to (X[1], D, {-,-}). O

REMARK 2.11. The formulae we gave for the structure maps of the induced L.-
algebra and of the induced L..-morphism can be interpreted as certain Feynman
diagrams, see [Sch1] for instance.

3. Derived Brackets Formalism

DEFINITION 3.1. A V-algebra is a quadruple (V, [, ], a,I1,) where

(a) (V,[-,*]) is a graded Lie algebra, i.e. a differential graded Lie algebra with
vanishing coboundary operator,

(b) a is a graded vector subspace of V' and an abelian Lie subalgebra, i.e.
[Cl, Cl] =0,

(c) Il : V — V is a projection onto a such that the kernel of II, is closed
with respect to the graded Lie bracket [-,-].

REMARK 3.2. The term “V-algebra” was introduced in [CS] and is an abbrevia-
tion for Voronov-algebra. Voronov introduced this objects in [V1] where he also
initiated the systematic study of higher derived brackets.

DEFINITION 3.3. Let (V, [, -], a,II,) be a V-algebra and P a homogeneous element
of V' of degree |P|. The higher derived brackets on a are given by

Dy : 8®(a) — allP]
Q- @x — U ([[..[[Px1],x2], ... ], xx]) -

REMARK 3.4. Because a is an abelian Lie subalgebra of (V [+, :]), the higher derived
brackets are graded symmetric, i.e.

D;f(xl R -Qxp) = (_1)|$ill$(i+1)|D]1:(xl Q@ T(41) DT R+ ® )
holds for all homogeneous elements x4, ...,z € V.

Suppose P is an element of degree 1. By Definition 1.9 the family of maps (D :
S®(a) — a[l])ren comes along with the family of associated Jacobiators (Jj, :
S(k)(a) — a[2])k€N.

THEOREM 3.5. Let (V) [, -], a,11,) be a V-algebra and suppose P is a homogeneous
element of V' of degree 1. Then the family of Jacobiators associated to the higher
derived brackets (DY : S®)(a) — a[l])ren is given by the higher derived brackets

(D27, 80 (@) = a[2))sen.

In particular if P is a Maurer—Cartan element of (V,[-,-]), i.e. P is a degree 1
element and satisfies [P, P] = 0, then the higher derived brackets (D} : S®(a) —
a[1])ken equip a with the structure of an Leo[1]-algebra.

PRrROOF. We refer the interested reader to [V1] for the proof. O
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REMARK 3.6. One can extend the construction of higher derived brackets from
Maurer—Cartan elements to derivations of (V,[-,-]) that are not necessarily inner,
see [V2].

The main application of Theorem 3.5 that we are interested in is the construction
of the homotopy Lie algebroid associated to the following data:

e a submanifold S of a Poisson manifold (M, II) and
e an embedding of the normal bundle of S in M into M as an open neigh-
bourhood of S in M,

see Definition 3.6 in Chapter 3. This construction can be adapted to regular Dirac
structures ([CS]). Other applications of the higher derived brackets formalism can
be found in [V1] and [V2].

In the application we will consider the Maurer—Cartan element P is not canon-
ically given but depends on certain choices. However one can show that two
choices can be related by an automorphism of the graded Lie algebra (V) [, -]).
The question arises whether this suffices to related the L.[1]-algebra structure
on a corresponding to two different choices of Maurer-Cartan elements. Theorem
3.7 gives an affirmative answer under certain assumptions that are satisfied in the
application we have in mind.

THEOREM 3.7. Let (V,[-,-],a,11,) be a V-algebra and P a Maurer—Cartan element
of (V,[-,:]). Moreover all homogeneous components of V' are equipped with the
structure of topological vector spaces. Suppose (¢¢)icjo) 45 a one-parameter family
of automorphisms of (V. [-,-]) satisfying

(a) ¢r=o = id,
(b) (¢¢t)ecpo] is a solution of the ordinary differential equation

d
%‘t:sﬁbt(') = [X87 ¢s()]7

for all s € [0,1] where (X;)tco,1) is a one-parameter family of elements in
Vo such that I14(X;) = 0 holds for arbitrary t € [0, 1].

If we assume that the Cauchy problem in a given by

%’t:sCS = Ha([Xs> Cs])> CO ca

can be solved uniquely and integrates to a one-parameter family (Iladi)icio) of
automorphisms, there is an isomorphism of Ls[1]-algebras

o0 (@, (DD )ken) = (a, (DY) jen)
for all t € [0, 1].

REMARK 3.8. Theorem 3.7 was originally proved in [CS]. There a generalization
to one-parameter family of automorphisms not necessarily generated by inner
derivations of (V,[-,-]) was presented.
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We will apply Theorem 3.7 to prove that the homotopy Lie algebroid associated
to a submanifold S of a Poisson manifold (M, IT) is unique up to isomorphism, i.e.
different choices of embeddings of the normal bundle NS of S in M into M as an
open neighbourhood of S lead to isomorphic L.-algebra structures on I'(ANS),
see Theorem 3.15 in Chapter 3.

ProOOF. The morphisms (D,ft(P) - S®(a) — a[l1])ren corresponds to a one-
parameter family of codifferentials Q(t) of (S*)(a), A), see Remark 1.13. Moreover
the higher derived brackets (D;* : S®)(a) — a)gey yield a one-parameter family
of coderivations M (t) of (S®)(a), A).

We claim that the ordinary differential equation

d
Jili=sQ(t) = M(s) 0 Q(s) — Q(s) o M(s) =: [M(s), Q(s)]
is satisfied for all s € [0,1]. The formula for Q(t) is given by

Q) (11 @ @) =
= > > sign(o) DI (20, @ - X)) ® Torar) ® - @ T

r+s=k o€(r,s)—shuflles

Because of £]_,(¢,(P)) = [X,, ¢5(P)] we obtain

%‘t:sQ(t)(-Tl R R xk) =

= Z Z sign(a) DX E(5, @ - 2,0) @ To(rin) @ -+ @ Ty
r+s=k o€ (r,s)—shuflles

We introduce an auxiliary parameter 7 of degree 1 and consider the R[r]/72-
module V[7]/7%. Next we extend the graded Lie bracket [-,-] to a graded Lie
bracket on V[r]/7% by setting [rz,y] := 7[z,y| for all z,y € V. The V-algebra
structure on (V, [+, -]) extends in an R[7]/72-linear manner to a V-algebra structure

on (V[r]/72[-,-]). Consider the higher derived brackets (D'*")*™X), _ which
come along with a family of associated Jacobiators (Jy)ren. By Theorem 3.5 these
are given by the higher derived brackets for

1
§[¢t(P) + 17Xt 0:(P) + 7Xy] = T[Xy, ¢(P)].
Therefore the family of morphisms
0
(E‘Tzojk(s))nEN

corresponds to the one-parameter family of coderivations (%\tsz(t))se[o,l]-

We claim that the one-parameter family of coderivations ([M(s), Q(s)])sejo,1) also
corresponds the the one-parameter family morphisms (2 |,—oJi(s))nen. Recall
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that the family of Jacobiators is given by
Jr(s)(@1 @ @ ay) =
=Y X s T DE T 4y, 0w @ -

r+s=k o€(r,s)—shuffles
C® Ty © - ® Ty
Consequently

d
=0 k() (@1 ® - @ ay) =

Yoo > sign(o)DE (DPE P (@0, @ - @ 1) @) @ - @ )
r+s=k oc€(r,s)—shuffles

- Z Z sign(o )DZJ(FI))(D,S(S (o, @ @ Ty) Q@ T(ry1) ® -+ - Q Ty).
r+s=k oc€(r,s)—shuffles

It is straightforward to see that this expression corresponds to the coderivation
[M(s), Q(s)]-
Next we study the solutions of the Cauchy problem given by

st (1) = M(s) o Uls),  U(0) =id

where (U(t)):c[0,1) is a one-parameter family of automorphisms of the graded vector
space S(a). This is equivalent to the family of ordinary differential equations

d
—|t:5Uk(t)($1 Q- ZEk)

Z Z Z sign(T DXS(U (S)(%(l)®...®%h)®,“

|
=1 j1+~+ji=k TEX l']l
- ® Ujl(3)(x0(j1+~~+j(z—1)+1) Q- ® xff(k‘)))
together with the initial conditions U;(0) = id and Ux(0) = 0 for k # 1.

First observe that we can consistently set Uy(t) = 0 for all ¢ € [0, 1]. We claim that
there is at most one solution to this family of equations that satisfies Uy(t) = 0.
The equation for k£ = 1 is simply the Cauchy problem

d .
Gl=U1(s) = (X (3], Ua(0) = id

hence Ui (t) = Ily¢;. Now suppose we proved uniqueness of U;(t) for all I < k and
let Ux(t) and Uj(t) be two solutions for the ordinary differential equation above.
It follows that the difference Uy (t) — Uy(t) satisfies

%!m(Uk(t) — Up(®))(21 @ - @ ax) = Hal[Xs, (Uk(t) = Ue() (@1 ® - - @ a)]),

and we have Uy (0)(z1 ® - - - @ xp) — Uk~(0)(951 ®---@x) =0 for all 1, ..., 2% € a.
Consequently Uy(t)(x; @ -+ @ 2) = Ux(t) (1 ® - -+ ® xp) holds for all ¢ € [0, 1].
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It follows that if (U(t))scpo,1) exists it is a one-parameter family of automorphisms
of the coalgebra because

%]t:S(U(t)l QU)o AoU(t)
=—(U(s) '@ U(s) ) ((id @ M(s) + M(s) ®id) o A — Ao M(s))U(s)

vanishes since (M (t)):e(o,1) is a one-parameter family of coderivations of (S(a), A).
Furthermore we define Z(t) := Q(t) o U(t) — U(t) o Q(0) and calculate

%\t:sZ(t) = [M(s),Q(s)] o U(s) + Q(s) o M(s) o U(5) — M(s) o U(S) 0 Q(0)

= M(s) o (Q(s) o U(5) = U(s) 0 Q(0))
= M(s)o Z(s).

The one-parameter family Z(t) corresponds to a family of morphisms (Z(t) :
S®(a) — a[l])sen. A short computation shows that Z(0) = 0 and Zy(t) =
y(¢p P) — My 11, P. Because of

%‘ts(naqbt - Had)tna)(') =1I ([ s ( Pt — ad)tHa)(')]

and Ia00 — Mapoll, = 0 the component Zy(t) vanishes for all ¢ € [0,1]. Now
the uniqueness of (Z(t))ico) follows by the same arguments that were used to
prove uniqueness of (U(t))ep0,1). Consequently Z(t) = 0 for all ¢ € [0, 1] which is
equivalent to Q(t) o U(t) = U(t) o Q(0), i.e. U(t) is an isomorphism of complexes
from (S(a), Q(0)) to (S(a), Q(t)) forall t € [0, 1]. By Remark 1.13 this is equivalent
to the existence of an Ly [1]-isomorphism

@ (a, (le)keN) = (a, (Dl(c@(P)))keN)'

o~~~

It remains to prove existence of a solution (Ug(t))gen of the family of ordinary
differential equations

d
E’t:SUk(t)(xl Q- .Tk)

Z Z Z llszgn S(Ujl(s)(xa(l)®"'®xf’j1)®"’

=1 j1+-+j=k 1€
- ® sz(3)($0(j1+---+j(171)+1)) Q& xU(k)))

with initial conditions U;(0) = id and U*(0) = 0 for n # 1. We give iterative
formulae for (Ug(t))ren. For k =1 we set Uy (t) := [I4¢; and for k > 1 we define

Ur(t)(r1 @+ @ xy) Z sign(o )Z Z kl'jﬂ; -

il
TET), 121 jittji=k—1 Ju:
Mo ([l [4(2on)): Ui ()(wo(2) @ - -+ @ o1 4)), -
L U (0 oyt yr2) @ @ To(r))])-
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The straightforward but cumbersome verification that the family of morphisms
(Ur(t))ren actually is a solution of the family of ordinary differential equation is
done in Lemma 4 in Chapter 6. That the boundary conditions are satisfied is
seens as follows: by definiton U;(0) = mq|q = id and if we set ¢t = 0 in the iterative
formula for Uy(t) we see that because of ¢y = id all the terms on the right-hand
side are in a. But a is an abelian Lie subalgebra, so all the terms on the right-hand
side vanish and hence so does Uy(0) for k > 1. O

4. Smooth graded Manifolds

DEFINITION 4.1. A unital graded commutative associative algebrais a triple (V, 1, )
where V' is a graded vector space, 1 € Vy and - is a morphism of graded vector
spaces

VeV -V
such that
(a) a-b=(=1)lllly.q,
(b) a-(b-c)=(a-b)-cand
(c)a-1=a=1-a

hold for all homogeneous a,b,c € V.

A morphism ¢ : V' — V[k] of graded vector spaces is a graded derivation of degree
k of the unital graded commutative algebra (V,1, ) if

oz y) =) y+ (1) p(z)

holds for all homogeneous z,y € V. A deriwation of (V,1,-) is an element of
the graded vector space Hom(V, V') — see Definition 1.1 in Section 1 — whose k’th
component is a graded derivation of degree k. Derivations form a graded subvector
space of the graded vector space Hom(V, V') which we denote by Der(V).

A morphism ¢ from the unital graded commutative associative algebra (V, 1y, v)
to the unital graded commutative associative algebra (W, 1y, -w) is a morphism
¢ of graded vector spaces from V' to W which maps 1y to 1y such that

o(x-vy) =o(x) woy)
holds for all x and y in V.

Given two unital graded commutative associative algebras (V, 1y, -v) and (W, 1y, -w)
the tensor product V ® W inherits the structure of a unital graded commutative
associative algebra by setting lygw = 1y ® 1y and

(v1 ® w1) vew (v2 @ wy) = (=1)"12l(vy -y v3) @ (w1 -y w)

for all homogeneous elements vy, v9 in V and wy, wy in W.
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REMARK 4.2. Given a graded vector space V', the graded symmetric algebra S(V')
is a unital graded commutative associative algebra with product inherited from
the associative product on the tensor algebra 7 (V') given by

(T11® Q)@Y QU TR BT RY D BY.

DEFINITION 4.3. Let (V, 1,-) be a unital graded commutative associative algebra.
A module over (V,1,-) is a pair (M, ¢) where M is a graded vector space and ¢ is
a morphism of graded vector spaces ¢ : V. — Hom (M, M) such that ¢(1) = id is
satisfied and

¢(v - w)(m) = (d(v) o p(w))(m)
holds for all v,w € V and m € M.

Let (M, ¢) be a module over the unital graded commutative associative algebra
(V,1,[-,-])- A morphism « : V — M]Ik] of graded vector spaces is a graded
derivation of V' with values in M of degree k if

a(z - y) = (=1)"Hg(z)(a(y)) + (=)o (y) (a(2))

holds for all homogeneous x,y € V. A derivation of (V,1,-) with values in M is an
element of the graded vector space Hom(V, M) whose k’th component is a graded
derivation of V' with values in M of degree k. Derivations form a graded subvector
space of the graded vector space Hom(V, M) which we denote by Der(V, M).

REMARK 4.4. Observe that any unital graded commutative associative algebra
(V,1,-) is a module over itself via
ad:x—x-.

The definition of derivations of (V, 1,-) coincides with the definition of derivations
of (V,1,-) with values in the module (V, ad).

Suppose (M, ¢) is a module over (V,1,-). Observe that Der(V, M) inherits the
structure of a module over (V,1,-) by

¢:V = Der(V,M), zw (frz-f)
From now on we will always consider Der(V, M) as a module over (V,1,-).

DEFINITION 4.5. Let (V,1,+) be a unital graded commutative associative algebra.
The space of multiderivations D(V') of (V,1,-) is the graded vector space

D(V) := Sy(Der(V)[-1]),
i.e. the graded symmetric algebra generated by Der(V, M)[—1] as a module over
V.
The derivation degree on D(V) is given by D®(V) := S‘(/k)(Der(V, M)[-1]).
REMARK 4.6. The graded vector space D(V') of multiderivations of a unital graded

commutative associative algebra (V, 1, -) inherits a module structure from Der(V).
Moreover it is a unital graded commutative associative algebra, see Remark 4.2.
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DEFINITION 4.7. Let M be a smooth finite dimensional manifold.

A graded vector bundle E, over M is a collection (FE;);ez of finite rank vector
bundles over M. A graded vector bundle E, over M is bounded if Ej, = {0} for all
k smaller than some [ and larger than some L. Since we only consider bounded
graded vector bundles we will drop the adjective bounded from now on.

The dual E} of a graded vector bundle E, over M is the graded vector bundle
given by (E*,)icz. The n’th suspension E[n]s of a graded vector bundle E, is the
graded vector bundle given by (Fii,)ecz.

The algebra of smooth functions on a graded vector bundle E, over M is the unital
graded commutative associative algebra

Co(E.) :==T(S(E))-

A morphism from the graded vector bundle F, to the graded vector bundle F, is a
morphism in the category of unital graded commutative associative algebras from
C>®(F,) to C®(F,).

DEFINITION 4.8. A smooth graded manifold M with body M is a unital graded
commutative associative algebra A that is isomorphic to C*(F,) for some graded
vector bundle E, over M. The algebra of smooth functions C*°(M) on M is the
unital graded commutative associative algebra Ax,. The algebra of multivector
fields V(M) on M is the C*°(M) module D(C>*(M)). A k-vector field on M is
an element of D®)(C®(M)).

A morphism from the smooth graded manifold M to the smooth graded manifold
N is a morphism of unital graded commutative algebras from C*(N') to C>°(M).

REMARK 4.9. Observe that the specific isomorphism between C*°(M) and C*(E,)
is not part of the data that define a smooth graded manifold. Moreover we remark
that we do not follow the more general definition of graded manifolds in terms of
sheaves of locally free graded algebras since for all applications we will consider
the definition we give suffices and is in fact more convenient to work with.

LEMMA 4.10. Let E, be a graded vector bundle over M. The unital graded com-
mutative symmetric algebra V(E,) is the algebra of smooth functions on the total
space of the graded vector bundle T*[1|E, over M.

Consequently the algebra of multivector fields V(M) on an arbitrary smooth graded
manifold M is the algebra of smooth functions of a smooth graded manifold which
we denote by T*[1]M.

REMARK 4.11. The observation that V(M) equals C*(T™[1]M) has an important
consequence: since T*[1]M is a cotangent bundle (with a degree shift) it should
carry the graded analogon of a symplectic form. In particular the algebra of
smooth functions on T*[1]M should be some sort of graded version of a Poisson
algebra. This is indeed the case. However, instead of explaining this in terms of
the theory of graded symplectic manifolds, we will use a more algebraic approach.
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PRrooF. Consider the space of derivations Der(I'(S(E7))). Restriction of any
such derivation to I['(S©(E})) = C>°(M) yields a derivation of C**(M) with values
in I'(S(EY)), i.e. we obtain a morphism of graded vector spaces

Der(I'(S(E7))) — Der(C™ (M), I'(S(E))).

Any choice of a family of connections V, on FE, yields a left inverse to this mor-
phism, hence it is surjective. The kernel of

Der(T'(S(E;))) — Der(C*(M), I(S(E)))
consists of all those derivations of I'(S(E})) that are C*°(M)-linear. Hence we
have a short exact sequence of graded vector spaces
0 — Dercoean)(I'(S(E))) — Der(D(S(E;))) — Der(C* (M), I'(S(E]))) — 0.
The fact that Der(C*(M)) = I'(T'M) (see [Mi] for instance) generalizes to
Der(C*(M),T'(S(E}))) 2 T(TM ® S(EY)).
Moreover Dercee(ar)(I'(S(E5))) is isomorphic to I'(Der(S(£7))) = I'(E ® S(E7)).
Consequently we obtain a short exact sequence
0—->T(F®S(E;)) — Der(I'(S(E))) — I'(TM @ S(EY)) — 0.

We choose a family of connections V, on the graded vector bundle F,. This
provides a splitting of the above exact sequence, i.e.

Der(T(S(E,))) = T((E © TM) @ S(E,))
as graded vector spaces and as modules over I'(S(E)) as can be checked easily.
This yields
V(E,) = Srises) (Der(D(S(E;)))[-1]) = Srse) T(E @ TM)[-1] @ S(E]))).

Since we take the symmetric product over I'(S(EY)), it is in particular C*(M)-
linear and consequently the symmetric algebra generated by the I'(S(EY)) module
I'((E®TM)[—-1] @ S(£;)) is the space of sections of the bundle Sgg;)((E @
TM)[—1] ® S(E})). Using the family of connections V, on FE, we obtain an
isomorphism of bundles S(T*[1]E)* = Ssg:)((E @ TM)[—1] ® S(E7)) and the
induced isomorphism on sections is exactly inverse to

I'(SsEn(E@TM)[-1] ® S(E;)) = V(E,).
Hence we conclude with C®(T*[1]E) = V(E,). O
DEFINITION 4.12. Let (V, 1, -) be a unital graded commutative associative algebra.

A graded Poisson bracket of degree k on (V, 1,-) is a morphism [+, -] of graded vector
spaces V @ V' — V[—k| such that

(a) (V[k],[-,-]) is a graded Lie algebra, see Definition 3.1 and
(b) for any X € V; the morphism [X,-] : V — V[l — k] is a graded derivation
of (V,1,-) of degree (I — k).
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REMARK 4.13. If we talk about a graded Poisson bracket without further specifi-
cation we refer to a graded Poisson bracket of degree 0.

A graded Poisson bracket of degree 1 is also known as a Gerstenhaber bracket.
LEMMA 4.14. Let (V,1,-) be a unital graded commutative associative algebra. The

unital graded commutative associative algebra of multiderivations D(V') carries a
Gerstenhaber bracket [-,-|sn such that

(a) for f, g € DO(V) =V the bracket is given by
[fa g]SN - 07
(b) for homogeneous f € V and X € DV (V)[1] = Der(V) the bracket is
given by
X, flsy = X(f) = =(=)XWV[f Xy and
(c) for homogeneous X, Y in Der(V') the bracket is given by

(X,Y]|sy =X oY — (=D)XIVy o X

The bracket [-,-|sn is known as the Schouten-Nijenhuis bracket.

PRrROOF. Since D(V) is generated as an algebra by V and Der(V')[—1], it is
sufficient to describe its restriction to V @ Der(V)[—1]. It is straightforward to
check that the graded Jacobi identity (see Definition 1.11) is satisfied, i.e.

(X, 1Y, flsn]sn = [[X, Yisw, flsw] + (=D IX flsn]sw,
(X, [Y, Z]sw)sn = [[X,Y]sn, Z]sn) + (=D)XIVY (X, Z)sn]sw
holds for all homogeneous X,Y,Z € DM (V)[1] = Der(V) and f € V.

Let X be a homogeneous element of Der(V') and f a homogeneous element of V.
Extend [X, ]sny and [f,-]sn to graded biderivations of D(V') of degree |X| and
| f] — 1 respectively. This yields an operation from (V[1] @ Der(V)) ® D(V)[1] to
D(V)[1]. Finally extend this by graded skew-symmetry to an operation [-,]sn
from D(V)[1] ® D(V)[1] to D(V)[1]. By construction [-,-]sy will also satisfy the
graded Jacobi-identity. 0

DEFINITION 4.15. Let (V,1,-) be a unital graded commutative associative alge-
bra. An L..-algebra (V,(Ap)ken) is a Ps-algebra if for arbitrary homogeneous
T1,...,Tk—1) in V the morphism

of graded vector spaces is a graded derivation of (V,1,-) of degree 2 — k + |x1| +
et T

REMARK 4.16. The term P,-algebra was introduced in [CF]. Observe that not
all algebras over a cofibrant resolution of the Poisson-operad yield P,.-algebras.
However, the definition given above suffices for our purposes.
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Since L..-algebras are by definition graded skew-symmetric, the defining relation
of a P, -algebra implies that the structure maps are graded multiderivations. In
particular if (V, (Ax)ren) is a P-algebra
M1 @ @y @ (Y- 2) ®x; @ xp) =
_ (_1)(\$1\+~~+\$(¢_1)\+k—2)|y\y . /\k($1 R @) ®2QT; ® $k;)
(=) mlt e R =R (1 @ - @ i) © Y @ 15 ® T)
holds for all homogeneous zy,...,z4_1),y,2 € V.

In Section 1 we saw that differential graded Lie algebras are special cases of L.-
algebras. Similarly differential graded Poisson algebras are those P,.-algebras
where all structure maps (A )ren except for k£ =1 and 2 vanish.

DEFINITION 4.17. Let (V, 1, -) be a unital graded commutative associative algebra.
A differential graded Poisson algebra is a triple (V,d, [, -]) where

(a) (V.d,[-,-]) is a differential graded Lie algebra,

(b) d is a derivation of (V,1,-) degree 1 and

(¢) (V,[-,]) is a graded Poisson algebra (of degree 0).

LEMMA 4.18. Let (V,1,-) be a unital graded commutative associative algebra.
The quadruple (D(V)[1], [, ]sn, V[1],pry[1]) is a V-algebra, see Definition 3.1.
Here pry, denotes the projection D(V) — DO(V) = V.

If P € D(V) is an element of total degree 2 that satisfies [P, Plsy = 0, the higher
derived brackets

-D]f(vl K- Uk) = prV([[ s [[Pu U1]5N7U2]SN7 o ']7Uk])7 ke N7
equip V' with the structure of a P -algebra.

PROOF. By definition V' is an abelian Lie subalgebra of (D(V)[1], [, ]sn).
Moreover the kernel of pry, is DY (V) and since |-, ]sx maps DER (V)@ DED (V)
to DEF=U(V), DEV(V) is closed under [+, -] gy
Theorem 3.5 implies that (V[1], (DF)ren) is an Lo [1]-algebra — equivalently V is
equipped with an L..-algebra structure. That the structure maps (DF)en satisfy
the derivation property follows from the identity

(XY - Zlsy = [X.Ysn - Z+ (-)"VX, Z]gn - Y
for homogeneous X, Y, Z in D(V') and the fact that pry, : D(V') — V is a morphism
of unital graded commutative associative algebras. U
DEFINITION 4.19. Let M be a smooth graded manifold.

A Poisson multivector field on M is Maurer—Cartan element of (V(M)[1], [-, ‘]sn),
i.e. an element P of total degree 2 in V(M) that satisfies [P, P]sny = 0.

A Poisson k-vector field on M is a Poisson multivector field on M that lies in
VE(M). In particular a Poisson bivector field on M is an element P of V(M)
that satisfies [P, P|sy = 0.
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COROLLARY 4.20. Let M be a smooth graded manifold equipped with a Poisson
multivector field P. Then the higher derived brackets (D} )xen equip the algebra of
smooth functions C*°(M) on M with the structure of a Py-algebra.

Proor. This is an immediate consequence of Lemma 4.18. U



CHAPTER 3

Coisotropic Submanifolds

In Section 1 we review basic definitions and facts from Poisson geometry. Section
2 contains a rather detailed introduction to coisotropic submanifolds. In particu-
lar we define the Lie algebroid complex associated to a coisotropic submanifold,
introduce the quotient space and the quotient algebra and establish the connection
between the zero’th Lie algebroid cohomology and the quotient algebra. Finally
we explain how to enrich the Lie algebroid complex by higher structure maps.
This procedure makes use of the higher derived brackets formalism — see Section
3, Chapter 2 — and yields an L..-algebra structure known as the homotopy Lie
algebroid. We essentially follow [OP] and [CF]. This Le-algebra depends on a
choice of an embedding of the normal bundle of the submanifold under consider-
ation into the ambient manifold. Theorem 3.7 asserts that different choices lead
to isomorphic L.-algebras. It was first presented in [OP] for coisotropic subman-
ifolds of symplectic manifolds and extended to arbitrary submanifolds of Poisson
manifolds in the joint paper [CS] with Cattaneo.

1. Poisson Manifolds

Let M be a smooth finite-dimensional manifold.

DEFINITION 1.1. A bivector field II € V(M) = I'(A*TM) on M is a Pois-
son bivector field if it is a Maurer-Cartan element of the graded Lie algebra
(V(M)[1], [, ]sn) — see Lemma 4.18, Chapter 2 — i.e. if

[IL, gy =0
is satisfied.
A pair (M,II) with M a smooth finite-dimensional manifold and II a Poisson

bivector field on M is called a Poisson manifold.

EXAMPLE 1.2. (a) 0 € I'(AT'M) is a Poisson structure for arbitrary M.
(b) Let X be a two dimensional manifold. Since T'(A*T'M) = {0}, any bivector
field on X is a Poisson bivector field.
(c) Consider a smooth function f from an open subset U of R? to R. Then

_or(o oy o (o 9N Of (0 O
= Ox (03/ " az) iz (81’ " 8@/) * dy (02 " 8:5)

is a Poisson bivector field on U.

45
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(d) Let g be a finite dimensional vector space over R and
[ )N — g

a skew symmetric bilinear map. This map may also be interpreted as an
element of g ® A?*(g*), i.e. as an linear bivector field Z on g*. It is a
straightforward calculation in a basis that [Z, Z]sy is equal to the linear
trivector field associated to the Jacobiator

J(x,y,2) = [z, [y, 2] + [z, [z, y]] + [y, [z, 2]].

Consequently, Z is a Poisson bivector field if and only if (g, [-,-]) is a Lie
algebra.

(e) Let M be a manifold and w a two-form on M such that the vector bundle
map

w# : TM — T*M
given by contraction with w is an isomorphism. Then
(W)L T*M — TM

is skew self-adjoint and hence can be interpreted as a bivector field which

we denote by w™!. A short calculation in local coordinates shows that

[w™ w s is equal to minus the vector field given by (A3w#)(dprw).
Consequently w™! is a Poisson bivector field if and only w is closed with
respect to the de Rham differential, i.e. (M,w) is a symplectic manifold.

REMARK 1.3. As observed in Lemma 4.18 in Chapter 2, the triple
(VO[T Jsn), € (M)A], pr{1])

is a V-algebra, see Definition 3.1 in Chapter 2. By Definition a Poisson bivector
field II is a Maurer—Cartan element of (V(M)[1], [, ]sn), hence it yields a Pa-
algebra structure on C*(M). The only nontrivial higher derived bracket is the
binary operation given by

(f7 g) = _HH7 f]SNag]SN~

The minus sign is an effect of the décalage-isomorphism.

LEMMA 1.4. Given a Poisson manifold (M,11), the operation

{f,9}u = —[[1I, flsn, glsn

equips the algebra C>° (M) with the structure of a Poisson algebra (i.e. a graded
Poisson algebra of degree 0 concentrated in degree 0).

We refer to {-, -} as the Poisson bracket associated to the Poisson bivector field
I1.
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PROOF. As observed in Remark 1.3 the operation {-,-}; can be seen as the
higher derived bracket associated to the Maurer—Cartan element II of the V-
algebra (V(M)[1], [, -]sn,C®(M)[1],pr[1]). The vanishing of the Jacobiators as-
sociated to ({-,-}m) reduces to the Jacobi identity and the derivation property
introduced in Definition 4.15 in Chapter 2 translates into the fact that {-, -} is a
biderivation with respect to the multiplication on C*(M). O

REMARK 1.5. In fact, the process Il — {-, -} can be reversed: every biderivation
{-,-} of C*(M) is given as the derived bracket associated to some bivector field
Z. The calculation

{fdg.hiztz = [Z flsn, 12, glsn, hlsn]sn =
[[Z, flsn. [Z. glsn], s + [[Z, glsw. [[Z, flsn, ]sn]sn
= [[Z, 1,12, g]sn]swlsn, Plsy + [[f, |2, [Z, glsn]sn]sn, hlsn
+Z, glsn, [[Z, flsn, hlsn]sn

= —Z,11Z, g]sn, flsn]sns hlsy + %[[f, [1Z, Z]sn, glsn]sn, hlsn
+[Z, glsn. [|Z, flsw, h)sn]sn
= ({9, /)2 hho + {0, (- hh ks = S1Z Zlsw. gl flsw, Blsw

yields
{f g, h}zyz —{{f 9}z, h}z —{9.{[ . h}z}z = [[[[Z Zlsn, flsn, glsn, hlsw.

Non-degeneracy of [-,-]sy and the Jacobi identity for {-, -}, force [Z, Z]sn to
vanish.

DEFINITION 1.6. Let (M, II) be a Poisson manifold. The Hamiltonian vector field
Xy associated to f € C®(M) is given by

Xf = _[H> .ﬂSN
This yields a vector bundle map II# : T*M — TM: locally any element ¢ € T M

can be written as dpgf|, for some locally defined smooth function f on M. We
set

I* () == Xl
LEMMA 1.7. The description of II# given above yields a well-defined vector bundle

map.

PRrROOF. Let f and g be two locally defined smooth functions satisfying

dDRf‘x == dDRg‘x-

By changing f to f — f(0) and g to g — g(0) we can assume without loss of
generality that f(z) = 0 = g(x). Then dpgrf|. = dprg|. implies that (f — g)
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vanishes at least quadratically in x (quadratically with respect to some chart —
and equivalently: any chart). In local coordinates we have

0f—g) 0
Xy—X,=—[II, (f — = m———
r =Xy =~[L(f ~ g)lsw Z R
and consequently X¢|, = X/,
Linearity of II# is straightforward. U

REMARK 1.8. The Poisson bracket {-, - };1 associated to a Poisson bivector field II
on M can be written as

{f.9}n = 0¥ (dprf), 9lsy =< ¥ (dprf).dprg > -

Here < -, - > denotes the pairing between vector fields and one-forms on M induced
by the contraction between T'M and T*M.

DEFINITION 1.9. Let (M, II) be a Poisson manifold. The group of automorphisms
Aut(M,1I) of the Poisson algebra (C*°(M),{-, }m) is given by all invertible mor-
phisms ¥ : C*(M) — C*(M) of R-modules which satisfy

(a) W(f-g)=W(f) V(g) and
(b) ¥({f,g}m) = {¥(f), ¥(9)}n

for arbitrary f,g € C®(M).
LEMMA 1.10. The map that associates to ¢ € Diff (M) the algebra automorphism
" CO(M) —C>®(M), fr foop

induces an isomorphism between the group of Poisson diffeomorphisms Diffy (M),
i.e. diffeomorphisms ¢ satisfying

v ({f93u) = {¢"(f), ¥ (9)u
and Aut(M,1I).

PROOF. The proof relies on the fact that for every automorphisms ¥ of the
unital algebra C*°(M) there is a unique ¢ € Diff (M) such that ¥ = ¢*, see  AMR]
for instance. 0

DEFINITION 1.11. Let (M, II) be a Poisson manifold. A vector field X € I'(T'M)
is Poisson if [ X, |gy = Lx(II) = 0.

LEMMA 1.12. Every Hamiltonian vector field is a Poisson vector field.

PROOF. A Hamiltonian vector field is by definition equal to —[II, f]sx for some
smooth function f. The calculation

[—[IL, flsn, sy = [IL [IL, flsnlsn = [IL, Hlsn, flsn — (1L, [IL, flsn]sn
implies that [—[II, f]sn, II]sny vanishes. d
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LEMMA 1.13. Suppose (M,II) is a Poisson manifold. Let (X;)icjo1) be a smooth
one-parameter family of Poisson vector fields, i.e. a section of the pull back of
TM — M along M x [0,1] — M, such that its restriction to M x {s} = M is a
Poisson bivector field. Assume that (p¢)icpo] s the smooth one-parameter family
of diffeomorphisms generated by (Xi)icoq), i-e-

(a) there is a smooth map ¢ : M x[0,1] — M such that the composition with
M = M x {t} — M x [0,1] is equal to @; for arbitrary t € [0, 1],

(b) o = idy; and

(b) %|t:s<pt - Xs

Then @4 is a Poisson-diffeomorphism for all s € [0, 1].

v, holds for arbitrary s € [0, 1].

PrRoOOF. The flow equation above is equivalent to the following equation

Clest() = e2(Xi o)

for arbitrary s € [0, 1], see [Mi] for instance. Here ¢*(-) := T'(p;1)(-) o p, denotes
the pull back of multivector fields along the diffeomorphism .

Consequently

d * *
£|t:s()0t (I1) = @3 ([ X, M]sn) =0
since X, is Poisson and hence

os({fr9tn) = =i ([T, flsn, glsn) = —[lws(ID), @3 (f)lsn, " (9)]sn
= —[[IL @i ()lsn, €5(9)]sn = {0i(f), ¢i(9) .

O

COROLLARY 1.14. FEvery smooth one-parameter family of diffeomorphisms gener-
ated by a smooth one-parameter family of Hamiltonian vector fields is a smooth
one-parameter family of Poisson diffeomorphisms.

DEFINITION 1.15. Let (M, II) be a Poisson manifold. A smooth one-parameter
family of diffeomorphisms (¢¢)cjo,1) starting at the identity is a smooth one-
parameter family of Hamiltonian diffeomorphisms if a smooth function F' : M X
[0,1] — R exists such that

d
sy = X
dt‘t’ Pt Fs

Ps

holds for arbitrary ¢ € [0,1]. Here Fy := F(-,s) denotes the restriction of F' to
M x {s}. We denote the set of smooth one-parameter families of Hamiltonian
diffeomorphisms of (M, I1) by Ham (M, II).

We say that a diffeomorphisms ¢ is a Hamiltonian diffeomorphism if a smooth one-
parameter family of Hamiltonian diffeomorphisms (¢¢)scpo,1] exists such that ¢; =
. We denote the set of Hamiltonian diffeomorphisms of (M, 1I) by Ham(M,II).
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LEMMA 1.16. Given a Poisson manifold (M,I1), the composition of diffeomor-
phisms equips the sets Ham(E, I1) and Ham(M, IT) with the structure of groups.

We refer to Ham(M, 1) as the group of smooth one-parameter families of Hamil-
tonian diffeomorphisms of (M, II) and to Ham(M,II) as the group of Hamiltonian
diffeomorphisms of (M, I1) respectively.

PROOF. See Lemma 5, Chapter 6. O

LEMMA 1.17. Let (M,1I) be a Poisson manifold. The following sequence is a
complex of R-modules

[Hv'}SN [Hv']SN

0 —=C(M) T(TM) T'(A2TM)

- —=T(A"T M) s (AT M) —— - -

Moreover [I1, -]sn is a graded derivation of V*(M) of degree +1, i.e. [IL,-]sn is a
differential.

PROOF. The graded Jacobi identity for [-, -] xg implies
L 11, Y]sn]sn = [[II, Hsn, Y]sn — [IL [IT, Y] sn]sn
and hence [I1, [I1, /| sy]sn = 0.
The derivation property follows from the fact that [-, -]sx is a graded biderivation,

see Lemma 4.14 in Chapter 2. 0

DEFINITION 1.18. Given a Poisson manifold (M, IT), we refer to the complex
(V(M), dn = [IL, Jsn)

as the Poisson complex associated to (M, 1I).

The cohomology Hy(M,R) is referred to as the Poisson cohomology of (M, 11).

REMARK 1.19. This complex and its cohomology were first considered by Lich-

nerowicz ([L]).

The complex (V(M), dir) can be interpreted as the smooth graded manifold 7*[1] M
equipped with a cohomologcial vector field. As such it is equivalent to a Lie
algebroid structure on T*M, see [dSW] for instance.

LEMMA 1.20. Let (M,II) be a Poisson manifold. Then the following diagram of
R-modules is commutative

(n+1) (_11#

QnJrl(M) A (=1I7) VnJrl(M)
dDRT Tdn
n(_T[#

(M) — s Y ()
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and one obtains a morphism of cohomologies

[AIT#] - H(M,R) — Hy(M,R).

PROOF. Observe that both dy; o A"(—I1#) and A1) (—T1#) o dpy are graded
derivations of Q(M) with values in V(M) where V(M) is a module over Q(M)
via ad o A(—II#). Hence it suffices to know their images on functions and exact
one-forms since they generate Q(M) as an algebra.

So given any function f on M we compute

du(f) = [, flsw = —(=[IL flsn) = =17 (dprf).

Furthermore

A*(—=I1#)(dpr(dprf)) =0 and

dn(~T*(dpaf)) = 0,1, Flswlsx = 50 M, flsx =
U

REMARK 1.21. The first four cohomology groups HY(M,R),H (M, R), HZ(M,R)
and H3(M,R) posses a geometric interpretation. They contain Casimir func-
tions, equivalence classes of Poisson vector fields modulo Hamiltonian vector fields,
equivalence classes of infinitesimal deformations of IT modulo trivial deformations
and obstructions to extending infinitesimal obstructions to formal ones, respec-
tively. See [dSW] for more details.

Usually it is very hard to compute the Poisson cohomology for a given Poisson
manifold. Let us add some remarks on special cases where the Poisson cohomology
can be computed:

(a) For (M,0) the differential dyy vanishes and consequently Hy(M,R) =
(AT M).
(b) Consider the natural Poisson structure on the dual of a finite dimensional

Lie algebra g over R. The space of smooth k-vector fields on g* is given
by

C™(g") ® Nrg* = Hom(/\kg,Coo(g*)).

Under this identification we obtain a complex which is isomorphic to the
Chevalley-Eilenberg complex of g with values in the g-module C*(g*).
Here the module structure is induced via pull back from the coadjoint
action. Consequently,

Hp(g",R) = H(g,C™(g")).

Observe that if one restricts attention to the space of polynomial multivec-
tor fields on g* one obtains a subcomplex whose cohomology is isomorphic
to H(g,S(g)). Hence there is an inclusion of H(g,S(g)) into the Poisson
cohomology of g*.
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(c) The Poisson cohomology for quadratic Poisson bivector fields in R? was
computed in by Nakanishi in [N].
(d) For R? equipped with the Poisson bivector field

LOf (0 0N of(0 o\ o0
=9z \oy " 0z 0z \Ox Oy oy \0z Ox

for a function f : R® — R satisfying certain algebraic conditions, the
Poisson cohomology was computed in [P].

(e) For (M,w) symplectic the map (w™!)# yields an isomorphism between
(Q(M),dpr) and (V(M),dn), hence Hy(M,R) = H(M,R).

(f) The Poisson cohomology of (S% IT) where S? is interpreted as the ho-
mogeneous space SU(2)/U(1) and SU(2) is equipped with its standard
Lie-Poisson bivector field was investigated in [Gi] and [Roy2].

Instead of trying to the compute the whole cohomology group Hy(M,R) one
could also try to find special cohomology classes. Because [II,II]gy = 0, the
Poisson bivector field IT itself defines a cohomology class [II] € H{(M,R), the
fundamental class of (M,II). Another cohomology class with geometric meaning
is the modular class which was introduced by Weinstein ([W4]). Other charac-
teristic classes whose geometric interpretation is not evident were constructed by
Fernandes ([Fe]).

2. Coisotropic Submanifolds

REMARK 2.1. Let S be a submanifold of the manifold M. The conormal bundle
N*S of S'in M is defined by the following short exact sequence of vector bundles
over S

0 N*S T*|s M T*S 0.

More explicitly NS = {{ € TiM : Yv € TS : £(v) = 0}, i.e. N*S is the
annihilator of T'S in T'|s M.

DEFINITION 2.2. A submanifold S of a Poisson manifold (M, I1) is called coisotropic
if the restriction of the vector bundle map

n# . T"M — TM
to N*S has image in T'S.

LEMMA 2.3. Let S be a submanifold of the Poisson manifold (M,I1). 1t is a
coisotropic submanifold of (M, 1I1) if and only of its vanishing ideal

Is:={fe€C®M): fls =0}
is a Lie subalgebra of the Lie algebra (C*°(M),{-, }n).



2. COISOTROPIC SUBMANIFOLDS 53

REMARK 2.4. Lemma 2.3 can be found in [W3] for instance.

Observe that the property
{Zs,Zs}n C Is

can be checked locally, i.e. it is true if and only if it is true locally in submanifold
charts of S in M.

PRrOOF. First let S be a coisotropic submanifold of (M, II) and f, g two ele-
ments of its vanishing ideal. Consequently the restrictions of dprf and dpgrg to
S yield sections of N*S. Suppose z € S. By Remark 1.8 we have

{f,9}(x) =< (dprf)|s, dpRY|s >

and since II#(dprf)|, is an element of TS and dprg|, lies in the annihilator of
T,S in T,M the term < II#(dprf)|s, dprgl. > vanishes. Hence {f, g}i vanishes
on S, i.e. it is an element of the vanishing ideal.

Now suppose that
{Zs,Is}n C Is

is true. Any element £ € N}S can be written as £ = dpgrf|. for some locally
defined smooth function f vanishing on S. By definition

T#(¢) = Xylo = ~[IL flswl.

holds. If we apply IT#(€) to an element A of NS with A = dpgg|, for some locally
defined smooth function g vanishing on S we obtain

< TI#(€),\ >=< 0*(dprf)|s, dprgs >= {f, 9}u(x).

Because both f and g are locally defined functions lying in the vanishing ideal
of S in M, so is {f,g}u. Hence I1#(£) is annihilated by all elements of N*S.
The fact that the annihilator of the annihilator of some subvector space of a

finite dimensional vector space is the subvector space itself implies that I1#(£) €
T,.S. O

REMARK 2.5. A multiplicative ideal of a Poisson algebra that in addition is a Lie
subalgebra is called a coisotrope of the Poisson algebra.

EXAMPLE 2.6. (a) Every open subset of (M,1II) is a coisotropic submanifold
regardless of 11, since N*S'is a rank 0 bundle.

(b) Every codimension one submanifold of (M, IT) is a coisotropic submanifold
regardless of II. This is due to the fact that the vanishing ideal of S in M
is locally generated by one function and the Poisson bracket of a function
with itself vanishes.

(¢) Every submanifold of a Poisson manifold of the form (M, 0) is a coisotropic
submanifold.

(d) A point x of a Poisson manifold (M, 1) is a coisotropic submanifold if
and only if the Poisson bivector field II vanishes at x.
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(e) A linear subspace of the dual g* of a finite dimensional real Lie algebra
(g,[,]) is a coisotropic submanifold if and only if it is the annihilator of
a Lie subalgebra h C g. This is easily verified with the help of a basis of
g that extends a basis of b.

(f) A submanifold S of a symplectic manifold (M,w) is coisotropic if and
only if the w-orthogonal to T'S given by

TS = {ve T,M:Yu € T,S : w,(v,u) =0}

is a subvector bundle of T'S. In particular a submanifold S is Lagrangian,
ie. TH“S = TS holds, if and only if it is coisotropic and dim(S) =
5 dim(M).
LEMMA 2.7. Let (M,1II) and (N, A) be two Poisson manifolds and ¢ : M — N a
smooth map.

The map ¢ is a Poisson map, i.e.
e ({f,970) =L (), ¢"(9)}n
is satisfied for arbitrary f,g € C*(N), if and only if
graph(y) := {(m,p(m)) € M x N :m € M}
is a coisotropic submanifold of the Poisson manifold (M x N, —I1+ A).
PRrOOF. Denote the graph of ¢ by G. First we assume that G is a coisotropic

submanifold of the Poisson manifold (M x N, —II + A). Hence by definition the
image of N*G under

(=T +AN)# . T*(M x N) — T(M x N)

lies in T'G. Since G is diffeomorphic to M, T'G is diffeomorphic to TM. More
explicitly, the bundle map

(id4T¢) :TM - TM x TN, v—v+Tp-v
maps onto 7T'G and induces the isomorphism TM = TG.

Consider the map p: G — M x N 22, N and pull back T*N along p. There is a
bundle map

(p*—id) : p"(T*N) = T*M X T*N, & p*(&) —&.
It maps into the conormal bundle N*G of G'in M x N and for dimension reasons

it actually induces an isomorphism p*(T*N) = N*G. Now we can spell out the
condition for G being coisotropic: it means that

(I + M) (™ (E)lo = Elpw) = ~TTF (0" (E) ] — A (€)lpta)
is equal to v 4+ T, - v for some v € T, M. This is equivalent to

A (©)lo@) = Togp - I (*(§)) s
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being satisfied for arbitrary x € M and ¢ in 1% N. In particular

<CAH(E), v > o) =< TTH(9"(O) ] 0" (1) o

holds for arbitrary x € M and &, v € T5N. Let f, g be two arbitrary smooth
functions on N. We set £ = dprf and v = dprg and by Remark 1.8 we obtain

o ({f,93a)(@) = {f, 9} alo@) = {#7(f), " (9) }n(2)
for arbitrary x € M and consequently ¢ is a Poisson map.

On the other hand suppose that ¢ : M — N is Poisson. Since any element of
T ;(I)N can be written as the evaluation of an locally defined exact one-form at
(), we recover

A ()o@ = Totp - T (97(6)) o

from ©*({-,-}a) = {¢*(:), ¥*(-)}nr and hence the graph of ¢ is a coisotropic sub-
manifold of (M x N, —II+ A). O

REMARK 2.8. Lemma 2.7 is the starting point for an attempt to form a category
whose objects are Poisson manifolds and the set of morphisms from (M,1I) to
(N, A) is given by coisotropic submanifolds of (M x N, —IT+ A) instead of Poisson
maps from (M,II) to (N,A). The only obstruction is that one has to impose
certain transversality assumptions in order for the composition to be well-defined.
See [W3] for more details on these matters.

LEMMA 2.9. Let S be a coisotropic submanifold of a Poisson manifold (M,1II) and
¢ a Poisson diffeomorphism of (M,1I).
Then the image of S under ¢ is a coisotropic submanifold of (M,1I).

ProoF. It is straightforward to check that the vanishing ideals of S and of
©(S) in M are related by
()" (Zs) = Zys)-

This relation and Lemma 2.3 imply

{Zos) Los)tn = {(¢7)"(Zs): (¢7)" (Zs)}n
= (¢ )" ({Zs, Istn) C (¢7)"(Zs) = Lo(s).-
Consequently Z,s) is a coisotrope of (C*(M),{-,-}n) and by Lemma 2.3 one
concludes that the submanifold ¢(5) is a coisotropic submanifold of (M,II). O
REMARK 2.10. Let S be a submanifold of a manifold M. The normal bundle of
S in M is defined by the following short exact sequence of vector bundles over S

pr

0—T1T5——=T[sM NS 0.
More explicitly, NS =T, M/T,S, i.e. NS is the quotient of T'|¢M by T'S.

It is well-known that there always is an embedding of the manifold N.S into M
such that the restriction to S is the identity, see [Hi| for instance. Moreover any
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two such embeddings o9 and o7 can be connected by an isotopy of embeddings,
i.e. there is a smooth map

Y:NSx[0,1] = M

such that
(a) The two restrictions of ¥ to NS x {0} and NS x {1} equal oy and oy
respectively.
(b) The restriction of ¥ to S x [0, 1] is (idg)scpo,1-
(¢) The map

Y xid: NS x[0,1] = M x [0,1], (n,t)— (X(n,t),t)

is an embedding. Consequently the restriction of ¥ to NS x {t} is an
embedding for arbitrary ¢ € [0, 1].

The dual of the normal bundle NS is the conormal bundle N*S introduced in
Remark 2.1.

DEFINITION 2.11. Given a coisotropic submanifold S of a Poisson manifold (M, IT),
we define the Lie algebroid differential

On :T(A°NS) — T(ATINS)
of S'in (M, II) by

A(X) == Apr <[H,X]SN|S>

where X denotes a section of ANS and X denotes an arbitrary multivector field
on an open neighbourhood of S in M such that the image of X|g € I'(AT'|sM)
under

Apr : T(AT|sM) — T'(ANS)
is equal to X € I'(ANS).
LEMMA 2.12. Let S be a coisotropic submanifold of a Poisson manifold (M,11).

(a) The Lie algebroid differential O is well-defined.

(b) It is a coboundary operator on I'(A*NS), i.e. Ogo dy = 0.

(¢c) It is a graded derivation of T'(AN*NS) of degree +1.

(d) The dual of the restriction of —11# : T*M — TM to N*S induces a
morphism of chain complexes from (QUS),dpr) to (I'(ANS),0n). This
morphism descends to a map from H(S,R) to H(I'(ANS), 0n).

PROOF. (a) Two things have to be verified: every section X of ANS can
be extended to a multivector field X on an open neighbourhood of S in

M and 0 (X) does not depend on the specific choice of the extension X.

Fix a Riemannian metric g on T'M. This restricts to a fibre metric

on T|sM and the orthogonal complement of 7S in T'|¢M is isomorphic
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to NS, i.e. the short exact sequence defining NS splits and we obtain an
injective vector bundle map

ANS < AT|gM.

This allows us to interpret X as a section of AT|sM. Next choose an
embedding of NS into M such that the restriction to S is equal to the
identity (see Remark 2.10). The image of this embedding is an open
neighbourhood U of S in M which carries the structure of a vector bundle
over S. The pull back of T|sU — S along U — S is isomorphic to
TU — U. Consequently the following square is Cartesian

ATU — AT |sU

|

U S.

The image of X under the pull back map I'(AT|sU) — I'(ATU) is a
multivector field X on U such that Apr(X|s) = X holds.

The proof that dr(X) is independent of the specific choice of extension
X reduces to checking that

Apr([IL, Z]snls) = 0 (2.1)
holds for all multivector fields Z defined on an open neighbourhood of S
in M such that Apr(Z|g) = 0.

Observe that ['(AT'M) is locally generated by C*(M) and I'(TM).
Moreover Apr(-|s) =0 and Apr([Il,-]sy|s) = 0 are multiplicative condi-
tions, i.e. if X and Y satisfy either of them, so does X A'Y. Assume the
implication

/\pl"(Z|5) =0= /\pl"([H, Z]SN‘S) =0

holds for functions and vector fields. We saw that choosing a Riemannian
metric on M and an embedding of N.S into M as an open neighbourhood
U of S'in M leads to a splitting of T'U into the direct sum of the pull back
of TS and NS under U — S respectively. Now let V' be a submanifold

chart of S in U centered at x € S. Choose a local frame (&, -, &) of
TS and a local frame (1, ..., xn) of NS. These yield a local frame of TU.
We assume that & = 32 for some local coordinate system (z!,...,z™)

of S. Any section X € I'(ATV) is locally given by a sum of wedges of
functions on U and pull backs of elements of the local frames of T'S and
NS respectively. Consider a term of the form

X = N NG AXG N A,
with f € C*(V) and “—” denotes the pull back. The condition
Apr(Xls) =0
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implies that f|g = 0 or k # 0 since pr(¢,) = 0 and pr(xs|s) = xs hold
for arbitrary r = 1,...,m and s = 1,...,n respectively. By assumption
either pr([IL, f]ns|s) = 0 or Apr([IL,¢; Jsn|s) = 0. But if an element Y
of I'(ATV) satisfies Apr(Y|s) =0 and Apr([IL,Y]sn|s) = 0 then

pr([H,Y A\ Z]SN‘S) =0

holds for arbitrary Z € I'(ATV'). Consequently A pr([Il, X]sn|s) vanishes
for arbitrary X € I'(ATV') with Apr(X|s) =0.

It remains to show that f|g = 0 implies pr([Il, flsn|s) = 0 for f €
C*(M) and that for X € I'(T'M) with pr(X|s) = 0, Apr([II, X]sn|s) =0
holds. Pick a function f with f|s = 0. Consequently dpgf|s is a section
of N*S. Recall that

—[I1, flsvls = I (dprf)ls.

Because S is a coisotropic submanifold of (M,II), the image of dpgrf|s
under II#|g is a section of T'S. Hence the image of [II, f]sn|s under
pr:T|sM — NS =T|sM/TS vanishes. On the other hand pick a local
frame (€,,...,€,,,X1,---,X,,) of TM as above. The elements ¢, satisfy
P(&,]s) = 0. In this frame the Poisson bivector field is of the form

% S TGN+ ) T AX, + % > %, A X

ij=1 i a,8=1

The fact that S is a coisotropic submanifold of (M, II) is equivalent to
[1%%|g = 0 for arbitrary o, 3 =1,...,n. We obtain

. n o8
(L Elewls) = =5 3 () lsxa A v

T
2 ! ox
Since I1*? vanishes on S, so does ‘9;;46 —recall that 2" is a local coordinate

function on S.
(b) Given X € I'(ANS) we want to compute

P

On(On(X)) = Apr([IL, A pr([IL, X]snls)lsnls)

where X is some extension of X to a multivector field on an open neigh-
bourhood of S'in M. We are free to choose any extension of A pr([Il, X]sn|s)
to a locally defined multivector field and we pick the extension

/\pI‘([H,X]SN|5) = [H,X]SN.

Consequently

On(0n(X)) = Apr([I1, [IL, X]sn]snls) = APT(%[[HaH]SNaX]SN\S) = 0.
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(¢) Given two homogeneous elements X, Y € I'(ANS) we want to compute
8H(X A Y) = /\pI’([H, XA Y]SN‘S)-

Choose two extensions X and Y of X and Y respectively. Then X AY is
an extension of X A'Y and hence

on(X AY) = Apr([II, X AY]snls)
= Apr (I Xsx A Y+ (~1)XIX AL Vsw)ls)
= Apr([IL X]snls) AY + (=1)FIX A P([I1, Y]snls)
= I(X)AY + (=DFIX Aop(Y).
(d) We claim that the diagram

A(n+1)

Q+(8) —= T (APHDNS)

s} ol

0" (S) — L P(APNS)

commutes, where ¢ : T%S — NS is the vector bundle map dual to II|y+g :
N*S — TS. Both A®*N¢ o dpp and O o A”C are graded derivations of
Q(S) with values in the 2(S) module (I'(ANS), ado AC) degree +1. Since
Q(M) is locally generated by C>°(M) and exact one-forms it is enough to
check the commutativity of the above diagrams on such elements.

Given f € C*(S), we have to compare the two sections

C(dprf)(-) =< dprf,11*|s(-) > and

pr([IL, flls)
of '(NS). To this end we pick an arbitrary A € I'(N*S) and compute

<pr([IL, flls),A > = <I[I, flsnls, A >
= < -II*(dprf)ls, A >
= <dpgpfls, IT#|s(N) >
= <dpgf,0%|s()\) >
= ((dprf)(\)

where we used the facts that II is skew self-adjoint and that N*S is the
annihilator of TS in T'|sM.
Consider the exact one-form dprf. On the one hand we have

(A (dpr(dprf)) = 0.
One the other hand we have show that

on(¢(dprf)) = Apr([IL, ((dprf)]snls)
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vanishes. We proved before that pr([II, flsn|s) = ¢(dprf), hence

L, flsn

is an extension of ((dpgrf) and we obtain

on(C(dprf)) = Apr([IL [I1, flsn]sn|s) = Apr(0) = 0.
O

DEFINITION 2.13. Let S be a coisotropic submanifold of a Poisson manifold
(M,II). The Lie algebroid complex associated to S in (M,II) is (I'(A*NS), On)
and the Lie algebroid cohomology of S in (M, 11) is H*(I'(ANS), On).

REMARK 2.14. The complex (I'(ANS),0n) can be seen as the smooth graded
manifold N*[1]S equipped with some cohomological vector field that encodes .
As such it is equivalent to a Lie algebroid structure on N*S. The Lie algebroid
structure of a coisotropic submanifold of a Poisson manifold is spelled out in [W 3]
for instance.

The zero cohomology group HY(T'(ANS), Or) has a geometric interpretation which

we explain next.

DEFINITION 2.15. Let S be a coisotropic submanifold of a Poisson manifold

(M, 1I). The image of
H# N*S - N*S —- TS

defines a distribution F(S) on S, i.e. one obtains a family of subvector spaces
F.(S) of T,.S parametrized by x € S.

DEFINITION 2.16. A distribution F of a smooth manifold M is called

(a) smooth if for every point & € M the vector space F, is spanned by the
restriction to x of locally defined vector fields on M which take values in
I
(b) involutive if there exists a set V of locally defined vector fields on M that
take values in F such that
(i) for every x € M the vector space F, is the linear span of

{X];: X eV} and

(ii) [V,V]SN cV
hold;

(c) integrable if for every x € M there is an immersed submanifold L, of M
containing x such that for all y € Z~1x we have T}, L, = F,.

THEOREM 2.17. Fvery smooth involutive distribution is integrable.

REMARK 2.18. This Theorem is usually attributed to Frobenius who established
it in the regular case. It was later extended by Stefan ([Ste]) and Sussmann ([Su))
to the setting of Theorem 2.17. Our main reference is [Mi].
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If a distribution is integrable there is a unique maximal immersed submanifold L,
associated to every point x € M such that for all y € L, we have T, L, = F,. To
be more precise, the set of all immersed submanifolds N satisfying

(a) x € N
(b) Vy € N: TyN = F,
(¢) N is connected
is partially ordered with respect to inclusion and it contains a unique maximal

element with respect to this partial ordering. This immersed submanifold is called
the leaf through x.

LEMMA 2.19. The distribution F(S) associated to a coisotropic submanifold S of
a Poisson manifold (M,I1) is smooth and involutive and hence integrable.

PROOF. Define V to be the set of locally defined vector fields given by I1# (dpg f)
with f an arbitrary locally defined smooth function on M which vanishes on S.
For arbitrary x € S every element £ of the vector space NS can be written as

§ = (dprf)|x
for some locally defined smooth function f vanishing on S. Consequently every
vector v in F,(S) = [I#(N}) is given by
v = H#(dDRf)‘a:

for some locally defined smooth function f vanishing on S. Hence the subset V' of
locally defined vector fields spans F,.(S) for arbitrary x € S, i.e. the distribution
F(S) is smooth.

We claim that X,Y € V implies [X,Y]sy € V. Suppose X = II#(dpgrf) and
Y = [I#(dpgrg) for two locally defined smooth functions f and g that vanish on
S. Since f and g are locally defined elements of the vanishing ideal of S in M, so
is {f, g}n and because of

[I#(dprf), 1*(dprg)]sy = [—[IL flsn, —[IL, glsn]sn

= [IL, [f, [IL, g]sn]sw]sn + [f, [IL [IL, glsn]sn]sn
= [IL, —[[IL, glsn, flsnlsn + [f, 0lsn

= [I1,{g, f}ulsn

= —[IL{f, g}nlsn

= H#(dDR{fa gtn)

the set V is closed under [-, -]gy. This means that the foliation F(.S) is involutive.
U

REMARK 2.20. By Lemma 2.19 the distribution F(.S) associated to a coisotropic
submanifold S of a Poisson manifold (M, II) is integrable, hence there is a unique
leaf through every point x € S. We denote the set of leaves by S and refer to it



62 3. COISOTROPIC SUBMANIFOLDS

as the quotient space. It is the set of equivalence classes of elements of S under
the equivalence relation ~z(g) defined by

T ~r(s) y & v and y lie in the same leaf.

We equip the set S with the final topology with respect to the natural projection
S — S, i.e. the open subsets of S are those subsets whose preimages in S are
open.

The quotient space S is usually a very badly behaved space, e.g. it might be non-
Hausdorff. In case it is Hausdorff one would like to equip the topological space S
with the structure of a smooth manifold such that S — S becomes submersive.
However even if S is Hausdorff such a smooth structure on S might not exist.

DEeFINITION 2.21. Let S be a coisotropic submanifold of a Poisson manifold
(M, 1I).

The quotient algebra A(S) is the set of all elements of C*>°(S) that are annihilated
by all local vector fields on S with values in F(.5).

LEMMA 2.22. The quotient algebra A(S) associated to a coisotropic submanifold
S of a Poisson manifold (M,11) is a subalgebra of C*°(S). Furthermore the map

A(S) x A(S) — A(S),  (f.9) = {f-F}uls

where f and g are two locally defined smooth functions on M whose restrictions
to S are equal to f and g respectively, defines a Poisson bracket {-,-}n on A(S).

PROOF. First we proof that
{h,k}nls =0

holds under the assumptions that A vanishes on S and that k|g is contained in
A(S). Recall that

{h,k}n =< I#(dprh),dprk >= (II* (dpgrh)) (k)

holds. Because h vanishes on S, the one-form dpgrh is a locally defined section of
N*S. The locally defined vector field IT#(dprh) takes values in the distribution
F(S). But elements of A(S) are annihilated by such local vector fields. This
implies that {-,-}n is well-defined.

All the other properties follow easily now: it is obvious that {-, -}y is skew-
symmetric, and for arbitrary functions f, ¢ and h in A(S) with extensions f,
g and h respectively one computes

{frg-hin = {f7.ﬁ}ﬂ‘5:{f7§'ﬁ}ﬂ|5
= <{JF7 §}H|5) h+g <{fa E}H‘S)
= {f.9tuh+g{f. h}n
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and

(4o Wb = {7 3. hhulstuls = (. {3, R} }uls.

These calculations imply that {-, -}y is a biderivation and a Lie bracket on A(S).
U

REMARK 2.23. Let S be a coisotropic submanifold of a Poisson manifold (M, IT).
Suppose that the quotient space S is Hausdorff and can be equipped with the
structure of a smooth manifold such that the surjection S — S is submersive.
Observe that this condition determines the smooth structure on S completely: a
real-valued function on S is smooth if and only if its composition with S — S is
smooth.

We claim that in this case the algebra of smooth functions C*(S) is isomorphic
to the algebra A(S). In fact, the algebra of smooth functions on S is isomorphic
to the algebra of smooth functions on S that are constant along the leaves of F.
By definition the leaves of F are connected, thus the condition on functions to
be constant along a leaf is equivalent to the condition that all local vector fields
tangent to the leaf annihilate the functions under consideration. But this is exactly
the condition we imposed on function of C*(S) in order to lie in A(S). Because
C>(S) is isomorphic to A(S) as an algebra,it is also naturally equipped with a
Poisson bracket {-, -}y, i.e. S comes along with a Poisson bivector field which we
denote by II

In summary A(S) seems to be a good candidate for the “algebra of smooth func-
tions” on the quotient space S, even in case S is lacking good topological or
differential geometric properties.

LEMMA 2.24. Let S be a coisotropic submanifold of a Poisson manifold (M,11).

Then the quotient algebra A(S) is isomorphic to the zero’th Lie algebroid coho-
mology HY(T(ANS),0n) of S in (M,TI).

PROOF. The zero’th cohomology of the Lie algebroid complex of S in (M, 1)
is the kernel of

c>(S) 2L T (N S)
i.e. a function f is in H*(T'(ANS),dy) if and only if

On(f) = pr([IL, flswls)
vanishes. In the proof of part (d) of Lemma 2.12 the identity

< pr([IL, flsnls), A >=< II#[s(\), dprf >= (I1*]s(N) (f)

was established for arbitrary A € I'(N*S). Hence d(f) = 0 is equivalent to the
condition that f is annihilated by all local vector fields on S with values in the
distribution F(S). This holds if and only if f € A(S). O
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EXAMPLE 2.25. Similar to the computation of the Poisson cohomology of a given
Poisson manifold, the computation of the Lie algebroid cohomology of a coisotropic
submanifold is in general an unmanageable task. However there are special cases
where information about the Lie algebroid complex and the cohomology beyond
degree 0 is available.

(a)
(b)

For an open submanifold S of (M,II) the Lie algebroid complex is just
0—C>®(S)—0.

Let S be a submanifold of (M, II) of codimension 1. The Lie algebroid
complex is

0—C=(S) 2L D(NS) =0

where 9 (f) = —pr (X 7l s). Recall that f is an arbitrary extension of f
to an open neighbourhood of S in M and that pr denotes the projection
T|sM — NS. Consequently the first Lie algebroid cohomology of S is
given by

['(NS)/ pr(Ham(M)|s),

i.e. the quotient of I'(/V.S) by the normal part of the restriction to S of
all possible Hamiltonian vector fields on M.

For any submanifold of the Poisson manifold (M,0) the differential dp
vanishes and the Lie algebroid cohomology is just the space of sections of
the exterior algebra of its normal bundle.

Let x € M be a point of M where II, vanishes. Choosing a suitable chart
arount x this amounts to considering a Poisson structure II on R™ that
vanishes at 0. Now II can be interpreted as a map I1%/(z) from R" to
o(n), i.e. as a smooth function on R™ which takes values in the vector
space of skew-symmetric n x n-matrices. Because of I17(0) = 0 there are
smooth functions I () such that

n

1 (x) = Z 7 ()",

k=1

Here x* denotes the k’th linear coordinate on R™. It is straightforward to
check that

(ef,%) — Y mE (o)t
k=1

defines the structure of a Lie algebra on (R™)*. We denote this Lie algebra,
which is known as the linear approzimation of II at = ([W2]), by g..
Observe that this structure is independent of the specific choice of the
functions I (x).
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The Lia algebroid complex associated to x can be identified with the
Chevalley—Eilenberg complex of g, with values in the trivial module R.
This implies that the Lie algebroid cohomology of z is given by H(g,,R).

(e) Consider h C g a Lie subalgebra of a finite dimensiona Lie algebra over
R. As observed in Examplex 2.6 (e), this implies that the annihilator §°
of h in g is a coisotropic submanifold of g*. The Lie algebroid complex
of h is given as follows: b acts on g by the adjoint action. Because b is
a Lie subalgebra one obtains an action on the quotient vector space g/b.
This induces the structure of a module over h on C* ((g/h)"). The Lie
algebroid complex of h° coincides with the Lie algebra cohomology of b
with values in the module C* ((g/h)"). Consequently the Lie algebroid
cohomology of h° is H(h,C> ((g/h)")).

(f) Assume S is a Lagrangian submanifold of a symplectic manifold. It is easy
to check that in this case the morphism (Q2(L),dpr) — (I'(ANS),0,-1)
introduced in Lemma 2.12 (d) is an isomorphism of complexes and hence
the Lie algebroid cohomology of L is isomorphic to its de Rham cohomol-

ogy.

3. The homotopy Lie Algebroid

REMARK 3.1. In the previous Section the Lie algebroid cohomology
(I'(ANS), On)

associated to a coisotropic submanifold S of a Poisson manifold (M, II) was intro-
duced. We saw that the zero’th cohomology HY(T'(ANS), dyp) is isomorphic to the
quotient algebra A(S) which comes equipped with a Poisson bracket {-,-}. Can
this Poisson bracket be lifted from H°(T'(ANS), ) to the cochain level, i.e. is
there a natural structure on the complex (I'(ANS), drp) that induces the Poisson
bracket {-, -}z on the zero’th cohomology? An affirmative answer to this question
which will be presented below was found in [OP] and [CF].

REMARK 3.2. Given a vector bundle E % S there is a short exact sequence
0—T7S—T|sE—FE—0

of vector bundles over S. The inclusion 'S — T|sE is induced from the embed-
ding of S into E as the zero section. The quotient of these two vector bundles
is naturally isomorphic to the vector bundle E. Moreover this short exact se-
quence naturally splits: there is an inclusion of the vector bundle E into T'|sFE as
the kernel of the vector bundle morphism T'|¢FE — T'S induced by the projection
E — S. In fact the pull back p*(E) — F of E — S along E % S is the kernel of
TE — TS. In particular I'(AT|sM) splits:

D(AT|sM) 2 T(AE) @ T(AZ'TS @ AE).



66 3. COISOTROPIC SUBMANIFOLDS

As a consequence of the previous paragraph we obtain an inclusion
[:T(AE) % T(Ap*(E)) — T(ATE) = V(E)
and a projection
P:V(E)—T'(NT|sE) — T'(AE).
Because of P o [ =1id, the identity (I o P)o (I o P) = (I o P) holds.
We claim that I(I'(AE)[1]) is an abelian Lie subalgebra of (V(E)[1], [, ]sn). In
fact, given f € C*(S) and X € I'(E), consider
LX), I(Nlsv = LX), p* (/)]s
By definition of [+, -]sx this is equal to the
d . d d
Zlizo (1) 0 61%) = Zlimof (p(6{™)) = Zlizolf o) = 0
where QStI(X) is the one-parameter family of diffeomorphisms of E generated by

I(X). Observe that gbf(x) : E — FE is given by a shift by ¢ - X along the fibres.
Similarly, given another section Y of F, we compute

[[(X), I(Y)]sny = %‘to( f(X))*(](Y)) = %‘tOI(Y)|¢I(X) = %|to](Y) = 0.

t

Observe that the algebra I(I'(AE)) is locally generated by I(C*(S)) and I(I'(E))
and because [, -]sn is a graded biderivation it suffices to check

I(T(E)), 1(C=(S)))sy =0 and [I(T(E)), I(T(E))]sy = 0
in order to verify that I(I'(AE)) is an abelian Lie subalgebra of (V(E)[1], [, -]sn)-

LEMMA 3.3. Given a vector bundle E — S, the graded vector space V(FE)[1] splits
into an abelian Lie subalgebra I(I'(AE)[1]) and a graded Lie subalgebra given by
the kernel of

P[1]: V(E)[1] — D(AE)[1].

Consequently the quadruple
VEAL [ Jsn, IT(AE)[L]), P[1])
1s a V-algebra, see 3.1 in Chapter 2.

PRrROOF. We have to prove that the kernel of P is closed under [, -]sy. Observe
that the kernel consists of exactly those multivector fields on E whose restriction
to S lies in T(AZ'T'S @ AE). Let X and Y be two such multivector fields.

Choose a connection V on E — S. The horizontal lift of multivector fields uniquely
extends to a morphism of algebras

i : T(AT|sN) — V(E)

by declaring ¢ to be the Verticaljft on sections of AE. Let X and Y be the images
of X|g and Y|gs under i. Both X — X and Y — Y vanish when restricted to S.
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Let V be a vector field on E whose restriction to S lies in I'(7°S) and W a
multivector field whose restriction to S vanishes. By definition

[V, Wlsy = o (M) (W)

holds and since the flow ¢ generated by V maps S to itself and W vanishes on
S, so does [V, Wgy. This implies that if U is a multivector field whose restriction
to S lies in T(AZ!'TS @ ANS) and W a multivector field whose restriction to S
vanishes, P([U, W]sy) = 0 holds.

Consequently we have

P([X’Y]SN) = P([Y>Y]SN) +P([X _X>Y]SN)
= P(X,Y]sn)+P(X,Y = Y]sn)
P([Y>?]SN)'

Suppose V and W are vector fields on S and V and W their horizontal lifts with
respect to some connection V. Then the difference of [V, W]sy and the horizontal
lift of [V, W]sn is given by the contraction of the curvature Ry with V and W.
However Ry (V, W) can be interpreted as a vertically acting vector field on E that
vanishes when restricted to S. This implies

P([X,Y]sn) = 0.

An alternative proof that the kernel of P is closed under |-, ]sy can be found in
[BGHHW|. O

COROLLARY 3.4. Given a vector bundle E — S equipped with a Poisson bivector
field 11, the higher derived brackets

A : SU(T(AE)[1]) — T(AE)[2]
G- ®& — P [[ILIE)]sn, 1(&)]sn -+ -], 1(&n)lsn)

define the structure of an Le[1]-algebra on T'(AE)[1]. This is equivalent to the
structure of an Loo-algebra on T'(AFE). We denote the associated family of structure
maps by

(A s A" (I(AE)) — T(AE)[2 — n])nen.

Proor. This is an immediate consequence of Theorem 3.5 in Chapter 2 and
Lemma 3.3. O

REMARK 3.5. Let S be a submanifold of a Poisson manifold (M,II). Every em-
bedding o of the normal bundle NS of S in M into M whose restriction to S is
the identity yields a vector bundle equipped with a Poisson bivector as follows:
The image of ¢ is an open neighbourhood U of S in M and as such it inherits a
Poisson bivector field II|;;. The embedding o induces an diffeomorphism NS = U
and the pull back of Iy equips NS with a Poisson bivector field II,.
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Suppose S is a coisotropic submanifold of (M,II). Then S is also a coisotropic
submanifold of (U,II|yy) and consequently it is a coisotropic submanifold of the
Poisson manifold (NS, I1,).

DEFINITION 3.6. Let S be a submanifold of a Poisson manifold (M, II) and ¢ an
embedding of the normal bundle NS of S into M into M whose restriction to S
is the identity.

The homotopy Lie algebroid of (S,o) in (M,II) is the graded algebra I'(AN.S)
equipped with the L..-algebra given by the higher derived brackets (A?),en asso-
ciated to the Poisson structure II, on the vector bundle NS — S.

LEMMA 3.7. The homotopy Lie algebroid of (S,o) in (M,1I) has the following
properties:

(a) It is a Px-algebra structure — see Definition 4.15, Chapter 2 — i.e.

A(X1® @ Xn—1) ® (CAE))
=N 0@ @ X @O AE+ (DN (@ @ v @) AC
holds for all homogeneous X1, ..., Xn-1,¢ and § in T(ANS).

(b) It is flat, i.e. the component \J € T'(A*E) vanishes, if and only if S is a
coisotropic submanifold of (M,I1). In that case the following statements
hold:

(i) the component

A7 i T(ANS) — T(ANS)[1]

equals the Lie algebroid differential Oy of S in (M, I1), see Definition
2.11,
(ii) the component

A :D(ANS) x I'(ANS) — T'(ANS)

induces a graded Poisson bracket [\§] on H(I'(ANS), On),

(iii) the graded Poisson bracket [N§] restricts to a Poisson bracket on
HY(T(ANS), dn) which is isomorphic to the Poisson bracket {-,-}u
introduced in Lemma 2.22 under the identification

A(8) = H(T(ANS), 0n)

which was established in Lemma 2.24.

PROOF. (a) This follows easily from the fact that [, -]sn is a graded
biderivation.

(b) The zero’th component of the L..-algebra structure on I'(AN.S) is given
by

A = P(IL;)
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where P is evaluation on S followed by the projection AT|s — ANS. For
p an arbitrary section of N*S we calculate

<A, p >=< P(IL,), p >= (II¥|s(p)) mod TS.

Consequently A\ = 0 if and only if II#|s maps any section of N*S to
TS, ie. if and only if S is a coisotropic submanifold of (N.S,II,) and
equivalently a coisotropic submanifold of (U,II|y) for U := o(NS). Be-
ing coisotropic is a local property, i.e. S is a coisotropic submanifold of
(U,11|yy) if and only if it is a coisotropic submanifold of (M, II).

From now on we will assume that S is a coisotropic submanifold of
(NS,I1,). The Lie algebroid differential O of S in (NS, 11,) was defined
by

on(X) = Apr ([T, X]ls)

where X is some extension of X to a multivector field defined on an open
neighbourhood of S in NS, and Apr is the projection T|sM — NS.
Observe that 1(X) is a possible extension of X and that A pr(-|g) is equal
to P:V(NS) — I'(ANS). In summary we obtain

On(X) == P([IL, I(X)]sn)

which is exactly the formula for 5\‘1’. Moreover the décalage-isomorphism
does not change the sign of the differential.
The structure map AJ is a graded skew-symmetric map

[(ANS) x T'(ANS) — T'(ANS)

of degree 0. The vanishing of Aj and of the second Jacobiator associated
to (AZ)nen implies that

O (AZ(C®E)) = £AF(In(C) @) £ AT (¢ ® dn(§))

holds for arbitrary ¢, £ in I'(ANS). Assume ¢ and & are two cocycles of
(I(ANS), On), i.e.

On(¢) = 0 = du(§)

and consequently
I (N (C@E)) =0.
Hence we obtain a cohomology class [A\*((®¢&)] in H(TI'(ANS), d1). More-
over if  is changed by a coboundary dp (1) we obtain
AZ((C+0n(w) ®€) = A(C®E) + A3 (On(p) ® &)
= A&\ (p®))



70 3. COISOTROPIC SUBMANIFOLDS

and so the cohomology class [AJ(C + On(u),§)] is equal to [A(¢,€)]. In
summary AJ induces a bilinear skew-symmetric operation

(Ag]: H(T(ANS),0n) x H(T'(ANS),0n) — H(T'(ANS),0n)
(L 1€]) — [A3(C® ]

The vanishing of AJ and of the third Jacobiator associated to (A7)nen
implies

A(CRMER )+ AN (C®E) @ u) + (-1 N (€@ A3 (¢ p))
=01 (AS(C®E®@ ) £ AT(In(C) ®EQ )
FA(C®@ I (§) @ p) £ A3(C®E® ()

where (, ¢ and p are arbitrary homogeneous sections of ANS. Suppose
these three elements represent cohomology classes in H(I'(ANYS), 0n).
Then the above identity implies that \] satisfies the graded Jacobi iden-
tity up to a coboundary term. Consequently the graded Jacobi identity
holds for the induced operation [AJ] on cohomology.

Since Oy is a graded derivation of degree 1, H(I'(ANYS), 0rp) inherits
the structure of a graded commutative algebra from I'(ANS). Now A
is a graded biderivation for the algebra structure on I'(ANS) and hence
the operation [A\]] is a biderivation for the induces algebra structure on
H(I'(ANS), 0n).

Because the second structure map AJ is of total degree 0 its restriction
to H'(T'(ANS),dn) takes values in HY(T'(ANS), dr1). The graded skew
symmetry, the graded Jacobi identity and the graded derivation prop-
erty reduce to skew-symmetry, Jacobi identity and the usual derivation
property on HY(T'(ANS), dn), i.e. [Ag] equips HY(T'(ANS), 0) with the
structure of a Poisson algebra.

Given two elements of H*(T'(ANS), dy1), i.e. two functions f and g on
S in the kernel of

c=(S) 2L T(NS).
The Poisson bracket [Ag] is given by

N5)(f @ 9) =25(f @ g) = P ([ILI(f)lsn: 1(9)]sn) -

Observe that I(f) and I(g) are extensions of f and g to functions on NS
and that P = Apr(:|s). This observation yields

NI(f®9)=—{f g}n

The décalage-isomorphism adds a minus sign when 5\‘2’ is translated into
Ag.
O

We may summerize these results in case of a coisotropic submanifold as follows:
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THEOREM 3.8. Let S be a coisotropic submanifold of a Poisson manifold (M,II).

It is possible to find structure maps
A AM(T(ANS)) — T(ANS)[2 — n]
forn > 2 such that

(a) together with Ay := On the family of structure maps (\,)n>1 equips I'(ANS)
with the structure of an Lo.-algebra and
(b) the operation [Ay] on HY(T'(ANS), dn) = A(S) induced by Ny is equal to
{'7 '}H'
REMARK 3.9. Theorem 3.8 was first proved in [OP] for S a coisotropic submani-

fold of a symplectic manifold. The construction was extended to a general Poisson
manifold in [CF] where also arbitrary submanifolds S where taken into account.

In case S is a coisotropic submanifold of a Poisson manifold (M,II) the L-
algebra structure (A7),>; associated to S and an embedding ¢ : NS — M was
baptized strong homotopy Lie algebroid associated to (S, o) ([OP]). The adjective
“strong” refers to the fact that the Lo.-algebra (A7),>; is flat, i.e. the component
XS € T'(A?2NS) vanishes. Since this usage of the adjective “strong” is in conflict
with the usual meaning in the theory of higher homotopy structures where it is
used to indicate the fact that homotopies at all levels are provided, we will not
use the term strong homotopy Lie algebroid in the following.

In [CF] it was observed that for an arbitrary submanifold S and embedding o the
structure maps (A7),en are all multiderivations with respect to A and the term
P, -algebras was coined.

REMARK 3.10. Observe that the L.-algebra structure (A7),en associated to a
submanifold S of a Poisson manifold (A, II) and an embedding o : NS — M
whose restriction to S is the identity only depends on the values of II, in an
arbitrarily small open neighbourhood of S in N'S. In fact, the structure maps only
depend on all the derivatives of II in fibre directions at S. To be more precise, let
&1,.-.,& (K € N) be a number of sections of NS. Define the fibre derivative of
IT with respect to (&1, ...,&) inductively by setting the fibre derivative of II with
respect to () equal to IT and if the fibre derivative with respect to (&1,...,&ux—1))
is the bivector A then the fibre derivative of II with respect to (&1, . ..,&) is given
by

o610 () = [1(6), Alsw

where ¢f(£’“) is the flow generated by the vector field I(&;) € I'(T'E). The structure
maps (A\7),en are only sensitive to the restrictions of all fibre derivatives of II
restricted to S.

The following description of the homotopy Lie algebroid associated to (S, o) can
be found in [CF|:
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LEMMA 3.11. Let S be a submanifold of a Poisson manifold (M,I1) and o an
embedding of the normal bundle NS of S in M into M such that the restriction

to S is the identity. Denote the projection NS — S by p and the Poisson bivector
field on NS inherited from (M,11) via o by 11,.

Then the homotopy Lie algebroid of (S, o) in (M,11) is determined by the following
values of its structure maps (A\%)nen:
ME®--®&) = (1)"P(&-&-1L)),
NER @y ®@f) = (=1)"P (& &y - TE (0" (dprS))))
NG @ @@ fog) = (“1)"P (& Eno - {P () (9}n,)) -

Here f and g are functions on S, &,...,&, are sections of NS and & -+ - &
denotes the fibre derivative with respect to (&1, ...,&k), see Remark 3.10.

PROOF. Part (a) of Lemma 3.7 asserts us that all structure maps A7 are graded
multiderivations of I'(ANS). Since I'(ANS) is locally generated by C>(S) and
['(NS) it is sufficient to know the values of A7 on tensor products of elements of
C®(S)@®I'(NS). Furthermore A? has degree 2 —n and I'(ANS) is concentrated in
non-negative degrees. Consequently A7 vanishes on all tensor products of elements
of C*°(S) and T'(N.S) containing strictly more than two factors in C*(S). Hence
only the three cases of tensor products containing two, one or zero functions as
listed in the Lemma remain.

That the values are exactly those claimed in the Lemma is a straightforward
consequence of the definition of the fiber derivative and AJ. O

REMARK 3.12. Let E — S be a vector bundle. Consider the family of ideals
(Vi (E)) k=1

of V(F) generated by the powers (Z%);>1 of the vanishing ideal of S in E. Given
k > | we have natural inclusions

Ig — Ifg
which induce natural surjectictions of algebras
pre = V(E) Vi (E) = V(E) V) (E).
The pair (V(E)/Vi)(E))e>1, (Pr)r>1) forms a projective system of graded alge-
bras. We define the algebra of formal vector fields Vi, (E) on E to be the projective
limit
Vior(E) := lim V(E) [V (E).

This algebra inherits the structure of a Gerstenhaber algebra from V(FE) as follows:
Inductively one checks that

Vi) (E), V(E)|sn C Vg-1)(E)
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holds for all £ > 1. Let X and ) be two elements in Vi, (E), i.e.
X = (X, Xo,...) and Y= (V1,Ys...)

where X, and Y}, are elements of V(E)/V(E) such that

pe(Xi) =X, and pu(Yi) = X,
holds for all £ > [. Define [X, Y]sn to be the element

Z = (2, Zo,...)
of Vio:(E) given by
7y = I:X(k+1),}~/(k+1)]5’]\/’ mod Vi) (NS)

where X(k—f—l) and 17(k.+1) are arbitrary representatives of X ;1) and Y41y in V(E).
It is straightforward to check that this yields a well-defined element Z of Vi, (NS)
and that the corresponding operation [, -]sy equips Vi, (INS) with the structure
of a Gerstenhaber algebra. In particular Vi, (E)[1] is a graded Lie algebra. By
construction of |-, -|sny the natural morphism V(E) — Vi, (E) is a morphism of
Gerstenhaber algebras.

Recall that the image of a multivector field under the morphism V(E) — Vi, (E)
depends only on its values in an arbitrary small neighbourhood of S in E: If
two multivector fields X and X’ coincide on an open neighbourhood of S in F,
their difference is an element of Vi) (E) for all k& > 1, i.e. all the projections to
V(E)/V)(E) vanish.
Consider the graded algebra I'(AE). In Remark 3.2 an inclusion [ : I'(AE) —
V(E) was constructed. By definition of the projective limit this inclusion yields
a morphism I : I'(AE) — Vi (E). The fact that I(I'(AE)) is an abelian Lie
subalgebra of (V(E)[1], [+, |sn) implies that I(I'(AE)) is an abelian Lie subalgebra
of Vior(E)[1], [, -]). Furthermore there is a morphism P : Vi,.(E) — I'(AE) given
componentwise by

Aprope : V(E) Vi (E) — V(E)/Va) 2 T(AT|sE) — T'(AE).
Since Po I = id, Iis injective, Pis surjective and IoPisa projection.

LEMMA 3.13. Given a vector bundle E — S, the graded vector space Vi (E)[1]

splits into an abelian Lie subalgebra f(F(/\E)[l]) and a graded Lie subalgebra given
by the kernel of

P[1] : Viee(E)[1] — T(AE)[1].
Consequently the triple

((VfOY(E)[1]7 ['7 ']SN)v j(r(/\E))v P)
1s a V-algebra, see Definition 3.1 in Chapter 2.

PROOF. The proof can be copied mutatis mutandis from the proof of Lemma
3.13. n
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LEMMA 3.14. Let E — S be a vector bundle equipped with a Poisson bivector field
II. Denote the image of I1 under V(F) — Vi (E) by 1.

Then the higher derived brackets
Rn: S"(T(AE)[1]) — T(AE)[2]
§©-©& = P ([ (LI H&)sv -], I(Enlsw)

define the structure of an Loo[1]-algebra on T'(AE)[1]. This is equivalent to the
structure of an Loo-algebra on T'(AE). We denote the associated family of structure
maps by

(kn : A"T(AE) — T(AE)[2 — n)])

neN *

Furthermore the structure maps (K, )nen are identical to the structure maps (An)nen
introduced in Corollary 3.4.

PROOF. The first part of the proof can be copied mutatis mutandis from the
proof of Corollary 3.4: Since the map V(E) — Vi, (E) is a morphism of Ger-
stenhaber algebras, II is a Maurer—Cartan element of the graded Lie algebra
(Ve (E)[1], [, -]sn). By Lemma 3.3 T'(ANS)[1] is part of a V-algebra structure
on (Vier(E)[1], [, ]sn), hence the higher derived brackets equip I'(ANS)[1] with
the structure of a L..[1]-algebra.

The identity of this L, [1]-algebra to the one introduced in Lemma 3.3 follows from
the fact that one can reconstruct all fibre derivatives of II at S from the image of
IT under V(E) — Vi (E). To be more precise, suppose we want to reconstruct the
fibre derivative of II with respect to the tuple (&1,...,&) of elements in ['(NV.S)
from

= (T + Vi) (E), T+ Vi) (E), . ...
Choose any representative A of II + Viyi1)(£) in V(F) and compute its fibre
derivative with respect to (&1, ..., &k):

(€, [ -+ [&2, (&1, A sw]sv -+ Jsvlsn = [k [+ - (€, H]sn]sw - - - Jsw]snv + Vay (E).

Consequently the fibre derivative of A with respect to (&1, ..., &) evaluated at S
is equal to the fibre derivative of IT with respect to (&1, ..., &) evaluated at S. [

THEOREM 3.15. Let S be a submanifold of a Poisson manifold (M,II). Suppose
oo and o1 are two embeddings of the normal bundle of S in M into M such that
their restrictions to S are equal to idg.

o1

91 ) en associated to (S, op)

Then the two Ls-algebra structures (A2 )pen and (A
and (S, 01) respectively are isomorphic.

REMARK 3.16. Theorem 3.15 can be found in [OP] for the case of a coisotropic
submanifold of a symplectic manifold. The case of an arbitrary submanifold of a
Poisson manifold was treated in [CS]. We essentially followed the proof given in

[Cs].
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PROOF. As mentioned in Remark 2.10 there is an isotopy of embeddings
Y:NSx[0,1] - M

such that the restrictions to NS x {0} and NS x {1} coincides with oy and oy
respectively. We denote the restriction of ¥ to NS x {t} for ¢ € [0,1] by oy and
the images of g; by V;. By Lemma 6 in Chapter 6 there is an open neighbourhood
U of S in M such that U C 0(N.S) holds for arbitrary ¢ € [0, 1]. In particular the
image of NS x [0, 1] under

Y xid: NS x[0,1] = M x [0,1], (n,t)— (X(n,t),t)
contains U x [0,1]. Since ¥ X id is an embedding, we can define a smooth map
r:Ux|0,1] - NS

which is given by o, |y for fixed ¢ € [0, 1]. Now we apply Lemma 6 again and find
an open neighbourhood V' of S in NS such that

V C o u(U)
holds for all ¢ € [0,1]. Consider the isotopy of embeddings

0_71
©:Vx[0,1 U2 NS.

The restriction of © to V' x {0} coincides with idy and the restriction to S x {t} is
equal to idg for arbitrary ¢ € [0, 1]. The composition of © with oy is the restriction
of ¥ to V x [0,1].

The manifold M is equipped with a Poisson bivector field II. All the embeddings
o, give rise to a Poisson bivector field on NS defined by II; := (o4)*(I]y;). The
identity

Jt‘V = (Uo o @t)|v
implies

Ht|V = (@t)* (HO‘(aaloat)(V)) :

Differentiating the smooth one-parameter family of locally defined diffeomorphisms
O, yields a smooth one-parameter family of locally defined vector fields (X;):co,1)-
Pulling back X; along O, defines a smooth one-parameter family of vector fields

(Y = (@t)*(Xt))te[o,l}
defined on V. The flow equation

d
a ‘t:sGt = Xs

[SA) @0 = ldV

is equivalent to

d * == * *
Zh=(0)7() = [V (B (s, (80)" = id.
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The pull backs by the locally defined diffeomorphisms ©; map locally defined
smooth functions in the vanishing ideal of S in E to themselves. This implies
that ((©¢)*):cjo,1) induces an automorphism W, of Vi, (£). Consider an element
X € Vi (F) given by

(X1, Xo,...).
We define Y =: U,(X') with components
(Vi Ya....)

as follows: pick a representative X, for the class X in V(E) /Y (E). Apply (6;)*
to X where possible. The result is defined on an open neighbourhood K of S in
E. Choose an even smaller open neighbourhood L of S in E and extend (©;)*(Xk)
to be zero outside of K while leaving it unchanged on L. Denote the resulting
multivector field by Y; and set Y := Y}, + Vi (E).

To see that the element Y is well-defined recall that the image of a multivector
field under V(FE) — Vi (E) only depends on its values on an arbitrary small open
neighbourhood of S in E and that (6,)" maps locally defined elements of V;)(E)
to locally defined elements of V) (E).

Denote the image of (Y; := ((©])Xt)icpo,1) under V(E) — Vio:(E) by (V4)icio,)-
The flow equation for (7 ):co,1) implies that the identity

d .

E‘t:s(wt(')) = [ys7 qjs(')]SNa qu =id
holds for all elements of V(&) and arbitrary s € [0, 1]. Denote the images of II;
under V(E) — Vio:(E) by II;. The identity

|y = (6,)" <H0‘(00_1001)(V)) :
implies
ﬁt — ‘Ijt(ﬁo)

for arbitrary ¢ € [0, 1].

To summarize the situation we have a one-parameter family of Maurer—Cartan
elements (Il;).c(0,1) of the V-algebra

(Vfor(NS)[1]7 ['7 ']SN; F(/\NS)[l]v P)

and a one-parameter family of automorphisms (W;)cjo,1) generated by a one-
parameter family of inner derivations ([, -|sn)scpo,1] such that the relation

ﬁt - ‘Ijt(ﬁo)
is satisfied for all ¢ € [0,1].
In order to apply Theorem 3.7, Chapter 2 we have to verify the condition

P(Y) =0
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and that solutions to the equation

%|ts£t = P([ysafs]SN), 50 - F(/\NS)

on the space of sections of the pull back of NS — S along S x [0,1] — S are
unique.

To verify the first condition observe that the smooth one-parameter family of
diffeomorphisms (0;)scp0,1] leaves S invariant, hence the restriction of the smooth
one-parameter family of vector fields (X;)cjo,1) to S vanishes. Consequently X
lies in V(1) (£) for arbitrary ¢ € [0,1]. Since ©, preserves the vanishing ideal Zg the
vector field Y; := ©;(X,) also lies in V4)(E) for arbitrary ¢ € [0,1]. This implies
that P()};) = 0 holds for all ¢ € [0,1].

That
s = PV Elsw), & € T(ANS)

has a unique solution and admits a family of integrating automorphisms is seen as
follows: first check that the one-parameter family of derivations D, := P([Vs, |sn)
annihilates C*(S) because Y lies in the kernel of P. Hence (Dj)scjo1; is C(S)-
linear and this implies that it acts fibrewise for all s € [0, 1]. Since Dy is a graded
derivation with respect to the wedge product it is enough to know its restriction
to ['(NS). By degree reasons D (I'(NS)) C I'(NS) and because D; acts fibrewise
its restriction to I'(N.S) is given by fibrewise linear derivations of N,S for all
x € S, i.e. we obtain a smooth one-parameter family of sections of End((V.S).
Any such smooth one-parameter family integrates to an smooth one-parameter
family of sections of GL,(NS). The natural extension of this family to a family
of automorphisms of AN.S yields the one-parameter family of automorphisms of
['(ANS) that uniquely integrates the Cauchy problem from above. O






CHAPTER 4

The BFV-Complex

The aim of this Chapter is to explain the construction of a differential graded
Poisson algebra associated to coisotropic submanifolds which is known as the
BFV-complex. This structure was originally introduced by Batalin, Fradkin and
Vilkovsiky in order to quantize field theories with complicated symmetries ([BF],
[BV]). Later on it was given an interpretation in terms of homological algebra by
Stasheff, see [Sta2]. Bordemann and Herbig (|B], [He]) adapted the construction
to arbitrary coisotropic submanifolds of finite-dimensional Poisson manifolds.

Section 1 explains a lifting procedure of Poisson structures to a Poisson bivector
on a certain smooth graded manifold. In particular this construction yields a
conceptual understanding of the BF'V-bracket which was originally presented in
[Sch1]. In Section 2 the BFV-complex is introduced and its main properties
are established: we show that its cohomology is isomorphic to the Lie algebroid
cohomology (Lemma 2.19), and establish the invariance of a germ version of the
BFV-complex — see Theorem 2.31. The dependence of the BF'V-complex on the
choices involved in its construction was clarified in [Sch2]. The third Section
connects the BF'V-complex to the homotopy Lie algebroid which was introduced
in Section 3 in Chapter 3. More precisely, Theorem 3.6 asserts that these two
structures are L., quasi-isomorphic.

1. Lifting

REMARK 1.1. Given a finite rank vector bundle F — F over a smooth finite-
dimensional manifold F', the vector space I'(A(F & F*)) is equipped with a lot of
structures: First it is a bigraded algebra with respect to the bigrading

TP (A(F @ F)) := T((APF) @ (NF*)).

We refer to p/q as the ghost degree/ghost-momentum degree. The total degree
is given by the difference between the ghost degree and the ghost-momentum
degree. We denote the component of total degree k by I'*(A(F @ F*)). The total
degree equips I'(A(F @ F*)) with the structure of a graded algebra. Moreover let
s, (A(F @ F*)) be the ideal T((AF) @ (AZ"F*)).

The contraction between F and F* induces a symmetric pairing on I'(F & F*).
Extending this pairing to a graded skew-symmetric (with respect to the total
degree) graded biderivation of degree 0 on I'(A(F & F*)) yields a graded Poisson
bracket [, ]¢ on D'(A(F & F*)).

79
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The graded algebra I'(A(F @ F*)) can be interpreted as the algebra of smooth
functions on F*[1] @ F[—1].

REMARK 1.2. Following the general theory outlined in Section 4, Chapter 2, the
space of multiderivations of the graded algebra I'(A(F @& F*)) is given by

D(L(ANF @ F7))) = SrrFer) (Der(DAF @ F7)))[-1])

i.e. the graded symmetric algebra generated by the algebra of graded derivations
Der(I'(A(F @ F*)))[—1] of the graded algebra I'(A(F @ F*)) as a graded module
over I'(A(F @ F*)). By 4.14 in Chapter 2 D(I'(A(F @ F*)))[1] carries a graded
Lie bracket |-, ]sn-

The bidegree on I'(A(F @ F*)) given by the ghost and ghost-momentum degree
respectively induces a bidegree on D(I'(A(F @ F*))): the tensor product of a
number of copies of I'(A(F @ F*)) is equipped with a bidegree given by the sum
of the bidegrees of the individual factors. A multiderivation yields a linear map
from such tensor products to elements of I'(A(F @ F*)). The bidegree of the
multiderivation is defined to be the bidegree of this map. Observe that [-,|sy is
additive with respect to this bidegree. We denote the ideal of D(I'(A(F @ F*)))
generated by elements of bidegree greater or equal to (k, I) by D*D(T(A(FDF*))).

An alternative point of view on D(I'(A(F & F*))) is to realize it as the algebra of
smooth functions on the smooth graded manifold 7*[1](F*[1]®F[—1]), see Lemma
4.10 in Chapter 2.

Lemma 4.18 in Chapter 2 asserts that the quadruple
(DITANF @ FONAL [ Jsn, TIANF @ F))[1, pr{i])

is a V-algebra. A Poisson multivector field Z on F*[1] & F[—1] is by definition a
Maurer—Cartan element of the graded Lie algebra (D(I'(A(F @& F*)))[1], [, ]sn)-
Any such element Z yields the structure of a Py-algebra on I'(A(F @ F*)), see
Lemma 4.18, Chapter 2.

On the other hand, any P.-algebra gives rise to a graded multiderivation of
['(A(F @ F*)) and the vanishing of the associated family of Jacobiators is equiva-
lent to the Maurer—Cartan equation for this graded multiderivation. In particular
the graded Poisson bracket |-, | on I'(A(F @& F*) corresponds to a unique Poisson
bivector field on F*[1] & F[—1] which we denote by G.

LEMMA 1.3. Given a vector bundle F — F' the cohomology of the complex
(DIAF & AF)))AL G, Jsn)
is isomorphic to the graded algebra V(F')[1]).
PROOF. As described in Remark 1.2 we can interpret D(I'(A(FBAF*))) as the

algebra of smooth functions on the smooth graded manifold T*[1](F*[1] & F[—1]).
In particular every connection V on F — F' yields an induced connection V on

NFOF")—F
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and consequently an isomorphism
Uy : DIONFSAF))) ZTNTFOINFOFHIQS(F aF)) = A

where the additional components F* and F are declared to be of degree 0 and 2
respectively. To make the distinction to the original F* and F clearer we denote
these two additional copies by F*[0] and F[—2] from now on.

Equip A[1] with the unique structure of a differential graded Lie algebra
(A[1]7 Q = [éa ']V? ['7 ]V)

such that Ug[1] becomes an isomorphism of differential graded Lie algebras, where
G .= \Ilv(G)

Because [G, ]y is a graded derivation of A of degree +1 it suffices to know it on
generators of A. These are given by functions and vector fields on F', and sections
of the two copies of F and F* respectively. Observe that the G corresponds to
the identity-section under the identifitication F*[0] ® F[—2] = End(F)[—2]. The
identities
QI(F[=2])) = 0= Q(I'(F~[0]))

are clear: all multivector fields involved act in the vertical direction and are con-
stant along the fibres of F & F*. Hence the Schouten-Nijenhuis bracket vanishes
and this implies that T'(F[—2]) and T'(F*[0]) get annihilated by Q. A computation
in local charts shows that

Q(C™(8)) = 0= QI'(T9))
holds. The second equality is true because V is metric with respect to the pairing
between F and F*. The action of @ on I'(F) and I'(F) is given by

id

NF) — T(F[-2])) and
[(F") 4T (F*[0]) respectively.
Remarkably the differential Q on A does not depend on the connection V.

There is an inclusion iy of V(F') in A and a natural projection p from A to V(F')
satisfying p o iy = id. Observe that iy corresponds to the horizontal lift with
respect to V while p corresponds to the natural projection

D(I(A(F @ F7))) — V(F).
From the description of Q given above it is clear that iy and p are morphisms
between the complexes (A[1], [G, -]v) and (V(F)[1],0) respectively.
Next we introduce a differential 7 on A. We declare the action of H on I'(F[-2])
and I'(F[0]) by
I(F[-1) % I(F) and

L'(F*[o]) 4T (F*) respectively,
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set it zero on C*(F), I'(T'F), I'(F) and I'(F*) and extend it to all of A as a graded

derivation of degree —1. The property H o H = 0 is clear from the definition, as
are the identities H o4y = 0 and po H = 0.

Moreover

[H,Q=HoQ+QoH
is a graded derivation of degree 0 that is the identity on I'(F), I'(F*), I'(F[-2])
and I'(F*[0]) and zero on C*°(F') and I'(T'F'). This implies that [H, Q)] is given
by the multiplication of elements of A[l] that are homogeneous in AF, AF*,
S(F*[0]) and S(F[-2]) by the sum of their polynomial degrees along all these

fibre directions. Normalizing H by this factor on homogeneous elements yields a
coboundary operator H that satisfies

[Hué] :ld_lv op,

i.e. H is a homotopy between id and ¢y op. We denote the corresponding homotopy
fOI' [G, ']SN by Hv.

Consequently iy and p induce inverse algebra isomorphisms between H (A, Q) and
V(F'). Since the complex

(DIAF & AF)))AL G, o)
is isomorphic to (A, Q) this finishes the proof. O

PROPOSITION 1.4. Given a vector bundle F — F, every choice of connection V
gives rise to an L., quasi-isomorphism Ly from the graded Lie algebra

(VE)[AL, [ Jsw)
to the differential graded Lie algebra
(DIANF @ F))AL G, s [ sn)
which extends the horizontal lift with respect to V.

PRroOF. Recall the proof of Lemma 1.3: With the help of a connection on
F — F we equipped

A =T(NTF)NF @ F")S(F e F))[1]

with the structure of a differential graded Lie algebra (A[1], @, [, :]v) isomorphic
to

(DIAF & FOALIG, Jsw, [ Jsw).-
Furthermore we obtained contraction data — see Definition 2.1 in Chapter 2 —

V(F),0) == (4,Q), H.

According to Theorem 2.2 in Chapter 2 these data can be used to perform homolog-
ical transfer of L..-algebra structures along p. Starting with the differential graded
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Lie algebra (A[1],Q, [, -]v) one constructs an L., quasi-isomorphic L..-algebra on
V(F)[1] (with zero differential) together with an L., quasi-isomorphism

Ky : V(F)[1] ~ A[L].

The binary operation of the induced L.-algebra on V(F)[1] is given by

p([iv(),iv(-)]v) -

The difference between [iv(-),iv(:)]sy and iv([-,-]sn) is given by the curvature
Ry (-, -) interpreted as a fibrewise acting vector field. As such its restriction to F
vanishes. Consequently the induced binary operation on V(E)[1] is — up to a sign
shift coming form the décalage-isomorphism — equal to the Schouten-Nijenhuis
bracket [-, -]sn-

In order to prove that all higher induced structure maps vanish, we introduce a
bigrading on A4: it is given by the difference between the polynomial degrees along
F and along F*[0] on the one hand and by the difference between the polynomial
degrees along F* and along F[—2] on the other hand. The corresponding bidegree
on D(I'(A(F @ F*))) is the bidegree introduced in Remark 1.2. It is bounded
from above and the projection p annihilates all elements not of bidegree (0,0).
Let A®D(E) be the ideal in A(E) generated by all elements of bidegree greater
or equal to (k,1).

According to Remark 2.7, Chapter 2 the structure maps of the induced L.-algebra
on V(E)[1] are all given diagrammatically by decorated oriented trivalent trees
whose interior vertices are decorated by [, -]v, whose interior edges (i.e. edges not
connected to any leaf or the root) are decorated by —H, whose leaves (i.e. exterior
vertices with edges pointing away from them) are decorated by ¢y and whose root
is decorated by p. Denote the number of interior vertices by e. We claim that if
we replace p at the root by id the image of V(F)[1]®¢ under the map associated to
the tree lies in A€~ and consequently all contributions form trees with more
than one interior vertex are annihilated by p.

Observe that
e the image of iy lies in A©®0),

e [-,-]v is of bidegree (0,0) and
e H increases the bidegree by (1,1).

This implies that the image of a tree with e interior vertices lies in bidegree
(e—1,e—1).

By Proposition 2.10 in Chapter 2 we obtain an Ls-morphism between V(F)[1]
equipped with the induced L.-algebra structure and (A[1], @, [, ]sy) which is
isomorphic to

(DIAF @ FIONAL G, Jsw, [ Jsw)-
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Moreover we verified that the induced structure is simply (V(F)[1], [+, -]sn) which
implies that we obtain an L., morphism

Ly : V)L L Jsn) ~ (DOANF © F)ONAL G, Jsns [ -lsn)

extending the horizontal lift iy. Since the horizontal lift iy is a chain map
from (V(F'),0) to (A, Q) that induces an isomorphism on cohomology, the L-
morphism is in fact an L., quasi-isomorphism. U

REMARK 1.5. Although the induced L-algebra structure on V(F')[1] is the usual
one, the L., quasi-isomorphism Ly is a non-trivial perturbation of the horizontal
lift w. By Proposition 2.10, Chapter 2 this L., quasi-isomophism is given in
terms of oriented trivalent trees whose trivalent vertices are decorated by [-, -],
whose interior edges (i.e. those edges not connected to any leaf or the root) and
the edge pointing to the root are decorated by — the homotopy and whose leaves
(i.e. exterior vertices with edges pointing away from them) are decorated by the
horizontal lift iyv. All these maps are graded multiderivations, therefore it suffices
to know Ly on tensor products of functions and vector fields on F'. Since [+, ‘]sn
and the homotopy decrease the multivector field degree by 1 the component

(Ly)n : N*(VIE)]) = DONF @ F7)))[2 = n]

of Ly maps a tensor product of multivector fields of total multivector field degree
N to a multiderivation of multiderivation degree N —2(n—1). The multiderivation
degree is concentrated in non-negative degrees, hence all tensor products of total
multivector field degree N < 2(n — 1) get mapped to zero. Because we only
consider tensor products of functions and vector fields we know that n > N. In
summary

n>N>2(n—1)

must hold which only admits solutions for n < 2. We know that (Ly); = iy. For
n = 2 the only possible value for N is two, i.e. we have to calculate

(Lv)2(X @Y) = —Hy(liv(X), ivlsn)
for arbitrary vector fields X and Y on F. Compute
—Hy([iv(X),iv(Y)lsn) = —He(Re(X,Y)+iv([X,Y]sn)
— —Hy(Re(X.Y))
= —Ry(X,Y).
Here Ry(-,-) is the curvature of the induced connection on A(F & F*) seen as
a differential form with values in fibrewise acting vector fields and Ry(-,-) de-

notes the curvature of the connection V on F — F' interpreted as an element of
O*(F,End(F)) = Q*(F, F* @ F).

The image of 71 ® - -+ ® Z,, is given by
e lifting Z; and Z, to vector fields on A(F @ F*),
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e pulling back the curvature of V to a two-form Ry (-, ) on A(F & F*) with
values in F* @ F and

e contracting pairs of the lifting multivector fields with copies of the two-
form Ry (-, ).

COROLLARY 1.6. Let F — F be a vector bundle over a Poisson manifold (F,1I)
and denote the natural projection

CINF e F*)) — C(F)
by .

Then there is a graded biderivation [-,-|gry on I'(A(F & F*)) of degree 0 with the
following properties:

(a) The biderivation [-,-|ppyv satisfies the graded Jacobi identity, i.e. it is a
graded Poisson bracket on T'(AN(F @ F*)) of degree 0.

(b) The restriction of wo[-, | gy to C°(F)xC®(F) coincides with the Poisson
bracket {-, -} associated to II.

(¢) The restriction of mo |-, |gpy to I'(F) x I'(F*) coincides with the pairing
between I'(F) and I'(F*) induced by the natural fibre pairing between F
and F*.

Proor. Choose a connection V on F — F'. By Proposition 1.4 this gives rise
to an L, quasi-isomorphism Ly from the graded Lie algebra (V(F)[1], [+, ]sn) to
the differential graded Lie algebra

(D(F(/\(]: @ F*)))UL [G7 ']S]\U ['7 ']SN)'

The Poisson bivector field II is a Maurer—Cartan element of (F[1], [+, -]sn) and, if
1
> L(ll® - @)
k>1 0

converges, it yields a Maurer—Cartan element A of
(DIANF & FI)ALIG, Jsw, [ lsw)-
This is equivalent to the claim that G + A is a Maurer—Cartan element of
(DITANF & F))AL [ -Jsw),
which corresponds to a P.-algebra structure on I'(A(F @ F*)), see Remark 1.2
and Lemma 4.18 in Chapter 2.
We claim that

A= Z%(ﬁv)k(ﬂ®-~-®ﬂ)

k>1
converges and that it yields a biderivation with the desired properties.

Convergence follows from the fact that the image of (Ly) lies in D®E*)(D(A(F @
F*))). This was established in the proof of Proposition 1.4. Since the bidegree on
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D(T(AN(F & F*))) is bounded from above, (Lv), vanishes for k£ big enough and
the series above is a finite sum.

The operation [-, ]sy maps bivector fields to trivector fields, while the homotopy
on D(I'(A(F @& F*))) constructed in the proof of Proposition 1.4 maps trivector
fields to bivector fields. Since the construction of the L., quasi-isomorphism Ly
only uses diagrams decorated by the same number of [, -]sny and homotopies, it
maps bivector fields to bivector fields. Hence A is a biderivation.

Properties (b) and (c) follow from the observation that
G+ A =G +iy(I) + DEYD(A(F @ F1)))
holds. U

REMARK 1.7. Our main application of Corollary 1.6 will be the construction of
the BF'V-bracket in the next Section. We refer to any graded Poisson bracket on
L(A(F @ F*)) of degree 0 over a Poisson manifold (F,II) satisfying properties (a),
(b) and (c) as a BFV-bracket on I'(A(F @ F*¥)).

Corollary 1.6 was presented in [R] under the assumption that the Poisson bivector
field IT on F' is symplectic. It was extended to the general case by Herbig later, see
[He]. However the proof presented here is quite different: the arguments in [R]
and [He] rely on explicit formulae for the lift A instead of the quasi-isomorphism
Ly from Proposition 1.4. This conceptual approach was introduced in [Schl]. It

has the advantage of clarifying the dependence of the lift on the connection V, see
[Sch2].

PROPOSITION 1.8. Given a vector bundle F — F over a Poisson manifold (M, IT)
equipped with two BFV-brackets [-,-|pryv and |-, -]’z gy, there is an automorphism of
the unital graded algebra T'(AN(F & F*)) which is an isomorphism of graded Poisson
algebras

(C(ANF @ FN)), [ 1sev) = (CANF & F)), [ Vgpy)-

REMARK 1.9. Proposition 1.8 was presented in [Schl] although in a slightly dif-
ferent form.

PROOF. Denote the bivector fields on F*[1] & F[—1] corresponding to [-, -] grv

and [-, gy by G+ A and G + A’ respectively. Observe that the requirement to
be a graded biderivation of degree 0 forces every BFV-bracket to be the sum of
elements of bidegree (k, k) in D(I'(A(F & F*))).
Consider the difference © = A — A’. The higher derived brackets with respect to
© yield a biderivation on I'(A(F @& F*)) that induces the trivial biderivation on
C>®(F) since both [-,-]pry and |-, -]¢ satisfy property (b) from Corollary 1.6. Let
A(0) ,A'(0) and 6(0) be the components of A, A" and © of bidegree (0,0). Because
of

0=[G+A,G+Agy +DOVNAF @ F)) =2[G,N0)]sn + DOV A(F & F*))
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the difference 6(0) = A\(0) — X'(0) satisfies [G, 0(0)]sy = 0. The cohomology class
of #(0) in
H(DT(MF @ F))), G, Jsn)
vanishes since the projection of 0(0) to V(F') vanishes. Fix a connection V on
F — F. The element v(0) := Hy(0(0)) satisfies
[G,7(0)]sv = 6(0)
and it is a graded derivation of bidegree (1,1). Consequently it acts as a nilpotent
derivation on D(A(F@F*))) and integrates to an automorphism I'(0) of the graded
Lie algebra
(DIAMF @ FI))AL L, Jsn)-
Set G+ AW :=T'(0)(G 4+ A) which is a graded bivector field on F*[1] @ F[—1] that
satisfies the Maurer—Cartan equation. Moreover
LOYG+A) = (G+A)+[(0), (G + N)sy + DEVT(ANF @ F)))
= G+ X0)+ [y(0),Glsy + DUV (T(A(F @ FF)))
G+ A(0) — 6(0) + DUV (T(A(F @ F*)))
= G+ XN(0)+DEIVD(A(F @ F)))
and consequently G + A® and G + A’ coincide up to DEY(D(A(F @ F*))).
Now suppose G + A and G + A coincide up to DEF(D(A(F @ F*))) with k > 0,
L.e. the difference ©(k) := A — A" is an element of DER(D(A(F © F*))). Denote
the components of ©(k), A and A’ of bidegree (k,k) by 6(k), A(k) and N(k)
respectively. The equation

G+ A,G+ Alsy=0

implies that [G, A(k)]sy can be expressed as a function FN0),---, Mk — 1))
depending on the components of A in lower bidegrees. Consequently

G AR)sx = FM0), -+ Ak = 1))
= FW(0), -, N(k—1))
= [GN(K)]sy
and hence [G,0(k)]sy = [G,A(k) — N(k)]sy = 0. But all elements of bidegree
not equal to (0,0) get mapped to zero by the projection D(I'(A(F @& F*))), so
the cohomology class of (k) vanishes. Define y(k) := Hy(0(k)) which acts as

a nilpotent derivation. It integrates to an automorphism I'(k) of the graded Lie
algebra

(PIAF @ FINAL L Jsn)-

Set G + A¥**D .= T'(k)(G + A) which is a graded bivector field on F*[1] @& F[—1]
that satisfies the Maurer-Cartan equation. One checks that G+ A® ) and G+ A’
coincide up to DE+HLEHD(D(A(F @ F*))).
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Because the filtration DP9 (T'(A(F @ F*))) is bounded from above the proce-
dure stops after finitely many steps and we obtain a family of automorphisms
I'(0),...,I'(N) satisfying

G+ A = ((N)o---oT(0))(G +A).

2. The BFV-Complex

REMARK 2.1. Similar to the homotopy Lie algebroid (Section 3), the BFV-complex
is a structure associated to a coisotropic submanifold S of a Poisson manifold
(M, 1) and an embedding ¢ of the normal bundle of S in M into M which restricts
to the identity on S.

For the moment we fix such an embedding and work on the normal bundle NS

equipped with the Poisson bivector field 11, given by the identification ¢ : N.S =R
o(NS) C M and the restriction of II to the open submanifold o(NS) of M.

DEFINITION 2.2. Given a vector bundle £ — S, consider the pull back of £ — S
along £ — S, i.e. the vector bundle £ — F fitting into the following Cartesian

square
& E

E——5.

—_—

The ghost/ghost-momentum bundle of E — S is the vector bundle
NEBE") — E.
We denote the set of sections of the ghost/ghost-momentum bundle by BFV (E).

REMARK 2.3. The ghost/ghost-momentum bundle is of the form treated in the
previous Section. In particular all the structures described in Remark 1.1 are
present. We adopt the notation introduced in Remark 1.1. In particular BFV ®9(E)
is the graded vector space of sections of ghost degree p and ghost-momentum de-
gree ¢, BFV*(E) is the graded vector space of sections of total degree k (recall
that the total degree is the ghost degree minus the ghost-momentum degree) and
BFV5,.(F) is the ideal of elements with ghost momentum degree at least r. Fur-
thermore we denote the projection

BFV(E) — BFV®)(E) = C*(E)
by .

Recall that BFV(F) is equipped with a graded Poisson bracket [-, -] encoding
the pairing between £ and £*.
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COROLLARY 2.4. Let E — S be a vector bundle whose total space F is equipped
with a Poisson bivector field 11.

There is a graded Poisson bracket |-,-|pry on BFV(E) of degree 0 such that

(a) The restriction of wol-, | gry to C*(E)xC>®(E) coincides with the Poisson
bracket {-, -} associated to II.

(b) The restriction of wo [-,-|pry to I'(E) x I'(E*) coincides with the pairing
between T'(E) and T'(E*) induced by the natural fibre pairing between &
and E*.

Moreover any two such brackets are equivalent up to an automorphism of graded
algebras N(E @ E¥).

Proor. This is an immediate consequence of Corollary 1.6 and Proposition
1.8. 0

DEFINITION 2.5. A BFV-bracket is a graded Poisson bracket of degree 0 on
BFV (FE) satistying properties (a) and (b) from Corollary 2.4.

REMARK 2.6. Let E 2 S be a vector bundle. We denote the pull back of E — S
along £ — S by & — E. By definition as a pull back bundle & — E comes along
with a surjective vector bundle morphism & — FE covering £ — S. It is easy
to check that the pull back of & — FE along ¢ : S — FE is naturally isomorphic
to £ — S, hence there is an injective vector bundle morphism E — &£ covering
S — E.

Sections of & — FE are in one-to-one correspondence with maps £ — E making
the diagram
/'4

E—=3
commutative. Observe that & — E comes along with a tautological section Q° that
corresponds to E -5 E. Furthermore there is a natural map p* : I (E) — T'(€)
given by mapping a section s : S — E to E % S = E. The map S — E induces
amap i* : I'(€) — I'(F) in the same manner.
LEMMA 2.7. Let E — S be a vector bundle and consider BFV (E).
The linear map of degree +1

0= [QO, ']G
is a differential on BFV(E), i.e. it is a graded derivation of degree 1 and a
coboundary operator.

Moreover the cohomology H(BFV (E), ) is isomorphic to the algebra I'(AE).
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PROOF. The graded derivation property follows from the graded Jacobi iden-
tity of [,-]g. The identity d o 6 = 0 is a direct consequence of [Q°, Q°)¢ = 0
which is true because G is given by the contraction between £ and £* and Q° is
an element of ghost-momentum degree 0.

The two maps p* : I'(E) — I'(€) and i* : I'(£) — ['(E) uniquely extend to
Ap* :T(AE) - T(ANE) = [(A(E®ET)) and
N T(NEBET)) = T(NE) — T'(AE).

The relations Ai* o Ap* = id, d o Ap* = 0 and Ai* o § = 0 are straightforward to
check.

We introduce the following local coordinates on A(E®E): (27)5=
coordinates on S, (y")i=1,...
is the corresponding local frame on £* and (¢;);=1,.
two frames yield a frame of A(€ @ £*). The tautological section Q° of & — F is
locally given by

.....

e
Y C;.
=1

Consequently the differential § := [Q°, ] reads
>y
— " o

Define h : BFV(E) — BFV(E)[—1] locally by

h(f(z,y,c)b™ - - bir) : Zlﬂ( (@t -y, o)t )bbk
0

Since (b%);—;... transforms dually to ( 3y :)i=1,.. the operator h is globally well-
defined. The 1dent1t1es hoh =0, ANi*oh =0 and ho Ap* = 0 are easily verified.
We claim that

.....

[h,0] =hod+doh=id—(Ap*) o (A%)

holds. The elementary but tedious verification of this identity is done in Lemma 7
in Chapter 6. It implies that Ap* and Ai* induce inverse maps between H(BFV (E), J)
and H(I'(AE),0) =T'(AE). O

REMARK 2.8. The proof of Lemma 2.7 yields a criterion whether a given cocycle
of (BFV(E),J) is a coboundary: a cocycle whose component of ghost-momentum
degree 0 vanishes when restriction to S is a coboundary.

DEFINITION 2.9. A coisotropic vector bundle is a pair (E — S,1I) where E — S
is a vector bundle and II is a Poisson bivector field on E such that the zero section
S is a coisotropic submanifold of (F,II).
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REMARK 2.10. Let © be an element of BFV!(E). By definition
BFvl(E) — @kzor(/\kJrlg ® /\kg*)

and consequently Q decomposes into the sum of components Q in T'(AFF1EQARE*)
for £k > 0.

LEMMA 2.11. Let E — S be a vector bundle whose total space E is equipped with
a Poisson bivector field 11. Fiz a connection V on the pull back bundle £ — E
and consider the biderivation |-, ;o) corresponding to the horizontal lift of II to
ANE @ EY).

Then the following statements are equivalent:

(a) (E,II) is a coisotropic vector bundle.
(b) The restriction of [Q2°,Q%; i to S vanishes.

PROOF. Let (27)5-;__ be a system of local coordinates on S, (y);=1.._ . linear
coordinates along F, (b');=1.. . the corresponding local frame on £* and (¢;)i=1, .
the dual frame on €. These two frames yield a frame of A(€ ® £*). We compute
locally

[QO’ Qo]iv(n) = Z (yiyj [Ch Cj]iv(n) + Qyi[ch yj]iv(n)cj + [yi’ yj]iv(n)cicj) :
ij=1
and consequently the restriction of [Q°, Q%) to S vanishes if and only if the
restriction of

' ¥ iem)
to S vanishes. Because (g;i)l-:17.,,76 are linear fibre coordinates along £ — S and
the horizontal lift iy is taken with respect to a pull back connection, [y, yj]iv(n)

is equal to {y’, ¥’} and hence the restriction of [Q°, Q%];_ 1) to S vanishes if and
only if the restriction of

{yi7 yj}H
to S vanishes. Lemma 8 in Chapter 6 asserts that (y*);—1__. is a local system of

generators of the vanishing ideal Zg of S in E| i.e. any locally defined smooth
functions h and ¢ in Zg can be written as

h(z,y) = Z hi(z,9)y',  g(z,y) = Zgi(:ﬂ, Y)Y’

and the graded derivation property for {-,-}n implies
€
{h,ghu = ({hr gy’ + {has v/ Iny'g; + hily' g5}y + higi{y', o' }n) -
ij=1
Consequently the restriction of {h, g} to S vanishes if and only the restriction of
{y*, ¥’ }11 to S vanishes.
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Hence the restriction of [Q°, Q%o to S vanishes if and only if the vanishing
ideal Zg of S in E is locally closed under {-,-};;. By Lemma 2.3 and Remark 2.4
in Chapter 3 the local closedness of Zg under {-, -}y is equivalent to S being a
coisotropic submanifold of (E,II). O

DEFINITION 2.12. Let & — S be a vector bundle whose total space E is equipped
with a Poisson bivector field II. Fix a BFV-bracket [-,:]pry on BFV(E). A
BFV-charge of (BFV (E),[-,"|prv) is an element of BFV!(FE) such that

(1) [Q, Q]BFV =0 and
(ii) the component of © in I'(£) is the tautological section Q0 of & — E.

THEOREM 2.13. Let E — S be a vector bundle whose total space E is equipped
with a Poisson bivector field I1. Fix a BFV-bracket [-,-|pry on BFV(E).

Then the following statements are equivalent:

(a) (E,1II) is a coisotropic vector bundle.
(b) A BFV-charge Q2 of (BFV(E), [, |prv) exists.

Moreover given two BFV-charges Q@ and Q' of (BFV(E),|-, |grv) there is an
automorphism VU of the graded Poisson algebra (BFV (E), [, |prv) that maps 2
to V.

REMARK 2.14. The proof we gave essentially follows [Sta2]. Some adaptations to
the smooth setting were presented in [He].

ProOOF. Consider the claimed equivalence (a) < (b). Observe that due to
Proposition 1.8 this statement does not depend on the particular BF'V-bracket we
choose. So let us pick a BFV-bracket [, | gy constructed with the help of the L,
quasi-isomorphism Ly from Proposition 1.4.

First we show the implication (b) = (a), i.e. we claim that the existence of
Q) € BFVY(E) satisfying (i) and (ii) implies that the zero section S of E — S'is a
coisotropic submanifold. Observe that [Q, Q]zry is an element of BFV?(E) and
hence decomposes with respect to

BFV?(E) = @l (A€ @ AFE).

We want to compute the component of [, Q]gpy in T'(A2E @ A°E*). The BFV-
bracket [-,]gry decomposes into

[.7 ']BFV = [.’ ‘]G + [.’ ']iv(H) 4+ ...

where - - - refers to terms that increase the ghost-momentum degree by at least 1
and [+, -];o () is the biderivation associated to the horizontal lift of II to a bivector
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on A(€ @ E*). We compute
[Q,Qlpry = [Q+QY Q%+ QYppy + BFV5(E)
= [+ 05"+ Qe+ Q0+ Q1 Q° + QYo + BFVs1(E)
= 2[Q°, Q6 +[Q°, Qg + BFV>1(E)
= 26(Q") + [Q°, Q%) + BFV>(E)
and hence [, Q|gpy = 0 implies
26(Q") + [Q°, Q%o = 0.
Because the restriction of something in the image of § to S always vanishes, the

above identity implies that the restriction of [Q°, Q°);; ) to S also vanishes. By
Lemma 2.11 this means that S is a coisotropic submanifold.

On the other hand, suppose that S is a coisotropic submanifold of (E,II). Our
first aim is to find Q! € BFV 2V (E) such that

[QO —|— QI,QO —|— QI]BFV - 0 + BFVZl(E)

holds. The calculation from above shows that this is equivalent to finding Q' that
satisfies

26(Q") + [92°, Q%o = 0.

Because R(0) := —1/2[Q° Q°%;,qn is an element of BFVZO(E), R(0) is closed
with respect to 6. Moreover the cohomology class of R(0) vanishes: the class is an
element of I'(A%F) obtained be restricting R(0) to S. However S is a coisotropic
submanifold and by Lemma 2.11 this is equivalent to —2R(0)|s = 0. Hence we
can find Q' € BFV &Y (E) satisfying

() = R(0) = 510, Do m

A possible choice of Q! is h(R(0)) where & is the homotopy introduced in the proof
of Lemma 2.7.
Assume that we found Q(k) := Q0 + .. + QF for k > 0 with QF € BFV*+LR)(E)
satisfying
[QE), QE)|prv = 0+ BF V5, (E).
We want to find Q¥+ € BFV#+2k+1)(E) such that
[Qk) + Q1 Q(k) + Q" ppy = 0+ BFVaoy0)(E)

holds. Set
1

R(k) = —5[9(@, Qk)|prv + BFVz(k+1)(E)>

i.e. R(k) € BFV*+20(E). The graded Jacobi identity for [, ]|ppy implies
[Q(k), [2(K), UKk)|prv]Bry =0
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and hence
—20(R(k)) = [Q° —2R(k)]prv + BFVs(E)
= [Qk), [Qk), UFE)srv]Brv + BFVs(E) = 0.

So R(k) is closed with respect to & and because it is concentrated in positive

ghost-momentum degrees its cohomology class vanishes (Remark 2.8). Therefore
we can find Q*+1) ¢ BFV #2541 (B) satisfying

S(QD) = R(k)
and obtain
[Q(k) + QFD Q(k) + Q¥ D] gpy + BEVs (1) (E) =
= [Q(k), QK] prv + 2[2(k), Q5 V] pry + BFV (41 (E)
= —2R(k) + 6(Q*)) + BFVL 11 (E)
= 0+ BF Vs (E).
The filtration BFV5,.(F) is bounded from above so we can consecutively find a

finite number of appropriate correction terms Q¥ such that Q := Q4+ Q! +...4+Q
satisfies

[Q, Q]BFV =0.

Finally let © and €’ be two elements of BFV!(E) satisfying properties (i) and (ii)
stated in Definition 2.12. Assume v := Q — Q' lies in BFV5,(FE) for some k > 0.
Denote its component in BEV *+L#)(E) by 4*. We obtain

0= [ Qpry + BFVouoy(B) = 20(2%) + F(Q',...,. %)

where [ is some quadratic term depending on (Q',---, Q%* =) only. Because of
S(4) = Bk - %)
1 _ _
— _5 (F(Ql, . 7Q(k 1)) . F(Qll, . 7Q/(k; 1))) =0

the element " is a cocycle of (BFV(E),¢). By Lemma 2.7 and Remark 2.8 it is
a coboundary, i.e. we can find e¥ € BFV LA (B) with §(e¥) = 4~

Since k > 0, [k, '] pry acts as a nilpotent inner derivation on the graded Poisson
algebra (BFV (E), [, -|prv) and integrates to an automorphism ® (k) of the graded
Poisson algebra (BFV(E), [, |prv). We calculate

O(k)(Q) + BF Vo) (B) = Q+ ", Qprv + BFVz ) (E)
= Q'+ + Q"+ [€5,Q% + BFVagey1)(E)
= Q'+ +OQF (") + BFV: (i) (B)
= Q'+ 4+ QEY L % 4 BFV 441y (E)
— Q'+ BFVagein(E).
This implies that ®(2) — Q' lies in BEFV> g4y (E).
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The filtration BF'V> 4,11)(E) is bounded from above and we can consecutively find
automorphisms ®(1), ..., ®(N) of the graded Poisson algebra (BFV (E), [-,|srv)
such that ®(N)o---o ®(1) maps Q to . O

DEFINITION 2.15. Let (F,II) be a coisotropic vector bundle. A BFV-complex
associated to (E,1I) is a choice of a BFV-bracket [-,:]pry on BFV(E) and of a
BFV-charge Q of (BFV(E), [, |rv)-

COROLLARY 2.16. Associated to any BFV-complex (BFV(E), [, |srv,?) is a
differential graded Poisson algebra

(BFV(E),[Q, ]srv, [ ]rv)-

The isomorphism type of this differential graded Poisson algebra is independent of
the specific choice of a BFV-bracket |-, -|pry on BFV(E) and of a BFV-charge Q

Of (BFV(E), [', ']BFV)-

PROOF. Definition 2.12, Proposition 1.8 and Theorem 2.13 immediately imply
the Lemma. O

REMARK 2.17. By Corollary 2.16 the isomorphism type of the differential graded
Poisson algebra (BFV(E), [, |srv, [, ]sry) is an invariant of the underlying
coisotropic vector bundle (F,II). In Section 3 this differential graded Poisson
algebra will turn out to be tightly related to the L..-algebra structure on I'(AE)
introduced in Corollary 3.4, Chapter 3. Moreover it has remarkable connections
to the deformation problem of coisotropic submanifolds on which we will elaborate
in Chapter 5.

DEFINITION 2.18. Let S be a coisotropic submanifold of a Poisson manifold (M, IT)
and o an embedding of the normal bundle NS of S in M into M whose restriction
to S is the identity. A BFV-complez associated to (S, o) is a BFV-complex associ-
ated to the coisotropic vector bundle (NS, I1,) where II, denotes the Poisson bivec-
tor field that NS inherits from (M, II) via the identification NS = o(NS) C M.

LEMMA 2.19. Given a BFV-complex (BFV (NS),Q, |-, |pryv) associated to (S, o)
where S is a coisotropic submanifold of the Poisson manifold (M,I1), the coho-
mology of

(BEV(NS), [, |5rv)
is isomorphic to the Lie algebroid cohomology of S in (M, I1) — see Definition 2.13
in Chapter 3.

PRrROOF. Set F := NS — S. By Corollary 2.16 we can assume without loss of
generality that the BEV-bracket |-, -] gy under consideration is given in terms of a
L, quasi-isomorphism Ly introduced in Proposition 1.4. Moreover the component
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Q' of the BFV-charge Q of (BFV(E),[-,|pry) in BEV@Y(E) can be assumed
to be equal to

1
_§h([QO7 QO]W(“))?

see the proof of Theorem 2.13.

The differential [, -]pry has total degree one and maps the ideal BFV5,.(E) to
BFVs(,_1)(E). Consequently it preserves the ideals I'(AZ*€ ® AE*). This family
of ideals yields a bounded filtration of BF'V (E). We want to compute the spectral
sequence associated to this filtration.

The first sheet E; is given by the direct sum of complexes
T(AE ® E*) X T(AZTE @ NE¥) /T (AZTHDE @ AEY)
with differential d; defined on X € T'(A°E ® £%) by
di(X) = [ X]ppv + T(ACTVE® EY)
[0, X]g + T(ACHDE ® £7)
= §(X)+T(ACVE R EN,

i.e. the first sheet is isomorphic to (BFV (F),d). By Lemma 2.7 the cohomology
of (BFV(E),J) is isomorphic to the graded algebra I'(AE) which is the second
sheet FE5 of the spectral sequence. Moreover this means that the spectral se-

quence under consideration collapses after one step. Thus the cohomology of
(BFV(E), [, |grv) is isomorphic to the cohomology of (Fs,ds) = F.

Next we calculate the image of Y € I'(A*E) under the induced differential ds on
Ey =T(AE). Recall that there are morphism of complexes

Ap* : (I(AE),0) — (BFV(E),§), Ni*:(BFV(FE),d) — (I'(AE),0)
which were introduced in the proof of Lemma 2.7. We compute

do(Y) = At ([, Ap"(V)]gry + T(ACTVE @ AEY))

= A ([ Ap*(Y)]a + [Q% A" (V) liwqny + [Q1 APF(Y)]g + T(ACTE @ AEY))

= i (19 A0 o — 5IAR, Plicn) A" (V) + DACHIE 9 A7) )

Since I'(AE) is locally generated by C*(S) and I'(E), it suffices to know dy on
C®(S) @ T'(E). For f a smooth function on S we obtain

dao(f) = ([2°, P (Plivan)s.
Contraction with an arbitrary A € I'(N*S) yields
<ds(f), A > = <[P (Nliva)ls, A >
<I#|s(A), dprf >
< P([ILp*(f)lsn), A >
= <on(f),A>
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hence dy(f) = On(f). We made use of the definition of the tautological section Q°
and of the identity

< P([IL, flsw), A >=< I#|5(\), dprf >= (II*|s(\)) (f)
which was established in the proof of part (d) of Lemma 2.12 in Chapter 3.

Let (2%)p=1,. s be local coordinates on S, (y%)=1
fibres of F, (bl)zzl _____
frame on £. The tautological section QY of & — FE is locally given by

,,,,, ¢ linear coordinates along the
. the corresponding local frame on £* and (¢;);=1... . the dual

.....

e

Zylcl

=1

and the homotopy h : BFV(E) — BFV(E)[—1] by

e 1
h(f(z,y,c)b™ - --b'*) = ij (/ %(x,t . y,c)tk) bt .. bk,
=1 0o 9Y

We compute

(i) = i (19 o — 5109 P oan) il

1
= [Q° culivanls — 3 (< A9, Qign)s cx >) |s

e

- ch[y Ck]zv / ay QO Q ]ZV(H)) (z,t-y,c )dt> E

- G,

- ch[yl>ck]iv(n) s — 5/ Ik ([QO Q ]ZV(H)) (2,0, c)dt
—1 o 9Y

- 10

= Zcz[yl,ck]iv(n) s — 58—317“ ([QOJ Qo]iv(H)) (2,0,¢)
=1

= Z aly' edlio | Is

=1

. Z ay Cmcj iv ( H)y + 2y [Cwy ]’Lv(H)C] + Clcj[y Yy ]Zv(H)) ‘

1] 1
= (Z c;[yl,ck]iv(m) |s — (Z[ck,y ]ZV(H)CJ> s
=1 Jj=1
0
( Z Czcja & ([y Yy ]Zv(H )) ‘S
2,7=1

= ——Zczcgak {v' v }n) s

i,7=1
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which is the local expression of

Apr (=[x, Hlsnls) = Apr ([IL, x]ls) = Ou(i*(ck))-
O
LEMMA 2.20. Let (BFV(NS), [, |srv,?) be a BFV-complex associated to (S, o)
where S is a coisotropic submanifold of the Poisson manifold (M,II).

The graded Poisson bracket |-, -|gry induces a Poisson bracket on the zero’th coho-
mology H'(BFV (E), [Q, |gry) which is isomorphic to the Poisson bracket {-,-}u
on the quotient algebra A(S) — see Lemma 2.22 in Chapter 3 — under the identi-
fication

HY(BFV(NS),[Q, |prv) = HY(D(ANS), dr) = A(S).

PROOF. The verification that |-, -| gry induces a Poisson bracket on the zero’th
cohomology of (BFV(NS), [, |gry) can be copied mutatis mutandis from the
corresponding verification in the proof of part (b)(ii) of Lemma 3.7 in Chapter 3.

The isomorphism
H(BFV(NS), [, 1prv) = B 2 Hy, (Es) = H(T(ANS), 9
established in the proof of Lemma 2.19 implies that every cohomology class of
degree 0 of (BFV(NS), [, ]sryv) can be represented by a cocycle of the form
F=p*(f) + BFV-1(NS)
where f is a function on S satisfying d(f) = 0 and p*(f) is its pull back to

a function on £ — S. The isomorphism between H°(BFV(NS), [, ]zry) and
H°(T'(ANS), dn) is given by

[F'=p"(f) + BEV=1(NS)] = f € C7(S5).

Let F' and G be two such cocycles representing cohomology classes in degree 0
with associated functions f and g on S. We compute

[F,Glerv = [p°(f),p"(9)]srv + BFV>1(NS)
= {p*(f),p*(9)}u, + BFV51(NS)

Consequently the class of [F, G]pry in

BFVY(BFV(NS), (2, Jsrv) = A(S)
is {f, g}u, i.e. the induced Poisson bracket on H(BFV(NS)[S),|pry) is isomor-
phic to {-, -} O

REMARK 2.21. Let S be a coisotropic submanifold of a Poisson manifold (M, IT).
By Lemma 2.19, Lemma 2.20, and Lemma 3.7 in Chapter 3 both the differential
graded Poisson algebra

(BFV(NS)7 [Qu ']BFV7 ['7 ']BFV)
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and the P,.-algebra
(T(ANS), A7)

provide some sort of “resolution” of the Poisson algebra (\A(S), {-, - }n) introduced
in Section 2, Chapter 3. More precisely both are chain complexes whose zero’th
cohomology is isomorphic to the algebra A(S) and the Poisson bracket {-, -}y is
induced from some structure defined on the two complexes. Observe that both
complexes are in general not acyclic in positive degrees but their cohomology is
isomorphic by Lemma 2.19. This observation will be extended considerably in the
next Section, see Theorem 3.6 in particular.

Although the differential graded Poisson algebra associated to a BF'V-complex and
the homotopy Lie algebroid are tightly related there are some subtle differences
which will play an important role in Chapter 5. In particular it turns out that
the differential graded Poisson algebras associated to two BFV-complexes that
correspond to different choices of embeddings of the normal bundle NS into M
might not be isomorphic. In contrast, Theorem 3.15 in Chapter 3 asserts that the
isomorphism type of the homotopy Lie algebroids associated to different choices
of embeddings is always the same.

EXAMPLE 2.22. Consider the submanifold S = {0} of M = R? equipped with the
Poisson bivector field

(z,y) 0 4 y* <4
T,Y) = .
exp(—m)%/\% x2+y224

Let oy be the embedding NS = R? — R? given by the identity and o; the
embedding given by
1

2,y) > ———(x,y
() 1+$2—|—y2(

The image of oy is contained in the disk centered at {0} with radius 1. Hence the
Poisson bivector field TI,, on R? inherited from (R? II) via o; vanishes whereas
I1,, = II is not zero everywhere.

The ghost/ghost-momentum bundle of R? — {0} is
R? @ A(R* @ (R?)*) — R

R? — R? ).

Denote the graded Poisson bracket on the sections of the ghost/ghost-momentum
bundle which encodes the natural pairing between R and R* by [-,-]¢. A possible
choice of a BFV-bracket for (R? II) and (R?,0) is

[', ']G + {', '}H and [-, ~]G respectively.
Any isomorphism of graded Poisson algebras between

(BFV(R?), [, J6 + {+}n)
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and
(BFV(RZ)’ ['7 ]G)
would induce an isomorphism of Poisson algebras
(COO(RQ)7 {'7 }H) — (COO(]RZ)a O)
Such an isomorphism does not exist.

Although different choices of embeddings of the normal bundle can lead to dif-
ferential graded Poisson algebras that are not isomorphic, it is always possible
to find appropriate “restrictions” of the BFV-complexes under consideration such
that the associated differential graded Poisson algebras are isomorphic.

DEFINITION 2.23. Let E — S be a vector bundle and U an open neighbourhood
of S in F which is equipped with a Poisson bivector field II such that S is a
coisotropic submanifold of (U, II).

The restricted ghost/ghost-momentum bundle is the restriction of A(€ ® E*) — E
to U. Recall that £ — E denotes the pull back of £ — S along £ — 5. We set

BFVy(E) :=T(AE @ EY|v).

A restricted BFV-bracket is a graded Poisson bracket [-,:]gpy of degree 0 on
BFVy(E) such that

(a) The restriction of wo[-, | pry to C®(U) xC>*(U) coincides with the Poisson
bracket associated to II.

(b) The restriction of 7 o [,:]gry to ['(E]y) x T'(E*|y) coincides with the
pairing between I'(€|y) and I'(£*|y) induced by the natural fibre pairing
between &|y and £y

A restricted BF'V-charge of (BFVy(E), [, -]sry) is an element of BEV(E) such
that

(1) [Q, Q]BFV =0 and
(i) the component of © in I'(£|y) is the restriction of the tautological section
QW ofE—-EtoU.

A restricted BFV-complex associated to (E — S, U, II) is a choice of a BFV-bracket
-, lgrv on BEVy(E) and a BFV-charge Q2 of (BEVy(E), |-, |srv).

Clearly every BEV-complex (BFV(E), [+, ‘| srv, ) yields a restricted BFV-complex
(BFV(E), [, |srv, Q)|v == (BFVy(E), [, |srv, Qv)
which we refer to as the restriction of (BFV(E), [, |srv,2) to U.

DEFINITION 2.24. Let E 2, S be a vector bundle. An open neighbourhood U of

the zero section S — E is contractible along fibres if for all x € U the segment
[(i o p)(x), x] lies in U.
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REMARK 2.25. Given an open neighbourhood V' of the zero section S of some
vector bundle £ % S there is an open neighbourhood U of S in E which is
contractible along fibres and that is contained in V. In fact, for every s € S fix a
vector bundle chart and the restriction of V' to this chart is an open neighbourhood
of s. Consequently we can find an ¢(s)-ball By (s) centered at s which is contained
in V. The union

U:= U B(g(s)(s)
ses

is an open neighbourhood of S in E. Moreover for arbitrary x € U thereisa s € S
such that x € Bj()(s). This implies

[p(x),z] C Bs(s)(s) C U.

This proves that the set of open neighbourhood of S in F which are contractible
along fibres is cofinal in the set of all open neighbourhoods of S in F seen as a
partially ordered set with respect to inclusion.

LEMMA 2.26. Let E — S be a vector bundle and U an open neighbourhood of S

i B which is contractible along fibres. Moreover suppose 11 is a Poisson bivector
field IT on U such that S is a coisotropic submanifold of (U,1I).

Restricted BFV-brackets on BFVy(E) exist and any two restricted BFV-brackets
on BFVy(E) are related by an automorphism of the graded algebra BFVy(E).

BFV-charges of (BFVy(E), [, |srv) exist and any two restricted BFV-charges of
(BFEVy(E), [, |srv) are related by an automorphism of the graded Poisson algebra
(BFVy(E), [, |srv).

The isomorphism type of the differential graded Poisson algebra

(BEVU(E), [ ]srv, [ ]BFV)

is independent of the specific choice of a restricted BFV-bracket |-, -|gpy on BFVy(E)
and of a BFV-charge Q of (BFVy(E), [, ]|srv).

PROOF. The statement about the restricted BFV-brackets is an immediate
consequence of Proposition 1.8.

The existence and uniqueness of restricted BFV-charges of (BFVy(E), [+, -|sryv) is
proved in the same manner as Theorem 2.13. The crucial step is the computation
of the cohomology of the complex

(BFVy(E), 0l (") = [|v, ]a).

Because U is contractible along fibres the homotopy h introduced in Lemma 2.7
restricts to BFVy(E). This implies that any cocycle whose component in ghost-
momentum degree 0 vanishes when restricted to S is a coboundary. This allows
us to construct a BFV-charge by an inductive procedure as done in the proof
of Theorem 2.13. Moreover the construction of an automorphism of the graded
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Poisson algebra (BFVy(E), [+, -|sry) relating two restricted BFV-charges can be
copied mutatis mutandis from the proof of Theorem 2.13.

The statement about the restricted BF'V-brackets and the restricted BFV-charges
imply the invariance of the differential graded Poisson algebra associated to a
restricted BFV-complex. 0

REMARK 2.27. Given a coisotropic submanifold S of a Poisson manifold (M, IT)
and a BFV-complex (BFV(NS), [, |srv,§2) associate to (S,0), the restriction
of (BFV(NS), [, |srv,2) to an open neighbourhood U of S in NS yields a
morphism of differential graded Poisson algebras

rlo : (BFV(NS), [Q, prv, [ |srv — (BFVy(NS), [Qlu, |srv, [+ |BFv).

If U is contractible along fibres, r|y is a quasi-isomorphism, i.e. it induces an
isomorphism on cohomology. This follows from the computation of the cohomology
H(BFVU(NS), [Q‘U, ']BFV) in Lemma 2.26.

THEOREM 2.28. Let S be a coisotropic submanifold of a Poisson manifold (M, IT).
Suppose og and o1 are two embeddings of the normal bundle NS of S in M into
M such that their restrictions to S are equal to idg.

Given BFV-complexes (BFV (NS), [, |srv,?) and (BFV(NS), [, |sry, ) as-

sociated to (S, 00) and (S, 01) respectively, there are

(a) two open neighbourhoods U and V' of S in E and
(b) an isomorphism of graded Poisson algebras

®: (BFV(NS), [\, ]srv)lu - (BFV(NS), [ Ispv)lv
that maps Q|y to Q|y.
PRrRoOOF. By Lemma 2.26 it suffices to find open neighbourhoods U and V' of
S in E and and an isomorphism of graded algebras
®: BFV(NS)|y — BFV(NS)|y
such that
© - (BFV(NS), [ |prv, Qv == (BFVy(NS), 2([27'(-), 27" (-)|prv), 2(Qur))

is a BFV-complex associated to (S, 01). By Proposition 1.8 and Corollary 2.16 we
can assume without loss of generality that |-, |gpy is a BFV-bracket constructed
with the help of the L., quasi-isomorphism Ly introduced in Proposition 1.4.

Recall the idea of the first half of the proof of Theorem 3.15 in Chapter 3: by
Remark 2.10 in Chapter 3 we can find an isotopy of embeddings

Y:NSx[0,1] - M

such that the restrictions to NS x {0}, NS x {1} and S x {t} arbitrary are g, oy
and idg for arbitrary ¢ € [0, 1] respectively. Moreover an isotopy of embeddings

©:Wx|[0,1] - NS
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where W is an open neighbourhood of S in NS was constructed. The restriction
of © to W x {0} is the identity on W and the restriction to S x {t} is idg for
arbitrary ¢t € [0,1]. Furthermore the composition of © with oy is equal to the
restriction of ¥ to W x [0, 1]. We denote the restriction of © to W x {t} by ©,.

The manifold M is equipped with a Poisson bivector field II. The embeddings o
give rise to a family of Poisson bivector field on N.S which we denote by II; :=
(0¢)*(I]s,(vs))- The identity
Jt‘W = (00 o 9t)|W
implies
Melw = (6" (ol @) -

Using Lemma 6 in Chapter 6 we can find an open neigbourhood Y of S in NS
and a smooth one-parameter family of embeddings

'Y x|[0,1]] - NS

such that the restriction v; of I' to Y x {t} is equal to (©¢|,(v))*. The relation
(’Yt)*(Hth(Y)) = HO\Y

holds for all ¢ € [0, 1].

The connection V on & — E which was used to construct the L., quasi-isomorphism
Ly yields a connection on A(€ @ E*). Using parallel transport with respect to this

connection we obtain a smooth one-parameter family of isomorphisms (¢))¢cjo,1] of

bundles of graded algebras

d)t *
ANEly @ Ely) —= NElr) @ EL, )

| |

Yt

Y Y(Y).
This induces a one-parameter family of isomorphisms
o BEV(E)ly = BFV(E)ly), s tioso ().
Define a graded Poisson bracket [, -|(t)ppy on BEV (E)|,, v by
[ seyv = e[y (), 97 ()]rv)-

Suppose X and ¢ are arbitrary sections of £|,,yy and £*|,,y) arbitrary and com-
pute

(X, {J()prv + BFVar(B) = ([, 1(X), 4 (O)]srv) + BFVa (E)
X), 07 (Olprv o7t + BEV-y(E)
X), 97 (Ol oyt + BFVy(E)
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Here we used the fact that the induced connection on A(€ ® £) is metric with
respect to the fibre pairing between £ and £*. This implies that the restriction of
W to E*|y is equal to the inverse of the adjoint of the restriction of ¥y to &ly.

Furthermore let f and g be two functions on ;(Y") and calculate

£, 9/t sryv + BFVa1(E) = ([0 (), &5 ' (9)lsrv) + BFVai(E)
@t([f ° Y, 90 Y)Brv) + BFV>1(E)
{fov.govtm o’
= [, ()" (Nsn], (00)* (9)lsw 09!
= —[[(v)* (), (v)*(H)lsw], ()" (9)]sw 07t
= —(() ([, flsn, glsn])) o7y
—[[IL, flsn, glsn

= {f>g}Ht'

Consequently [-,-](t)pry is a restricted BFV-bracket for (7(Y),II;), in particu-
lar [-,-](1)ppy is a restricted BFV-bracket for (y;(Y),1I;). Moreover () is a
Maurer-Cartan element of (BFV(E)|,, vy, [-,-](1)rv). However it is not neces-
sarily a restricted BFV-charge of (BFV (E)|,, vy, [-,-](1)rv). Its component in

ghost degree 1 is 1&1(90) which is not necessarily equal to Q°. The final step is to
“gauge” 11(2) to a restricted BFV-charge of (BFV (E)|+, vy, [ -](1)Brv)-

By Lemma 6 in Chapter 6 there is an open neighbourhood Z of S in N.S contained
in all of (7:(Y"))tcpo,1)- Remark 2.25 asserts that we can assume Z to be contractible

along fibres. Consider the smooth one-parameter family of sections (wt( Niepo]
over Z. Observe that the graph of Q° € T'(€|) intersects the zero section Z < |
transversally, i.e.

T, (graph(Q°)) + T, Z = T,.&

holds for all € graph(Q") N Z = S. Diffeomorphisms map transversal inter-
sections to transversal intersections and hence zﬂt(Q) intersects the zero section
Z — &|z transversally for all ¢ € [0, 1]. Furthermore the intersection locus is still
S — Z — &|z. Hence we can apply Proposition 9 of Chapter 6 to (&t(QO)) and
we obtain a smooth one-parameter family

(at)te[o,l]

of sections of I'(End(&|z)) such that the smooth one-parameter family (A;):eo,1)
of sections of I'(GL, (€]z)) satisfies

A QY= 3,(Q)
for arbitrary ¢ € [0,1]. Consider the smooth one-parameter family

(=A;7 o a0 Ay)iepo,)
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of sections of
P(End(€])) 2 T(E]; @ £7).
It acts on (BFV(E)|z,[,:](1)sry) via the adjoint action
[~A7 o a 0 A, (1) pry.

Lemma 2.12 in Chapter 5 implies that this action integrates to a smooth one-
parameter family of automorphisms a; of the graded Poisson algebra

(BFV(E)|z [, 1(1)Brv).
Moreover for X € I'(€|z) arbitrary
[~A; oas0 Ay, X|(1)ppy + BFVsy(E) = —(A; ' oas 0 Ay) - X + BFVsy(E)
and consequently
a(t)(¢(Q)) + BFV1(E) = A ¢(Q) + BFVay(E) = Q° + BFVa(E)
holds for all ¢ € [0,1]. In particular
Vi=ao o0 ¢31

is an isomorphism of graded Poisson algebras that maps €2 to a restricted BFV-
charge of (BFV(E)|z, [, |(1)grv)-

In summary we found two open neighbourhoods U :=~;'(Z) and V := Z of S in
NS and an isomorphism of graded algebras ¥ : BFV(E)|y — BFV(E)|y such
that

U - (BFV(NS), [, |prv, Wv := (BEV(NS), ®([@7(), 7' ()] prv), ®(Qfv))
is a BFV-complex associated to (.S, ay). O

DEFINITION 2.29. Let (BFV(E), |-, |grv, Q) be a BFV-complex associated to a
coisotropic vector bundle (£, II). The germ of (BFV(E), |-, |grv, ) is the triple

(BFVG(E)v ['7 ']%’FV? Qg)
where

(a) BFV9(E) is the graded algebra of equivalence classes of elements of
BFV (E) under the equivalence relation

F ~ G :& there is an open neighbourhood U of S in E such that F|y = G|y,

(b) [[F], [Gl]gpy is the equivalence class of [F, G]ppry in BFV9(E) and
(c) Q8 is the equivalence class of 2.

The germ of the differential graded Poisson algebra (BEFV (E), [, |grv, [, |Brv)
is the differential graded Poisson algebra

(BFVG(E)v [an ']BFV; ['7 ']%’FV)‘
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REMARK 2.30. In Remark 2.27 we saw that the restriction of a BFV-complex
(BFV(NS), [, ]rv, ) associated to (S,0) in (M, II) yields a morphism of dif-
ferential graded Poisson algebras

rlo : (BEV(NS),[Q, ]sn, [, -]sn) = (BEVu(NS), [Qu, |srv, [ ] Brv)-

If U is assumed to be an open neighbourhood of S in NS which is contractible
along fibres, then r|y is a quasi-isomorphism, i.e. it induces an isomorphism on
cohomology.

The morphism 7|y yields a morphism of graded Poisson algebras
o (BFV(NS)> [Qa ']SN> ['a ']SN) - (BFVQ(NS)’ [Qg’ ']%FV’ ['7 ']QBFV)'

In Remark 2.25 it was proved that the open neighbourhoods of S in NS that are
contractible along fibres form a cofinal subset of the set of all open neighbourhoods
of S in NS. This implies that ? induces an isomorphism on cohomology, i.e. 79
is an quasi-isomorphism.

THEOREM 2.31. Let S be a coisotropic submanifold of a Poisson manifold (M, 1)
and (BFV(NS), |-, |grv, Q) a BFV-complex associated to (S,o) with o an em-
bedding of the normal bundle NS of S in M into M.

Then the isomorphism class of the germ of (BFV(NS),[Q, |srv, [, |srv) is an
wmwvariant of S, i.e. it does not depend on the specific choice of embedding o, of
the BFV-bracket |-,-|gryv and of the BFV-charge .

Proor. This is a Corollary of Theorem 2.28 and the definition of the germ of
(BFV(NS), [, |grv, [+ |BrV)- U

3. Relation to the homotopy Lie Algebroid

REMARK 3.1. Theorem 2.28 and Theorem 2.31 were presented in [Sch2]. Observe
that although Theorem 2.31 is very similar to Theorem 3.15 in Chapter 3 it is
slightly stronger: while the homotopy Lie algebroid yields an invariant that only
depends on the fibre derivatives of the Poisson bivector field evaluated at the
coisotropic submanifold, the BFV-complex produces an invariant that depends on
the behaviour of the germ of the Poisson bivector field. The following example
demonstrates this difference.

EXAMPLE 3.2. Consider the submanifold S = {0} of M = R? equipped with the
Poisson bivector field

0 (z,y) = (0,0)
H(z,y) == {exp G@)% Ny (y) #(0,0)

This Poisson bivector field is symplectic on the complement of {0}. In particular
0 is the only point of R? that is a coisotropic submanifold with respect to II.

The fibre derivatives of II evaluated at 0 are just the partial derivatives of II at
0. Since II vanished to infinite order at 0 all these derivatives vanish. Hence the
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Leo-algebra structure on I'(ANg{0}) = AR? introduced in Corollary 3.4 in Chapter
3 is the trivial one.

On the other hand the restriction of IT to any open neighbourhood of {0} in R?
is non-vanishing. Hence any BFV-bracket associated to any embedding of the
normal bundle of {0} in R? into R? is different from the trivial one, i.e. the one
encoding the fibre pairing between R? and (R?)*.

DEFINITION 3.3. A two-form @ on a manifold S is called presymplectic if & is
closed with respect to the de Rham differential and if the kernel of the vector
bundle map

o TS — T*S
is a subvector bundle of T'S.

THEOREM 3.4. Let S be a coisotropic submanifold of a symplectic manifold (M,w)
and denote the embedding S — M by v. Then (*w is a presymplectic form on S.

Given a manifold S equipped with a presymplectic form @ it is possible to find a
symplectic manifold (M,w) such that S is contained in M as a coisotropic subman-
ifold and *w is equal to @. Moreover any two such symplectic manifolds (M,w)
and (N,w') are neighbourhood equivalent, i.e. one can find open neighbourhoods
U andV of S in M and N respectively and a symplectomorphism

¥ (Uwly) = (V,o'lv).

REMARK 3.5. This Theorem due to Gotay [Go] implies that a behaviour such
as in Example 3.2 does not appear in the realm of symplectic geometry since the
symplectic form is determined by its restriction to the coisotropic submanifold
up to neighbourhood equivalence. More precisely Gotay shows that for every
coisotropic submanifold S of a symplectic manifold (M, w) there is an embedding
of the normal bundle NS of S in M such that the pull back of the symplectic
structure to NS is polynomial in fibre directions, i.e. the symplectic structure on
NS and hence on an open neighbourhood of S in M is determined by its fibre
derivatives on S, see Remark 3.10 in Chapter 3.

The arguments in [OP] rely heavily on Theorem 3.4. Example 3.2 also demon-
strates that this Theorem is not true for arbitrary Poisson manifolds.

Nevertheless the BFV-complex and the homotopy Lie algebroid are tightly related
on an algebraic level:

THEOREM 3.6. Let (E,1I1) be a coisotropic vector bundle and denote the zero sec-
tion of £ by S.

The homotopy Lie algebroid
(F(/\E), (An)nZI)

associated to S — see Definition 3.6 in Chapter 8 — is Lo, quasi-isomorphic to the
differential graded Poisson algebra associated to a BFV-complex (BFV (E), [, |srv, Q)
of S, see Definition 2.15.
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PROOF. The strategy of the proof is as follows: in the proof of Lemma 2.7 a
homotopy h : BFV(E) — BFV(E)[—1] satisfying the relations

(i) hoh=0,
(ii) Ai* o h =0,
(iii) ho Ap* =0 and
(iv) 6h+ hod =id —(Ap*) o (Ai*)

was constructed. Recall that
Ap* : T(AE) — BFV(E)

denotes the fibrewise constant extension of sections of AE to sections of AE fol-
lowed by the inclusion into sections of A(€ & £*). The map

Ai* : BEV(E) — D(AE)

is given by first restricting a section of A(€ @ £*) to S followed by projection to a
sections of AE. Clearly Ai* and Ap* are chain maps. The identity (Ai*)o(Ap*) = id
and property (iv) of the homotopy h imply that Ai* and Ap* induce inverse maps
between I'(AE) and H(BFV(E),§ = [Q°,]¢). Hence

Ap*

(I(AE),0) == (BFV(E),d),h

NT*

provides contraction data, see Definition 2.1 in Chapter 2. According to Theorem
2.2 in Chapter 2 this contraction data can be used to perform homological trans-
fer of L..-algebra structures along Ai*. We apply this to the differential graded
Poisson algebra

(BFV(E), [, |srv, [, ]srv)

associated to the BFV-complex (BFV (E), [, |srv, §2). Denote the family of struc-
ture maps of the resulting Lo.-algebra structure on I'(AE) by (7,)n>1. We claim
that the structure maps (v, ),>1 are graded multiderivations of the graded algebra
['(AE), ie. they equip ['(AE) with a Py-algebra structure. Consequently we
can apply the arguments from the proof of Lemma 3.11 in Chapter 3: because
['(AE) is locally generated by C>*(S) and I'(E) and the structure maps (V,)n>1
are multiderivations, it suffices to know the following values of the structure maps:

7n(§1®®§n)7 7n(§1®®§(n—1)®f)7 and 7n(§1®€(n—2)®f®g)

where &, - -+, &, are sections of I/ and f and g are functions on .S. We will check
by direct computation that these values of the structure maps coincide with the
values found for the structure maps (\,),>1 of the homotopy Lie algebroid of S,
see Lemma 3.11 in Chapter 3.

First we aim to understand which decorated oriented trivalent trees contribute to
the structure maps ~,. Recall that the ghost-momentum degree is given by the
decomposition

BFV(E) = @4>0['(ANE @ NIE™).
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Furthermore we defined a family graded ideals
BFV5,(E) :=T(NE @ AZTEY).

Observe that Ap*(I'(AE)) C BFV(FE) is concentrated in ghost-momentum degree
0. Moreover Ai* annihilates everything not of ghost-momentum degree 0. Con-
sequently if a map associated to a tree with n leaves — i.e. exterior vertices with
edges oriented away from them — maps tensor products of elements of Ap*(I'(AE))
to BF'V5(E), this tree does not contribute to 7,. The map associated to a deco-
rated oriented trivalent tree is given in terms of [-,:|gpy, the “perturbation” of ¢
which is given by

D() = prv — 6 = [Q, Iprv — [°, ]

and the homotopy A. The homotopy h increases the ghost-momentum degree by
1, D(-) maps BFVs,(E) to BFVs,(E) and [, |gpy maps BFV5,.(E) X BFVs4(E)
to BEV>(4s-1)(E) where the component of [-,-|ppy responsible for the shift of
—1is [-,:]g. Now the number of copies of the homotopy decorating a given tree
is equal to the number of copies of [, :|gry decorating that tree plus the number
of copies of D decorating that tree minus one. Since the homotopy increases
the ghost-momentum degree by 1 and [, -]gpy is the only map that can decrease
the ghost-momentum degree there must be at least as many copies of |-, |gpy
decorating a tree as there are copies of homotopies h decorating the tree. In
Summary

#([s-|srv) > #(h) = #([, |srv) + #(D) — 1

and so only trees with zero or one copy of D contribute to the structure maps
(Vn)n>1- Moreover it follows that in the case #(D) = 1 only the part of [, | pry
that decreases the ghost-momentum degree contributes, i.e. instead of [, | gry we
can decorated these trees with [+, -]g. In the case #(D) = 0 one of the trivalent ver-
tices decorated with [-, | gry might leave the ghost-momentum degree unchanged,
i.e. we can decorate it with the component of [-, -] gry of bidegree (0,0) which we
denote by [-, ;.

Summing up the previous paragraph one can adapt the construction of Remark 2.7
in Chapter 2 as follows: Consider oriented decorated trivalent trees whose edges
are either all decorated by 0 or there is one exceptional edge decorated by 1. In
the latter case all the trivalent vertices are decorated by [, -] and the exceptional
edge is decorated by D. In case all edges are decorated by 0, one of the trivalent
vertices is decorated by [-, -] and all others are decorated by [-,:]¢. Then one
places —h between any two consecutive operations decorating the tree. In the end
a copy of Ap* is placed at every leaf and A:i* is placed at the root, i.e. the unique
exterior vertex with edge oriented towards it.

Observe that Ap*(I'(AE)) is an abelian Lie subalgebra of (BFV (E), |-, ]¢). This
implies that the only two families of decorated oriented trivalent trees that con-
tribute to (7, )n>1 are the following:
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Here the decoration E refers to [—, =]y, G refers to [—, —]¢ and the decoration
of the edges is left out whenever it is zero. We denote the maps from ['(AE)®"
to I'(AE)[2 — n] corresponding to the tree on the left/right-hand side by L,, and
R, respectively. Up to skew-symmetrization and sign issues these two families of
maps define the induced L.-algebra structure on I'(AE).

Next we verify that (L,),>1 and (R,),>1 are families of graded multiderivations.
For ¢ and ¢ homogeneous elements of I'(AE) we calculate

(A (ENQ), e = [(Ap") A (AP™Q), e
= (W) NG He + (DA ) A (7€), e
and
h((A€) A -) = (=D (Ap™€) A B().
The last equality can be verified easily in local coordinates. In Lemma 10, Chapter

6 the signs for L,, and R, are computed. For &, ..., &, homogeneous elements of
['(AE) we obtain

= (1L N i (A6, B[ AP 2y AP €y, AP Ed)]e) L))

with
n—2
(&, 6n) =n+ Z(n —i+1)(|&[+ 1)
i=1
and

R (& ® --®E,) =
= (=1)m @) A ([Ap*Ey, h([ - - MNP E 1), RD(AP*E)]G) -+ +1a))c)
with

[\

raErs e &) = (= 1)+ 3 — i+ 1)((&] T 1),

i=1

The factor % in front of the formula for L, comes from the internal symmetry of
the corresponding decorated oriented trivalent tree. Suppose &1, ..., §x—-1) and (i,
(2 are homogeneous sections of AE. We want to compute

Ly(§i® @&y @ (G A GQ)RER - ® f(n_l)) and
R(&1®@ @& @ (GAG)®ER - ®En-1)) respectively.
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Using the fact that [, ]q, |-, ] and D are graded derivations, the identities

(AP (EN Q). e = (Ap™E) AL(AP*C), e + (1) (Ap* Q) A [(Ap*€), e,
h((Ap*€) A ) = (=1)FEI(Ap™E) A h(:)
and that Ap*(I'(AFE)) is an abelian Lie subalgebra of (BFV (E), |-, ]¢) yields

L,(&i® @& i) ®(GANR)®&LG® - ®&n-)) =
- (_1)(\§1|+~~-+\§(i—1)|+n)\C1|C1 ANL(61®-® §irn®GRER @ f(n—l))
+(_1)(\§1\+...+\§(i—1)\+|C1|+n)\C2|C2 AN ® - ® §irn @G RER @ f(n—l))
and
Rp(6 @ @& @ (GAG) R @ En-1)) =
= (~DaR e BIAlG AR, (6 @ © 8 ® GRE® - ©En1)
+(_1)(\§1\+---+\5(i71)\+|Cl|+n)\C2|C2 AR, (6,® - ® Cirn®@GRER - ® §(n_1)).

These are exactly the signs in the definition of a graded skew-symmetric multi-
derivation, see Remark 4.16 in Chapter 2.

Finally we compute the values of the structure maps (L, ),>1 and (R,,),>1 on tensor
products of smooth functions on S and sections on E respectively. Without loss
of generality we can assume that [-,-]y is equal to [-,];g ) where iy (II) is the
horizontal lift of the Poisson bivector field II to a bivector field on A(€ @ £*) with
respect to a connection on this bundle induced from a connection V on £ — S,
see Proposition 1.8. Moreover we can assume without loss of generality that D is
given by
1
[Q()? ']iv(H) - é[h([QO, Qo]iv(n))v Ja,

see Lemma 2.19.

-----

fibres of F, (b");=1, . the corresponding local frame on £* and (¢;)i—1,._. the dual
frame on €. These two frames yield a frame of A(€ @ £*). We want to compute
the values of L, and R, on tensor products of the following types

A=d"(c,) @ @1 (¢, ) ® f @ (ciy) @+

o i*(ci(k+l—1)) ®WIS i*(ci(kw)) ® - ®i*(ci,),
Bi=i"(c;,) @ @i (cif_,,) @ f @1 (c3,) @ - ®17(cs,) and
C:=1i"(¢;;) ®---®1i"(¢;,) respectively.

Here f and ¢ are smooth functions on S. Observe that tensor products of type
(A) are annihilated by R,. For tensor products of type (B) and (C) both L,, and
R, may contribute. By Lemma 11 in Chapter 6 the identity

A ([eiys P hlleqys P((eq, MX)e)]e) - +le)le) = %(i*(%) it (e) - Xls
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holds for an arbitrary element X of BFV(FE) of ghost-momentum degree 0. We
obtain

Ln(i*(ci,) @ - @i*(ci,_,) © f © g) = (=1)" ! )!M*(cil--~ci(n,2>-{f,g}n)-

5 —2)1
Graded skew-symmetrization of this term yields
Y (i7(Ciy) @ -+ @i (Cif,_y) @ f @ g) = (=1)" Ni*(ciy -+~ ci,_p, - ({f 93m))-
Next we calculate
Ln(i*(ciy) ® -+ @ % (cip,,_,)) ® f) =
— (-1

)! AT (Ci1 " Cina) [Ci(n—l)’ f]iV(H))

2(n—2
and skew-symmetrization yields
n—1
W (i) @ - @ 0 (cif, ) ® f) = (=1)" (Ai* D (el [Cik,f]iv(m)\s) -
k=1

Furthermore

R (i*(ciy) @ - @14 (ci,_,)) @ f) =
(—yn
(n—1)!
(—yn

= (n _—1)! A i*(Cil Gy [QO, f]iv(l‘[))

Ni*(ciy -+ iy, - D(f))

-1 (n—1) e
‘ =1
-1 (n—1) e
= ((n)ﬁ N i*(cil S iy Z <_yk[0k, f]zv(n)))
‘ k=1

(="
(n—1)!

-+ AN i*(Cil e Ci(n,l)H#(dDRf))

and skew-symmetrization leads to

(i (c)) ®@ -+ @1 (ci_y)) @ f) =

n—1
— (_1)(71*1) /\ /L* (Z cil e élk e Ci(nfl) ' [clk’ f]ZV(H)>
k=1

+(_1)n A\ i*(Cil cee Ci(n71) . H#(dDRf))
and consequently

(i () ® - @ (i) ® ) = (~1)" Ai*(ey -+ iy, - T*(dprf).
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Furthermore
LH(Z (Cll) ® e ® ? (Cln)) = 2(77/ . 2)' /\ ? (CZI o Ci(ﬂ,—?) ' [cl(n71)7cln]zv(n))
and hence
(i (ci) ® - @i (ci,)) = (Z Ciy = Ciy = Gy Gy, - [ciwciz]iv(n)) :
k<l
On the other hand
(_1)(n—1) -k
Rn(cil ® s ® Cin) = m At (Cil o .Ci(nfl) ’ D(Cln))

(—1)(n_1) - 0 1 0 OO

m ANV Ciym e Cigyy gy (12% ¢, Jigqn) — §[h([9 , Vigan), ¢ila)

(oD

fd 7/\2*(621.

(n—1)!

n!

(n—1)!

—1)
n!

—1)(n=1)

(n—1)!

—1)"

Cigy (2, Cin]ivm))

1
i (I L))

—1)(=1)

e
“Cigy Z ([ykck7 Cin]iv(n))>

k=1

1 e
G > ([y’“ck,yla]iv(m))

k=1

Ty Zy Ckaczn i (IT +ck[y Czn]zv(l_[))

© Gy, Zyyckuclzv ))

kll

1
“ Gyt 9 Z QZ/k[Ck, yl]iv(H)CZ + cr [yk, yl]z‘v(n))

k,l=1
_ (n—1)
(_1)(n 1) . )
= (n — 1)| /\ 1 Z cil PN Cir . e Ci(nfl) . [Cira Cln]zv(n)
r=1
S
k=1

i (G Cz‘s]iv(H)>
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r=1 [=1

(3
o

and consequently

Yo (0 (i) @ - @1 (cs,)) =
(n—1)

= (=)D A" Zcil
r,s=1

4. THE BFV-COMPLEX

E E Ciy ° Czr

e yl]iv(H)Cl>

1 e
2 Z craly”, yl]iv(H)>

k=1

o Cigt Gyt [Cm Cis]iv(l'[)

.. éz.r ceeg ck[yk, Cir]iv(H)>

r=1 k=1
+(_1)n A ,L* (Z C“ .. éir v éis e Cin . [Cira Cis]iv(n)>
r<s
+H=TAE (Z D il o, yl]ivm)@)
r=1 [=1
+H(=1)" A (e, 1)
(n—1)
_ ( 1)(71—1) A Z* Z Cil . éir .. éis cee gy [Cir7 Cis]iv(n)
r<s
H(=1D)" AN (¢ ¢y, - T0).
All in all we obtain
(i (i) ® -+ @ (c,)) = (=) A (ciy -+ - s, - T0)
The three terms
V(i (ciy) ® - @i (ci,_p)) @ f@g) = (=1)" ANi™(ciy -~ ci,_yy - (LS5 94m0))
,-)/n( (021) K- i*(ci(nfl)) ® f) = (_1)n A i*(cil e ci(nfl) ' H#(dDRf>) and
Tt (e) ©- - @i (e;,)) = (=1)" A (ciy - -, - TT)

are exactly the coordinate expressions

for the formulae of the structure maps

(An)nen of the homotopy Lie algebroid found in Lemma 3.11 in Chapter 3.

We know from Section 1 in Chapter 2 that the induced L..-algebra on I'(AE)
which we identified with the structure maps of the homotopy Lie algebroid comes

along with an L.,-morphism to (BFV(E), [, |srv, [,
is in fact an L. quasi-isomorphism, i.e.

‘|grv). We claim that this
the chain map from (I'(AE),dn) to

(BFV(E),[S,|pryv) that is part of the L,-morphism induces an isomorphism on
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cohomology. This chain map is given by

Z(—h o D)" o Ap*.

n>0
The spectral sequence argument which we used to relate H(BFV (E), [, |grv) to
(I'(AE), On) in the proof of Lemma 2.19 shows that every cocycle a of (I'(AE), On)
extends to a cocycle & of (BFV(E), [, |gry) such that Ai*(&) = a. Moreover
any cocycle of (BFV(E), [, ]pryv) can be obtained in this way and two dif-
ferent extensions of a cocycle in (I'(AE),dn) are equal up to a coboundary in
(BFV(E),[S,|pryv). This arguments imply that because ) _,(—h o D)" o Ap*
is a morphism of chain complexes satisfying Ai* o (3, . (—h o D) o Ap*) =id it
induces an isomorphism on cohomology. U

THEOREM 3.7. Given a coisotropic vector bundle (E,I1), the formal deforma-
tion problems associated to the Ly, -algebra (I'(AE), (An)n>1) and to the differential
graded Lie algebra (BFV(E), [, |grv, [, |Brv) respectively are equivalent.

Proor. This is a direct consequence of Theorem 3.6 and the general theory
of formal deformation problems, see [SS] for instance. O

COROLLARY 3.8. Let S be a coisotropic submanifold of a Poisson manifold (M, IT)
and o any embedding of the normal bundle N.S to S in M into M whose restriction
to S s the identity.

The homotopy Lie algebroid (I'(ANS), (A%),>1) of (S, o) in (M, I1) - see Definition
3.6 in Chapter 3 — is Lo quasi-isomorphic to the germ of the differential graded
Poisson algebra

(BFV(NS)7 [Qa ']BFV7 ['a ']BFV)
associated to a BF'V-complex (BFV (E), |-, |grv, Q) for (S, o) introduced in Defi-
nition 2.18.

ProoF. This is an immediate consequence of Theorem 3.6 and Remark 2.30.
O






CHAPTER 5

Deformations

Following [Sch3] we investigate the geometric content of a BFV-complex associ-
ated to a coisotropic submanifold inside a Poisson manifold. In the first Section we
introduce the set of coisotropic sections and normalized Maurer-Carten elements.
It is proved that every coisotropic section can be lifted to a normalized Maurer—
Cartan element, see Theorem 1.13. Moreover we present an example which was
also considered in [Z] and [OP]. In Section 2 a natural equivalence relation on the
set of coisotropic sections is introduced and the set of equivalence classes is com-
puted for a Lagrangian submanifold of a symplectic manifold. We relax the notion
of normalized Maurer—Cartan elements to geometric ones and construct a natural
equivalence relation there. Theorem 2.25 asserts that the set of equivalence classes
of geometric Maurer-Cartan elements is in bijection with the set of equivalence
classes of coisotropic sections. This relation is extended to the level of groupoids
in Section 3. The groupoids of coisotropic sections and of geometric Maurer—
Cartan elements respectively are introduced. We construct a surjective morphism
of groupoids from the latter groupoid to the former and determine its kernel. As
a result we obtain an isomorphism of (quotient) groupoids, see Corollary 3.27.

1. Coisotropic Sections and (normalized) Maurer—Cartan elements

REMARK 1.1. Let S be a coisotropic submanifold of a Poisson manifold (M, II).
In Section 2, Chapter 4 we established the existence of a BFV-complex
(BFV(NS)’ ['7 ']BFV> Q)

associated to (S5, 0). Here o is an embedding of the normal bundle N'S of S into
M such that the restriction o|g is the identity on S — see in particular Definition
2.18, Definition 2.15 and Theorem 2.13 in Chapter 4. Moreover by Corollary 2.16
the isomorphism type of the differential graded Poisson algebra

(BFV(NS>7 [Qu ']BFV7 ['7 ']BFV)

is an invariant of (S, ). One of the aims of this and the following subsections is to
investigate the geometric content of this differential graded Poisson algebra. We
fix an embedding such as ¢ once and for all and work in the setting of coisotropic
vector bundles introduced in Definition 2.9, Chapter 4.

DEFINITION 1.2. Let (E,II) be a coisotropic vector bundle. A section p of £ — S
is coisotropic if its graph

S = {(a, () : 2 € S}

117
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is a coisotropic submanifold of (E,II).

We denote the set of all coisotropic sections of (E,II) by C(E,II).

DEFINITION 1.3. Let U be an open neighbourhood of the zero section .S of a vector
bundle £ — S which is contractible along fibres, see Definition 2.24 in Chapter 4.
A section p of E lies in U if for all z € S the value u(x) of p at x is an element

of U.

REMARK 1.4. Let L be a smooth manifold. The cotangent bundle T L carries a
canonical symplectic structure given by

Wean = _dDReL

where 60;, is the Liouville one-form. It is defined as follows: consider the commu-
tative diagram

T(T*L)

y T(rL)
T*L TL
R %

L.

Now the Liouville one-form is given by
O :T(T"L) - R, X —<mpp(X), T(7p)(X) >

where < -, - > denotes the fibre pairing between T'L and T* L. It has the property
that, for any one-form p on L, the pull back of 0y, along pu: L — T*L is p again.
The one-form 0, can be universally characterized by this property, see [Mi] for
instance. That we., = —dpgrfr, is non-degenerate can be checked in local charts.
The pull back property of #;, implies that

,u>|< (wcan) == _dDR,u
holds for all u € Q'(L).

THEOREM 1.5. Let L be a Lagrangian submanifold of a symplectic manifold (M, w),
i.e. its dimension is half of the dimension of M and the pull back of the symplectic
form to it vanishes. Then there is an open neighbourhood V' of L in M and an
open neighbourhood U of L in T*L and a symplectomorphism

(S (anyw) = (V> wcan‘V)'

REMARK 1.6. Theorem 1.5 is an immediate the Darboux—Weinstein theorem. A
proof can be found in [W1] for instance. It asserts that L — (T%L,wean) is a
universal model for local properties of Lagrangian submanifolds inside symplectic
manifolds.
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ExamMPLE 1.7. Consider a Lagrangian submanifold L of a symplectic manifold
(M,w). Theorem 1.5 asserts that we can replace L < (M,w) by L < (T*L, wean)
as long as we are only interested in the symplectic geometry near L.

A section p of T*L is coisotropic inside (T*L,wean) if and only if its graph

L= {(e,(x)) v € I}
is a coisotropic submanifold of (7L, wcay). Since the dimension of L, is equal to
the dimension of L any such graph will automatically be a Lagrangian submanifold
of (T* L, Wean). Denote the inclusion of L, into T*L by i, and the diffeomorphisms
given by restricting

w: L —T"L
to its image L, by fi.
A submanifold L, is Lagrangian if and only if
ir(Wean) = 0.
Since i is a diffeomorphism this is equivalent to
dprpt = =" (Wean) = —[" (1 Wean) = 0,

i.e. a section p is a coisotropic section of (T*L, weay) if and only if it is closed with
respect to the de Rham differential.

REMARK 1.8. Oh and Park proved in [OP] that a generalization of the above
picture holds for coisotropic submanifolds of symplectic manifolds: the de Rham
complex (I'(AT*L), dpg) is replaced by the strong homotopy Lie algebroid

(C(ANS), (A7)nen)

associated to (S, 0), see Corollary 3.4 and Definition 3.6 in Chapter 3. One can
find an open neighbourhood U of S in NS such that a section p that lies in U is
a coisotropic section of (NS, II,) if and only p is a Maurer—Cartan element of the
strong homotopy Lie algebroid, i.e. p satisfies
Ar(p) + %)\2(M®M)+ %Ag(uébu@u) +--=0.

Instead of the Darboux-Weinstein Theorem one makes use of Gotay’s Theorem
(Theorem 3.4 in Chapter 4). Observe that one has to prove convergence of the
above series in order to make sense of the Maurer—Cartan equation. An way to
resolve this convergence issue is to consider formal solutions only, i.e. adjoin a
formal variable € and only allow for solutions in the ideal generated by .

In case S is a Lagrangian submanifold, one can find an embedding ¢ such that
the strong homotopy Lie algebroid of (S, ) is isomorphic to (2(L),dpr) and one
recovers the characterization of coisotropic sections given in Example 1.7.

In the Poisson case the relation between Maurer—Cartan elements of the strong
homotopy Lie algebroid (I'(ANS), (A?)) and coisotropic sections that lie in an
open neighbourhood of S in NS that is contractible along fibres does not hold.
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Consider Example 3.2 in Chapter 4 where we presented a Poisson bivector field
IT on R? which is symplectic on R? \ {0} but vanishes at {0}. Hence 0 is the
only point of R? that is a coisotropic submanifold of (R? IT). Moreover we saw
that the strong homotopy Lie algebroid yields the trivial L.-algebra structure on
[(AN{0}) = AR?. In particular every element of R? is a Maurer-Cartan element
of this Ls-algebra. Consequently every open neighbourhood of 0 in R? contains
an uncountable number of elements which satisfy the Maurer—Cartan equation
but only 0 € R? is coisotropic.

DEFINITION 1.9. Let (BFV(E),[-,-|srv, ) be a BFV-complex associated to a
coisotropic vector bundle (E,II).

An element 3 € BFV!(E) is an algebraic Maurer—Cartan element of (E,1I) if it
satisfies the equation

Q4+ 5,Q+ Blgry = 0.
We denote the set of all algebraic Maurer—Cartan element of (E, II) by D, (E, II).

REMARK 1.10. To be more precise we should associate the label “algebraic Maurer—
Cartan element of” not to a coisotropic vector bundle (E, IT) but to a specific choice
of BFV-complex for (F,II). However by Corollary 2.16 in Chapter 4 different
choices of BFV-complexes associated to (£, II) lead to isomorphic sets of algebraic
Maurer-Cartan elements. So let us fix a BEV-complex (BFV (E), [+, |grv, ) as-
sociated to (E,II) once and for all. Without loss of generality we may assume
that the BFV-bracket [-,-|gry is the one constructed with the help of the L,
quasi-isomorphism Ly introduced in Proposition 1.4 in Chapter 4.

The first algebraic Maurer-Cartan elements that come to one’s mind are 0 and
—(). The former encodes the fact that the zero section S of F is a coisotropic
submanifold of (F,II) whereas the latter encodes the fact that E is a coisotropic
submanifold of (E,II). In general algebraic Maurer—Cartan elements can be in-
terpreted as “coisotropic constraints” which do not necessarily yield submanifolds
of E. Moreover the example —€) shows that even if we restrict ourselves to alge-
braic Maurer—Cartan elements which come along with corresponding coisotropic
submanifolds, the dimension of these submanifolds is not fixed.

We want to focus on a certain subset of D, (E,II) whose elements possess an
interpretation in terms of coisotropic submanifolds, all of which are diffeomorphic.
The key point is to introduce a normalization condition resembling the one we
imposed on BFV-charges in part (ii) of Definition 2.12 in Chapter 4.

DEFINITION 1.11. Let be a coisotropic vector bundle (F,II).

An element 8 € Dy, (E) is a normalized Maurer—Cartan element of (E,1I) if its
component in BEV®0(E) = T'(€) is equal to the pull back of some section of E.

We denote the set of all normalized Maurer—Cartan element of (E, IT) by Dy, (F, IT).
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REMARK 1.12. Recall that the bundle £ — FE is the pull back of £ — S along
E £ S. Consequently there is a pull back map

p":T(E) —T(E).
The set BFV!(E) decomposes into
BFVYE) = @0l (AFTE @ AFEY),
i.e. every element of D, (E,II) C BFV!(FE) has a component in I'(€).

THEOREM 1.13. Let (E,II) be a coisotropic vector bundle and p a section of E.
The following statements are equivalent:
(a) —p is a coisotropic section of (F,1I).
(b) There is f € Do (E,II) whose component in I'(E) is equal to the pull
back of .

Furthermore given two elements B and 3" of Dyo(E, I1) there is an automorphism
U of the graded Poisson algebra (BFV (E), [, |sryv) that maps Q+ 5 to Q + (3.

PROOF. A direct verification can be found in [Schl]. We will reduce the
Theorem to Theorem 2.13 in Chapter 4. Let pu be a section of E. This induces a
diffeomorphism ¢, of E given by

pu: B —E, (v,e) = (z,e+ p()).
Since ¢, maps fibres of £/ — S to themselves, it induces an automorphism of the
vector bundle £: by definition £ is the fibre product of E with itself over S, i.e.

E:={le,f) e ExE:ple)=p(f)} = E, (ef)—e
The vector bundle structure is given by
Rx& —&, (A f)—(e,A-f)
and

Eex & — &, ((e,]),(e,9) — (e, +9).
Consider the map

Gu:€ =& (e, f) = (wule) f).

It is a vector bundle isomorphism of £ covering ¢,. Hence we obtain an induced
automorphism of graded algebras

¢.: BFV(E) — BFV(E), s~ (¢,0s50p,").
Because of

(Bu(Q°+ p* (W), e) = B.((Q°+ p* (1)) (w, e — u(x)))
ou((z, e — p(z), e — p(x)) + (2,6 — p(z), p(z)))
= ¢u(z,e— p(z),e)

= (x,e,e) = (Q°)(z,e)
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the identity

u(Q0 4 p (1) = Q°
holds. Let X € I'(€) and ¢ € I'(£*) and compute

b (16:1(),6.1Qle) = (161X, 61Ol 0"
= [X,(le = ¢((X).

Furthermore for arbitrary f and g in C*°(E) one obtains

B (16210, 6 ()n) = (9 ) L) (1), ()" (@) )

This implies that
My = (@) (1620 65 Ol )

is a BFV-bracket for the coisotropic vector bundle (£, I1,,) where II,, is the Poisson
bivector field corresponding to the Poisson bracket on C*°(E) given by

{f. g}, = (0,)" {0 () (@) (9)}m)

We denote the vanishing ideal of S in ¥/ by Zg and the vanishing ideal of
Sop = {(@, —pla)) : w € S}
by Is_,. Observe that
©,(Zs) =1s_,
holds. This implies

{Zs,Is}n, = (90;1)* ({Zs_,, Zs_, }u) ,
i.e. Zg is a coisotrope of (C*(E),{:, }m,) if and only if Zg_, is a coisotrope of
(C*(E),{, }u). By Lemma 2.3 in Chapter 3 this implies that S_,, is a coisotropic
submanifold of (E,II) if and only if S is a coisotropic submanifold of (£,1IL,).
By Theorem 2.13 in Chapter 4 the latter statement is equivalent to the existence
of a BFV-charge for (BFV(E),[-, |5y ). Moreover all such BFV-charges are
equivalent up to automorphisms of (BFV (E), [+, [5r)-

Let Q be such a BFV-charge for (BFV(E), [, |4y). Consequently

~

v =, () - Q
is a Maurer—Cartan element of (BFV (E), [, :]pryv). Moreover we computed that
() = @+ p" (1)
holds, i.e. 7y is a Maurer—Cartan element whose component in I'(€) is p*(u). Con-

sequently qu yields an isomorphism between BFV-charges of (BFV(E), [, /5r)
and Maurer—Cartan elements of (BFV (E), [, :]|pry) whose component in I'(€) is

equal to p*(u).
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We conclude: S_, is a coisotropic submanifold of (E,II) if and only if S is
a coisotropic submanifold of (E,1I,). By Theorem 2.13 in Chapter 4, S is a
coisotropic submanifold of (E,1I,,) if and only if there is a BF'V-charge for

(BFV(E)v ['7 ']%FV)'

Finally we established an isomorphism between the set of BFV-charges for the
graded Poisson algebra (BFV (E), [-, -|)5) and the set of Maurer—Cartan elements
of the BFV-complex (BFV(E),|[-,-]pry) whose component in I'(§) is equal to

pr(p). O

REMARK 1.14. The proof of Theorem 1.13 along with Theorem 2.13 and Lemma
2.11 in Chapter 4 can also be used to establish the following facts:

(a) The cohomology of (BFV (E), [2°+p*(u), -]¢) is isomorphic to the graded
algebra I'(AE).

(b) Moreover a cocycle of (BFV(E),[Q° + p*(u),]e) is a coboundary if its
component in ghost-momentum degree 0 vanishes when restricted to S_,,.

(c) Q°+p*(u) extends to a Maurer—Cartan element of (BFV(E), [-,-|grv) if
and only if

[Q° + p*(p), Q° + p* (1) iw )

is exact with respect to [Q° + p*,-]¢ or equivalently if and only if its
restriction to S_, vanishes. The latter statement is true if and only if
S_,, is a coisotropic submanifold of (E,II).

One can use these properties to construct Maurer—Cartan elements 3 of (F,II)
whose component in T'(€) is equal to Q0+ p*(u1) in an iterative manner analogous
to the construction of BFV-charges in the proof of Theorem 2.13 in Chapter 4.

Furthermore Theorem 1.13 yields a surjective map
LHOI‘:DHOI‘(E7H)—)C(E7H)7 ﬂl—)ﬂozp*(M)H—M‘

Different elements in the preimage of some element of C(£,II) under Ly, can
be related by certain automorphisms of the differential graded Poisson algebra
(BFV(E), [, |srv, [, ]srv). In the next Section a group will be constructed
which acts on D, (F,II) and the orbits are exactly given by the preimages of
elements of C(E,II) under Ly, i.e. Ly, induces an isomorphism between the
quotient of Dy, (F,II) by the group and C(F,II).

ExaMPLE 1.15. Consider the vector bundle
E:= (S xR* — (s")*
with coordinates (61,62, 63, 0 2!, 2?) where 6 denotes the angle-coordinate on S*.
Equip E with the symplectic form
w = dprf" A dprz' + dprb* A dpra® + dprb® A dprd*

and observe that (E,w™!) is a coisotropic vector bundle.



124 5. DEFORMATIONS

First let us construct a BFV-complex for (E,w™!). The pull back of E — (S')4
along £ — (S1)* yields

ExR?— E,
hence
BFV(E) =T(E x A(R? @ (R*)?) — E).

We fix a frame (cq, ¢;) on R? and denote the dual frame on (R*)? by (b',b?). This
induces a frame on E x (A(R? @ (R*)?)). Since the bundle E — (S)* is trivial we
can just set

['7 ']BFV = ['a ']G + {'a '}w—l'
Recall that [-,-]¢ is the graded Poisson bracket of degree 0 which encodes the
fibre pairing between R? and (R*)?. The bracket {-,-},-1 is the trivial lift of

the Poisson bracket corresponding to w™' to a biderivation of BFV(E). The
tautological section Q° of £ x R? — E is given by

Q= 2le; + 2%
and it is straightforward to check that
[Qoa QO]BFV =0

holds, i.e. we may choose Q° as a BFV-charge for (BFV(E), [, |prv). The
differential [Q°, |gry reads

0 0 0 0
Qo . _ .19 2 O e o
R TR Ry T
The second sheet of the spectral sequence introduced in the proof of Lemma 2.19
in Chapter 4 is

Ey =T(A(S)" x (AR?) — (81)")

with differential dy, = 618421 + 028422. This differential can be identified with the

de Rham differential dpp on Q(S* x S') and consequently
H(BFV(E),[Q° prv) & H(E,, dy) = H(S' x S',R) ® C®(S* x S1),

i.e. we obtain the tensor product of the Grassmann algebra generated by [¢;] and
[co] and the algebra of smooth functions in the variables 6 and 6* with periodicity
2.

Let [8] be a cohomology class of degree +1 in H(BFV(E), [Q°,-]zrv). The spec-
tral sequence above implies that any such cohomology class can be represented by
a cocycle 3 € BFV(E) whose component 3° in BFV19(E) = I'(E x R? — E)
is given by the pull back of a section of (S')? x R?* — (S')* which is closed with
respect to dy. Hence we may choose the cocycle § € BFV(E) such that

B = fer + gey
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where f and g are smooth functions on (S')%. Decompose 3 into components
B° + B with 3° as above and 3! € BEV2V(E), i.e. in coordinates we have

2
= <Z (5kbk> C1C2
k=1

for a pair of smooth functions (1, d2). Plugging this into [Q°, B]gry = 0 yields

0 0
(@;}1 8;2) cica + <Z Opx ) cica = 0.

Consequently

Jg
- ZW

has to hold. Observe that the left-hand side is independent of (', z?), hence so
is the right-hand side. In particular the right-hand sides is constant in (z!, 2?)
and we might evaluate it at (z',2%) = (0,0), i.e. both sides of the equation must
vanish independently. This implies that (d,d2) = (0,0) and consequently 5! = 0
and

dg Of _

a0r 962
What does the Maurer—Cartan equation for such a cocycle § amounts to? By
definition

[Q°+ 8,9+ Blpry =0
and because [3 is closed with respect to [Q°,-|gpy this reduces to

13, Blprv = 0.
Using the fact that 3 = 3° we obtain
{ﬁo ﬂo}w—l -
Computing this expression yields

{8°, 8% o1 =2{[. g} (51

with

ot O 00 9 0F

IS 594 008~ 963 00+

To sum up: a cocycle 3 whose component 3° = fe; + gcp in BFVO(E) only
depends on the angle-variables (9, 0%, 6%,60*) is a Maurer-Cartan element of the
differential graded Lie algebra (BFV (E), [Q°, ]gpv, [, |ppv) if and only { f, g} (s1)s
vanishes. This condition was also found in [OP] with the help of the homotopy
Lie algebroid associated to (E,w™).
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When is a section p of E — (S')* a coisotropic section of (E,w™)? By Remark
1.14 it is coisotropic if and only if Q° — p*(u) can be extended to a Maurer-Cartan
element of (BFV (E), [, ]prv). Such an extension exists if and only if

(97 = p" (1), Q= p* ()]
is exact with respect to the differential [Q° — p*(u),]q. Let p*(u) be given by
p () = fer + gea

where f and g are smooth functions on (S1)* and consequently

R = [QO - p*(:u)7 QO - p*(u)]w*1
2, (24 99 0f 09 99 OF
2\oer a0t T 00108 901 06° )
The exactness condition translates into the existence of a pair of smooth functions
(hi1, hy) on E such that

R = [QO — p*(u), (hlbl + hng)clcg]G == ((.771 - f)hl + (1'2 - g)hg) C1Co
holds, i.e.

0 0 of o dg 0

o0 L0 OO Pt (2~ g)hs
has to hold for a pair of smooth functions (h1, hs) on E. The left-hand side of this
equation is independent of the variables (z!,2?%) and hence so is the right-hand
side. Consequently we may evaluate the right-hand side at (x!, 2?) = (f, ¢) and so
both sides of the equation have to vanish independently, i.e. a section = fe14gceo

is coisotropic if and only if

of 99 Of 9g 099 of _
002 00' T 00*00° 00 00°

holds. This coincides with the condition found by Zambon by analytical consid-

erations, see [Z].

REMARK 1.16. Example 1.15 was first considered in [Z]. There it was used as
a counterexample to show that the set of coisotropic sections does not form an
infinite-dimensional manifold. In the Lagrangian case considered in Example 1.7
the space of coisotropic sections forms a linear subspace of I'(NL) = Q(L), i.e.
the set of all Lagrangian submanifolds of a symplectic manifold (M, Q) is locally
modelled on vector spaces. Zambon used the above example to show that this
does not hold for the set of coisotropic submanifolds: in Example 1.15 we proved
that a section p = fcy + ges is coisotropic if and only if

of 99 Of 9g 099 Of _
002 90 T 901 00° 901963

holds. This is a nonlinear condition, hence given two coisotropic sections p and v,

their sum fails in general to be a coisotropic section. Consequently the space of

coisotropic submanifolds is not locally modelled on vector spaces.
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In [OP] this phenomenon was given a conceptual explanation: as mentioned in
Remark 1.8 the local model of the space of coisotropic submanifolds of a symplec-
tic manifold near a fixed coisotropic submanifold S is given by the set of “small”
Maurer—Cartan elements of the homotopy Lie algebroid (I'(ANS), (A2),>1) asso-
ciated to (S,0). This subset of I'(N.S) is not a vector subspace, i.e. the set of all
coisotropic submanifolds is not locally modelled on vector spaces.

2. Internal Symmetries and Moduli Spaces

REMARK 2.1. In Definition 1.2 in the previous Section we introduced the notion of
coisotropic sections of a coisotropic vector bundle (£, II). In Section 1, Chapter 3
we saw that (F,II) comes along with a group of inner symmetries Ham(F£, IT), the
group of Hamiltonian diffeomorphisms. By Lemma 2.9 in Chapter 3, Ham(E, II)
acts on the set of coisotropic submanifolds of (E,II).

DEFINITION 2.2. Let £ — S be a vector bundle and K a smooth manifold (possi-
ble with boundary / corners). We denote the pull back of F — S along ExXK — E
by Ex. A smooth K-family of sections of E — S is a section of Ex. In the special
case K = [0, 1] we also refer to sections of Ejg 1] as smooth one-parameter families
of sections of E — S.

The restriction of a smooth K-family of sections i of £ — S to S x {k} = S is
denoted by i and interpreted as a section of £ — S.

DEFINITION 2.3. Given a coisotropic vector bundle (E,II) a Hamiltonian homo-

~

topy of (F,1I) is a pair (fi, ¢) where

(a) f1is a smooth one-parameter family of sections of £ — S whose restriction
i is a coisotropic section of (F,1II) for all ¢ € [0, 1];
(b) ¢ is a smooth one-parameter family of Hamiltonian diffeomorphisms of
(E,1I), see Definition 1.15 in Chapter 3,
such that the graph S, of yu; is equal to the image of S,, under ¢, for arbitrary
t€0,1].
Given a Hamiltonian homotopy (i, QAS) of (E,II) we say that it is a Hamiltonian
homotopy from pg to ji.

DEFINITION 2.4. Let (E,II) be a coisotropic vector bundle. We define a relation
~p on the set of coisotropic sections C(F,II) of (E,II) by

[ ~p v < there is a Hamiltonian homotopy from u to v.

LEMMA 2.5. The relation ~p on the set of coisotropic sections C(E,II) of a
coisotropic vector bundle (E,I1) is an equivalence relation.

PRrOOF. Reflexivity is obvious because any coisotropic sections p comes along
with a Hamiltonian homotopy

id,, = ((M)te[o,l}, (id)te[o,l})
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from p to p.

Given a Hamiltonian homotopy (i, ¢) from p to v, the pair
(ﬂv ¢)_1 = ((M(l—t))te[o,l], (¢(17t) © bel)te[o,l])

is a Hamiltonian homotopy from v to pu.

Let (fi,¢) be a Hamiltonian homotopy from p to v and (ﬁ,@) a Hamiltonian
homotopy from v to A. We want to construct a Hamiltonian homotopy from pu to
A. Choose a smooth function p : [0, 1] — [0, 1] with the following properties

(i) p(0) =0 and p(1) =1,
(i) p is equal to 1/2 on [1/3,2/3] and
(iii) the restriction of p to ]0,1/3[ and |2/3, 1] are diffeomorphisms to p(]0, 1/3][)
and p(]1/3,1]) respectively.

The existence of such a function is demonstrated in Lemma 12 in Chapter 6. We
define the pair

by
H2p(t) 0<t<1/3
(O,a)(t) = < 1/3<t<2/3 and
(Vepy-1) 2/3<t<1
( B 0<t<1/3
(YO,0)(t) = 01 1/3<t<2/3 respectively.
(Yepm-1yod1 2/3<t<1

Observe that (&D pé) is a smooth one-parameter family of Hamiltonian diffeomor-
phisms generated by the smooth function H : E x [0,1] — R given by
20/ (0)F (2, 2p(1)) 0<t<1/3
H(z,t):=<0 1/3<t<2/3
20 (t)G(x,2p(t) — 1), 2/3<t<1
where F' and G denote the smooth functions whose Hamiltonian vector fields

generate ¢ and v respectively. It is straightforward to check that (ﬁ,iﬂ)lﬂp(/}, QAS)
is a Hamiltonian homotopy from u to A. U

DEFINITION 2.6. Let (E,II) be a coisotropic vector bundle. The moduli space of
coisotropic sections M(E,II) of (E, 1) is the set of equivalence classes of elements
of C(E,II) with respect to the equivalence relation ~p.

PROPOSITION 2.7. Consider the coisotropic vector bundle (T*L,w}). The bijec-

can
tion

{pe QL) dprp =0} = C(T*"L — L,w_})

can
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established in Example 1.7 induces a bijection

HY(L,R) = M(T*L — L,w

can)

PROOF. Let pu and v be two one-forms on L which are closed with respect to
dpr. We have to prove

(1] = [v] € H'(L,R) < there is a Hamiltonian homotopy from yu to v.

(=) : Let A be a smooth function on L such that dprA = p — v. We claim
that the Hamiltonian vector field X+ 4) of the pull back of A along the
projection 7, : T*L — L is equal to

—p*(dprA)

where we identify the pull back of T*L — L along 7y, : T*L — L with
the vertical part of the tangent bundle of T*L. To verify this claim pick
a local coordinate system (q');—1.., on L. This induces a local frame of
TL, denote the dual frame on T*L by (p;)i=1... . The Liouville one-form
01, is given by

n
> pidprd’
i=1

and consequently wea, reads

Z dprq’ A dprpi-

i=1

The Hamiltonian vector field X,-4 of p*(A) is
—[w P (AD)]sn = (@) (dpr(p*A) = (W) (dpr(p"A))

and locally this amounts to

0A
(w*)~ ( dprq') Z

ilaZ 1(]8}7

The last term is the local expression of —p*(dprA) interpreted as a ver-
tical vector field on T™ L.

Hence X,-(4) generates the smooth one-parameter family of Hamil-
tonian diffeomorphisms

o T*L —T*L, (x,e)— (x,e —t(dprA)(x)).
This implies that
(e == 1 — t(dprA))ic.1]s (Pt)tefo))

is a Hamiltonian homotopy from u to v.
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(<) : Suppose ({1, ¢) is a Hamiltonian homotopy from p to v. Let
F:Mx[0,1]—R

be the smooth function whose smooth one-parameter family of Hamilton-
ian vector fields generates ¢.
Because of

L) 610 —p ) =

the identity

=) = O =) = [ Gles(oitu)ds

holds.
Consider the following smooth one-parameter of diffeomorphisms of
L:

ft:LiL, fi =m0 ¢ o .
It is straightforward to check that
pi=dropo f
holds for all ¢ € [0, 1]. We set
A:L =R, A:=Popof!
and calculate

fi(dprA) = p*(dprP) = (¢10p) (0L —p (1) — p*(0r — p* (1))
(prop)* (O —p* (1) — p+ p
= (p1op)(0r —p*(1)).
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Consequently
dprA = (¢ropo fi') (0 —p"(n))
= ()(0r —p" ()
= V—U
and hence [u] = [v] € H'(L,R).
O

REMARK 2.8. The second part of the proof of Proposition 2.7 essentially follows
[MS]. Observe that it is crucial that (7% L, weay) is an exact symplectic manifold,
i.e. the cohomology class of wean in H?(T*L,R) vanishes.

By Theorem 1.5 Proposition 2.7 can be extended to the case of a Lagrangian
submanifold L of arbitrary symplectic manifolds (M, w) if one restricts attention
to sections which are contained in a small open neighbourhood U of L in M which
is contractible along fibres.

Observe that H'(L,R) is the moduli space of Maurer—Cartan elements of ((L), dpg):
The Maurer—Cartan elements of (2(L),dpg) are exactly the closed one-forms on
L. Moreover Q°(L) = C*(L) acts on Q'(L) via

QL) x QY(L) — QY(L), (f,p1) = p+dprf.

This induces an action of Q°(L) on the set of closed one-forms on L. The quotient
space of this action is H'(L,R).

This action of elements of degree 0 on the set of Maurer—Cartan elements general-
izes to arbitrary L..-algebras. In particular the strong homotopy Lie algebroid
(I'(AE), (An)) associated to a coisotropic vector bundle (£,II) and any BFV-
complex (BFV(E),[-,|srv,§2) associated to (E,II) come along with such an
action on its set of Maurer—Cartan elements. In Section 1 we saw that the set
of Maurer—Cartan elements of both structures contains information about the set
of coisotropic sections C(E, II) — for more precise statements we refer to Remark
1.8 and Theorem 1.13 in particular. It is natural to expect that the moduli space
of coisotropic sections M(E,II) is related to the quotient of the set of Maurer—
Cartan elements by the action mentioned above.

REMARK 2.9. Let (F,II) be a coisotropic vector bundle and [, ]pry a BFV-
bracket on BFV(FE). The set
BFV(E) :==T(A(Eoy @ Epy)))

inherits the ghost degree, the ghost-momentum degree, the ghost-number, a filtra-
tion BFV ., (E), the structure of a bigraded algebra and a graded Poisson algebra
from (BFV(E),[-,"|srv), sce Remark 2.3 in Chapter 4. Restriction of BEV (E)
to E' x {t} yields morphisms of graded Poisson algebras

€Vy ! (M(E)v ['7 ']BFV) - (BFV(E)v ['7 ']BFV)'
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DEFINITION 2.10. Let (E,1I) be a coisotropic vector bundle and [-, -] pry a BFV-
bracket on BFV (E).

A smooth one-parameter family of inner automorphisms ¢ of (BFV (E), [+, |zrv)
is a morphism of graded Poisson algebras

~

¢ (BFV(E), [, |srv) = (BEV(E), [, ]srv)
satisfying

(a) the composition ¢ := evyo¢ is the identity of BFV(E),

(b) the composition ¢; := ev, o$ is an automorphism of the graded Poisson
algebra (BFV (E), [, :|pry) for t € [0, 1] arbitrary and

(c) there is an element 4 € BFV’(E) such that for all s € [0,1] and all
$ € BFV(E)

d
@‘t:s(d)t(ﬂ)) = —([s, s(B)]BFV)
holds. Here 7, denotes the element evy(%) of BFV(E).

Denote the set of smooth one-parameter families of inner automorphism of the
graded Poisson algebra (BFV(E),[-,-]) by Inn(BFV (E)).

An automorphism ¢ of the graded Poisson algebra (BFV (E), [, |prv) is inner if
there is a smooth one-parameter family of inner automorphisms ¢ with ¢; = ¢. We
denote the set of inner automorphisms of (BFV (E), |-, |grv) by Inn(BFV (E)).

REMARK 2.11. Observe that this definition is totally analogous to the definition of
smooth one-parameter families of Hamiltonian diffeomorphisms in Definition 1.15
in Chapter 3. The transition is given by associating the family of push forwards
((#¢)« :== (61 ")*)tejo,1) to a one-parameter family of Hamiltonian diffeomorphisms
(é¢)teo,1- Consequently Corollary 1.14 and Lemma 1.16 in Chapter 3 can be
easily translated into statements about (smooth one-parameter families of) inner
automorphisms of (BFV(E), [, |srv)-

In particular it turns out that Definition 2.10 is redundant: any smooth one-
parameter family of automorphisms QAS of the graded algebra BFV (E) generated
by some 4 € BFV°(E) is automatically a smooth one-parameter family automor-
phisms of the graded Poisson algebra (BFV (E), |-, ]pryv). Furthermore composi-
tion equips the sets Inn(BFV(E)) and Inn(BFV(E)) with group structures.

The groups Inn(BFV(E)) and Inn(BFV(E)) can be equipped with a filtration
by subgroups

(Inn, (BEV(E)))r>0  and  (Innxp (BFV(E)))r>0
respectively. Inn, (BFV(FE)) is the group of smooth one-parameter families of

inner automorphisms of (BFV (E), [, ] srv) generated by elements of BEV°(E)N
BFEV ., (E). The group Inns,(BFV(E)) is the image of Inn.,(BFV(E)) under

evy : BFV(E) — BFV(E).
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Observe that these two filtrations are bounded from below and above.

LEMMA 2.12. Let (E,II) be a coisotropic vector bundle. An element 5 € BFV (FE)
integrates to a smooth one-parameter family of inner automorphisms of the graded
Poisson algebra (BFV (E), [, |grv) if and only if its component 7(7) in

BEV®O(E) =C>(E x [0,1])
integrates to a smooth one-parameter family of Hamiltonian diffeomorphisms of

(B,1I).

PROOF. (=) : Suppose 1/; is a smooth one-parameter family of inner auto-
morphisms of the graded Poisson algebra (BFV (E), [, |grv) generated
by 4. The decomposition

BFV'(E) = @50BFV**(E)

yields a decomposition 4 = 4% + 4! + -+ and by definition 4° = 7(¥).
Because 1 is a morphism of algebras and preserves the total degree it
maps the ideal I generated by

D(AZTE @ AE*) + T(AE @ AZ1EY)

to the corresponding ideal I in BFV(E). Hence 1 factors through to a
morphism of algebras

(:C®(E) — C®(E x [0,1])

and since ¢; := evy OQAS is an automorphism of graded algebras, so is (; :=
ev; o(. Finally we calculate

st + L = Bl Plory + 1=~ 6oy + I
= _H/O?Ct(f)]iv(l'[) +1= —{@Oﬁt(f)}n +1.

That implies that f is generated by the adjoint action of 4 and because
of the Jacobi identity

%\ts (G HG0), GGm) = (6 (e AGC), GO bdn) +
_(Cs,_l) ({{727 Cs(')}H, Cs()}H) - (Cs_l) ({Cs()v {’737 Cs()}H}H)

vanishes, hence (;)scp0,1] is a one-parameter family of automorphism of the
Poisson algebra (C*(FE),{-, }n). Lemma 1.10 in Chapter 3 asserts that
there is a unique family of Poisson diffeomorphism (¢)¢cjo,1) such that
(7 1) = ¢ for arbitrary ¢ € [0,1]. Moreover the family ()i is a
smooth one-parameter family of Hamiltonian diffeomorphisms generated
by 4.
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Assume that the smooth one-parameter family of Hamiltonian vector
fields associated to 4° € C*(F) integrates to a smooth one-parameter
family of Hamiltonian diffeomorphisms ¢. In Remark 1.10 we fixed the
BFV-bracket [-,:]pry to be one constructed with the help of one of the
L., quasi-isomorphisms Ly introduced in Proposition 1.4 in Chapter 4.
Recall that V is a connection on the vector bundle £ — S. It naturally
extends to a connection on the vector bundle A(€ & £*) — E. Using par-
allel transport with respect to this induced connection on A(€ ®E*) yields
a smooth one-parameter family of automorphisms of the vector bundle

ANEBE) = NEDEY)

covering ¢; : E'— F and which also preserves the structure of A(€ & £¥)
as a bundle of bigraded algebras. In conclusion we obtain a morphism of
bigraded algebras

§:BFV(E) — BEV(E), [+ ¢iofBogp;}

such that & = evy og is an automorphism of bigraded algebras for all t €
[0, 1]. The smooth one-parameter family £ of automorphisms of BFV (E)
satisfies

d
g=s€0) = =V, (6())

where Vx 0 is the covariant derivative with respect to V acting on I'( A(E®
£Y)). A proof of this fact can be found in [Mi] for instance.

Suppose gf) is a smooth one-parameter family of automorphisms of
BFV(E) starting at the identity and satisfying

\t 5Py = (f (=, ]BFv—i-VXO) fs>0¢s

for all s € [0,1]. Setting ¢; := & o ¢; yields a smooth one-parameter
family of automorphisms starting at the identity and satisfying

d
%’t:swt(') = —[%7 ws(')]BFV

for all s € [0,1], i.e. ¥ integrates to a smooth one-parameter family of
automorphisms of the graded Poisson algebra (BFV(E), [, |sryv) if and
only if ¢ exits.
We calculate
s, lBrv +Vx o = —[e, ivan — [y Ja + Vi, +
= —Vx,— [ssJa + Vi, +
= —I:P)/;".]G_i_...
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where - - - subsumes nilpotent derivations. This implies

d _
@‘t:sqbt = (fs 1(—[%7 1PV + VXWQ +---)o 55) o ¢s
= (&' (=l la+--)0&) 00
= (& () e+ ) 0 ¢
where we used the fact that é is a smooth one-parameter family of auto-
morphism of (BFV(E), [, |¢) because the induced connection on A(€ &
E*) is metric with respect to the fibre pairing between £ and £*.

Next we prove that there is a smooth one-parameter family y starting
at the identity and satisfying

Do) = I () O

for all s € [0,1]. Consider the action of —[;1(7,)!, -]g on T'(€ ®E*) which
is given via

E®E" - End(€) — End(€) @ End(E*) — End(€ @ &)
A A= ()

This can be integrated fibrewise to a smooth one-parameter family of
automorphisms of I'(€ @ £*). The natural extension of this smooth one-
parameter family of automorphisms to a smooth-one parameter family of
algebra automorphisms of I'(A(€ @ £%)) yields x.

Finally observe that the integrability ¢2 can be reduced to the integra-
bility of a nilpotent derivation with the help of y because

d. B
£|tZS(Xt ody)(-) =
= X;l([fgl(ﬁY;)> ]G) © ¢s - X;l([é‘;l(ﬁyi)’ ']G + - ) © ¢s

= (GG xs) o (o ds) = () o (X o o).

Any smooth one-parameter family of nilpotent derivations can be in-
tegrated to a smooth one-parameter family of automorphisms. Conse-
quently ¢ exists and hence so does 1.

4

REMARK 2.13. Lemma 2.12 yields maps
L :Inn(BFV(F)) — Ham(F,II) and R:Ham(F,II) — Inn(BFV(E)).

Here L is given by mapping the smooth one-parameter family of inner automor-
phisms of (BFV(E), |-, ]pryv) integrating 4 to the smooth one-parameter fam-
ily of Hamiltonian diffeomorphisms integrating m(%) and R is given by map-
ping the smooth one-parameter family of Hamiltonian diffeomorphisms integrating
F € C>®(E x [0,1]) to the smooth one-parameter family of inner automorphisms
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of (BFV(E),[-,|pry) integrating F € C®(E x [0,1]) = BEV®9(E). Obviously
Lo R =1id, hence L is surjective and R is injective.

LEMMA 2.14. Given a coisotropic vector bundle (E,11) the two maps
L :Inn(BFV(F)) — Ham(F,II), R:Ham(E,II) — Inn(BFV(E))
are morphisms of groups and the kernel of L is given by Inn, (BFV (E)).

PROOF. Let ¢ and 913 be two smooth one-parameter families of Hamiltonian
diffeomorphisms generated by the smooth functions F' and G respectively. In
Lemma 5 in Chapter 6 it was proved that ¢fo ¢ is the smooth one-parameter
family of Hamiltonian diffeomorphisms generated by

H(z,t) == F(¢; ' (x),t) + G(z,1).

Furthermore assume that ® and ¥ are two smooth one-parameter families if inner
automorphisms of (BFV(E), [-,-]prv) generated by 4 and 6 € BEV’(FE) respec-
tively. It is easy to check that

Dl 0 @)() = ~[Wa(30) + 80, (F 0 B) iy
holds for all s € [0,1]. The component of Wy(7s) + 05 in M(O’O)(E) is
(W) () + 63
where ¢ := L().
These considerations immediately imply that L maps TUod to L(\il) o L(Cﬁ) and
R maps ¢ o ¢ to R(¢) o R(p).

It is obvious that Inn.,(BFV(£)) lies in the kernel of L since every element
of Inn.,(BFV(FE)) is generated by some ¥ € BFV . (E) and consequently the

component 7(4) of 4 in BEV Y (E) vanishes.

On the other hand suppose d is a smooth one-parameter family of inner automor-
phisms of (BFV(E),[-,-]srv) such that L(®) = (idg)tefo,1) holds. Assume d is
generated by some 4. Consequently the smooth one-parameter family of Hamil-
tonian vector fields associated to m(%) has to vanish. We decompose 4 with respect
to the ghost-momentum degree into

Y=4"+A
We know that X0 = I1#(dpgry?) vanishes for all s € [0, 1]. We claim that
3 Ierv = 3% la + 3%, Jioan + -+

vanishes. Obviously the first term on the right-hand side of the equality vanishes.
The second vanishes because

['72: Jigan = v (I1)(Xy0) = 0.
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Denote the curvature of the connection on £ — E by Ry and pull it back to a two-
form Ry on € with values in End(£) =2 £®E*. Concerning the other contributions
to [Yo, -] pry recall Remark 1.5 in Chapter 4: all the higher contributions to |-, -] gy
are given in terms of contractions of copies of iy (II) with copies of Ry. Hence
7Y gets annihilated by any of this biderivations since all of the contributions are
proportional to

< Zv(H), dDR'72 >

which is equal to the pull back of < II, dpry? >= 0 to A(E & E¥).

Summing up: if the smooth-one parameter family of Hamiltonian vector fields
associated to 4o vanishes identically, the element 4, is annihilated by [-, -] pry and
consequently

Sles®) = b Bl
= —[+ +v+ 2] sry
= [+ 0]y,
hence ® is generated by 41 + 4, + -+, i.e. d € Inn.,(BFV(E)). O

REMARK 2.15. Given a coisotropic vector bundle (F,II) the group of automor-
phisms of the graded Poisson algebra (BEFV(E), |-, |pry) acts on the set of alge-
braic Maurer-Cartan elements Dy (£, II) introduced in Definition 1.9 by

- f:=p(Q+08)—-Q

where ) is a fixed BFV-charge of (BFV (E), |-, |pryv). Consequently the group of
inner automorphisms Inn(BFV (E)) acts on Dy, (E, II) and so do all its subgroups
Inns, (BFV(E)).

PROPOSITION 2.16. Let (F,II) be a coisotropic vector bundle.

The action of Innso(E,I1) on Dye(E,II) restricts to an action on the set of nor-
malized Maurer—Cartan elements Dyo(E,I1) of (E,11), see Definition 1.11.

Furthermore the map
Lnor : Dnor(E7 H) - C(E7 H)
introduced in Remark 1.14 induces a bijection
[Luor) : Duor(E, 1)/ Tnnso(E, 1) = C(E, T).
PROOF. Suppose ¢ is an element of Innso(F,II) and let ¢ be an element of

Inn.,(BFV(E)) with ev, op = ¢. Let (3 be an element, of Dy, (E) with decompo-
sition

B=p"+8"+6+ -
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where g¥ € BFV LR (E). Because
d
£|t:s¢t(9 +8)=0+ —Bszl(E)7

the component of ¢(Q + () in BEVIO(E) is constant and equal to Q° + 3°. The
normalization condition on elements of D, (F,II) is a condition on this compo-
nent. Hence if the condition is satisfied for ¢t = 0 it will be satisfied for all ¢ € [0, 1],
in particular it will be satisfied for ¢(Q + ().

Since Ly, involves the projection BFVY(E) — BFVWI)(E), L, is constant
along orbits of Innso(BFV(F)). So it yields a map

[Lnor] : Dnor(E? H)/IHHZQ(BFV(E)) - C(E7 H)

which is surjective because Ly, is. In Theorem 1.13 it was proved that for any two
normalized Maurer—Cartan elements 3 and 3’ whose images under L, coincide
there is an automorphism ¢ of (BFV (E), [, |pryv) that maps Q+ 3 to Q+ 3, i.e.

o B=0.

Moreover ¢ was constructed in such a way that it is manifestly an element of
Innso(BFV(E)). O

DEFINITION 2.17. Let (E,II) be a coisotropic vector bundle. We define the set
of geometric Maurer—Cartan elements of (E,II) to be the orbit of the subset
Dor(E,11) C Dyeo(E, 1T), €.

Dgeo(E> H) = Innzl(BFV(E)) ’ Dnor(E> H)

LEMMA 2.18. Giwen an algebraic Maurer—Cartan element 3 of a coisotropic vector
bundle (E,11) the following two statements are equivalent:

(a) B is a geometric Maurer—Cartan element.
(b) There is a section A of GL,(E) and a coisotropic section —u of (E,1II)
such that the component of B in I'(E) is equal to

A +p () — .

Moreover the coisotropic section —u associated to a geometric Maurer—Cartan
element (B as above is unique.

PROOF. First we prove the implication (a) = (b). By definition there is
¢ € Inn>1(BFV(FE)) and ' € Dy (E, 1) such that

Q+0=0(Q+7)
holds. Suppose ¢ is an element of Inn.,(BFV(E)) such that ev, op = ¢ and let
4 be the element of BEV°(E) that generates ¢. We calculate
d
%’t:s(¢t>(9 + ﬁ/) + M21(E) = _[78a (¢t)(Q + ﬂ/)]BFV + M21(E)
= =11 (@) + 8o + BEV.,, ().
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Hence the induced action of @ on I'(€) is given by the smooth one-parameter
family of fibrewise linear automorphisms A € I'(GL(£)p,1)) of £ integrating the
smooth one-parameter family

—7s € BEVUY(E) = T(Ep 1 ® € y) 2= T(End(E)po,1)-
Consequently
0+ 3% = A (Q° + 37).
Since 3’ € Dyor(E, 1) there is a coisotropic section —p such that 5" = p*(u), see
Theorem 1.13.

Next we prove (b) = (a): Given —p a coisotropic section of (E,II) and A €
['(GL4(€)) such that

Q0+ 3% = A(Q° + p* ()

holds. By Theorem 1.13 there is a Maurer—Cartan element (' of (E,II) with
B = p*(u). Let A be a smooth one-parameter family of sections of GL, (&)
connecting the identity with A. Setting

d
Qg \— <%’8At) o (As)il

yields a smooth one-parameter family a of sections of End(€) that integrates
to A. Let & be the smooth one-parameter family of inner automorphisms of
(BFV(E),[,:]srv) generated by a. Lemma 2.12 assures that this smooth one-
parameter family & exists. We calculate

(1) Q2+ B) + BFVay(E) = (a) Q0 + 3°) = 9 + p* (),

i.e. the Maurer—Cartan elements (a;)~! - 8 and 8 are both normalized and have
the same image under L,.. By Theorem 2.16 there is ¢ € Inn>;(BFV(E)) with
¢- 3 = (ay)"!- 3. Consequently

B=(ace) 8

holds. Observe that 5 € Dy (E,1I) and a, f € Inns (BFV(E)) imply § €
Dyeo(E,11).

The uniqueness of the coisotropic section —pu associated to a geometric Maurer—
Cartan element [ is established as follows: The vanishing locus of A(Q° + p*(u))
for A € I'(GL4(E)) is given by

S_y = {(z,—p(z)):xz € S}

Given any geometric Maurer—Cartan element (3 the vanishing locus of Q° + 3° is
equal to S_, for some coisotropic section —u of (E£,II). Since a section can be
reconstructed from its graph —u is uniquely determined by (. U
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COROLLARY 2.19. Given a coisotropic vector bundle (E,I1) the mapping
Lnor : Dror(E,11) — C(E,11)
introduced in Remark 1.14 uniquely extends in an Inns,(BFV (E))-invariant way
to a map
Lyeo : Dyeo( £, 11) — C(E,1II)
which induces a bijection

[Lgeo) - Dgeo(E, I1)/ Innsy (BFV (E)) = D(E, 11).

PROOF. Because of Dgeo (L, 1) = Inns  (BFV(E))- Do (£, II) there is at most
one Inn (BFV (E))-invariant way to extend Lye, t0 Dgeo(E, II). One way to write
Lgeo down is

B+ (vanishing set of Q° + 3% = S_, — —p,

see also the part of the proof of Lemma 2.18 concerning the uniqueness of —u
associated to . It is straightforward to check that this map is Inns,(BFV (E))-
invariant.

Surjectivity of [Lgeo| is evident. Now suppose § and [’ are two geometric Maurer—
Cartan elements of (F, IT) that get mapped to the same coisotropic section —p un-
der Lgye,. By definition there are two inner automorphisms ¢, ¢’ € Inns,(BFV (F))
such that ¢ - § and ¢’ - ' are normalized Maurer—Cartan elements. Since Ly, is
invariant under the action by Inns;(BFV(E)) on Dgeo (£, II) the two normalized
Maurer—Cartan elements ¢ - 3 and ¢’ - 3’ both get mapped to —u by L. Lemma
2.16 implies that there is an inner automorphism ¢ € Innso( BFV/(E)) such that
o (6-8)=¢ -7, ie
B'=(¢""opos)-p.
Observe that ¢/~ o p o ¢ lies in Inns, (BFV (E)). O

DEFINITION 2.20. Given a coisotropic vector bundle (F,II), a gauge homotopy is
a pair (3, ¢) where

(a) 3 is a smooth one-parameter family of sections of A(€ @ £*) — E whose
restriction (3; is a geometric Maurer—Cartan element for all ¢ € [0, 1];

~

(b) ¢ is a smooth one-parameter family of inner automorphisms of the differ-
ential graded Poisson algebra (BFV (FE), [, |grv), see Definition 2.10,

such that ¢; - 8% = B holds for arbitrary ¢ € [0, 1].

Given a gauge homotopy (B, @) of (E,1I) we say that it is a gauge homotopy from
3° to BL.

DEFINITION 2.21. Let (E,II) be a coisotropic vector bundle. We define a relation

~¢ on the set of geometric Maurer-Cartan elements Dge,(E, I1) of (£, 1II) via

B ~¢q v :& there is a gauge homotopy from 3 to 7.
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LEMMA 2.22. The relation ~g on the set of geometric Maurer—Cartan elements
Dyeo(E,I1) of a coisotropic vector bundle (E,II) is an equivalence relation.

PROOF. The proof can be copied mutatis mutandis from the proof of Lemma
2.5. In particular

(a) to every geometric Maurer—Cartan element [ we associate

idg == ((8)icpo,]> (id)ecpo,1))

which is a gauge homotopX fliom 06 to 3,
(b) given a gauge homotopy (0, ¢) from 3 to ~y

(8,0)7" = ((Ba—o)ieo s (Pa—1) © 81 Dieo,))

is a gauge homotopy from v to 3 and
(¢c) any choice of a smooth function p : [0, 1] — [0, 1] satistying
(i) p(0) = 0 and p(1) = 1.
(ii) pis equal 1/2 on [1/3,2/3] and
(ili) the restriction of p to ]0,1/3[ and ]2/3,1[ are diffeomorphisms to
p(]0,1/3[) and p(]1/3, 1[) respectively.

allows us to define an operation O, on the space of “composable” gauge
homotopies, i.e. given (&, @) a gauge homotopy from « to 3 and (B, g?)) a
gauge homotopy from [ to v we set

(8,9)0,(&, @) = (30,4, ¢0,)

where
(a0 0<t<1/3
(BO,A)(t) = {a 1/3<t<2/3 and
Bepw-1 2/3<t<1
) (200 0<t<1/3
(@0,0)(t) = ¥ 1/3<t<2/3 respectively.
(Gep-n 0P 2/3<t<1

Observe that (B, @)Dp(ol, $) is a gauge homotopy from « to 7.
U

DEFINITION 2.23. Let (E,II) be a coisotropic vector bundle. The moduli space
of geometric Maurer—Cartan elements N'(E, 1) of (E,II) is the set of equivalence
classes of elements of Dy, (E, IT) with respect to the equivalence relation ~.

REMARK 2.24. The maps
Lyeo : Dyeo(E,11) — C(E,1I), L :Inn(BFV(E)) — Ham(E,II)
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introduced in Corollary 2.19 and Remark 2.13 yield a map f/geo from the set
of gauge homotopies of (F,II) to the set of Hamiltonian homotopies of (E,II)
respectively:

Lieo(B,6) = (Lgeol9), L(9)).
Observe that the vanishing locus of
Q0+ 50 = Q%+ ¢ - 80 = 9(Q° + )
is the image of the vanishing locus of Q° + 3° under L(¢;), i.e.
S—Lyeo(8) 7= 1) —Lgeo (B) () - © € S} = L(9) (S-L0(60))

and consequently f/geo(ﬁ, qg) is in fact a Hamiltonian homotopy from Lge,(fy) to

Lyeo(51)-

THEOREM 2.25. Let (E,II) be a coisotropic vector bundle. The map
Luor : Dyeo( B, T1) — C(E, TI)

from Corollary 2.19 induces a bijection

(L] : N(E,TI) = M(E,II).

Proor. Consider the surjective map
B : Dyeo(E,TT) 252 C(E,TT) — M(E, TI).
We claim that two geometric Maurer—Cartan elements « and § of (E,II) have
the same image under B if and only if there is a gauge homotopy from a to f3.
Consequently B induces a bijection

[L] : N(E,IT) = M(E,TI).

Given a gauge homotopy (d&, QAS) from « to 3, ﬁgeo(@, ¢2) is a gauge homotopy from
Lgeo(@) to Lgeo (), hence the images of o and $ under B coincide.

On the other hand assume that the class of Lge,(cv) equals to class of Lgeo(3) in
M(E,1I), i.e. there is a Hamiltonian homotopy (—/, ¢) from Lgeo () t0 Lgeo (/).
We have to prove that this lifts to a gauge homotopy from « to 3. Consider the
smooth one-parameter family of coisotropic sections

—i € T(A (&, & 5[5,1}))‘
In the proof of Theorem 1.13 we proved that for every t € [0, 1] there is a normal-
ized Maurer—Cartan element & of (E,II) such that L, (&) = —u. Now we need
the adapt the construction in the proof of Theorem 1.13 such that (&)cjo,1) is a
smooth one-parameter family of sections of A(€ @& £*). Recall Remark 1.14: for
fixed t € [0, 1] one obtains a differential §[;] := [Q°+p*(11¢), -] and the homotopy
h constructed in the proof of Theorem 2.13 in Chapter 4 yields a homotopy h[u]
for [Q° + p*(14), -]¢ such that

[Alpe], Olpe]] = hlpe] 0 0[pae] + 6[pae) © B[] = id —(Ni7, ) o (Ap},,)
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holds where Ai% : BFV(E) — T'(AE) is given by projecting to the ghost-
momentum degree 0 component and evaluation at S_,, and Apj, : T'(AE) —
BFV (FE) is given by extension of sections of AE to sections of A(€ & £*) that are
constant along the fibres of &' — S = S_,,,. These data can be assembled into

a differential 5 BFV(FE)— BFV(E)[1], (%)tem — (O] (7 ))te[o 1,
a homotopy ~ h: BFV(E) — BFV(E)[-1], (%)te[o 1 = (Al () e
an inclusion p:T(AEpy) — BEV(E), (V) = (Apy, (Ve))tep  and

=~

a projection : M(E) — F(/\E[o 1])7 (7) elom1] ( (%))te[o,u

such that
[h,0] =hod+doh=id—iop

holds. In particular a cocycle (74)icpp1] of (BEV (E),d) is a coboundary if it is
concentrated in positive ghost-momentum degrees or if the all restrictions v;|s_,,
vanish. Following Remark 1.14 and the proof of Theorem 2.13 in Chapter 4 this
allows us to construct a smooth one-parameter family é of normalized Maurer—
Cartan element of (E,II) such that the component of & in I'(€) is equal to p*(p).

Denote the lift R(¢) of the smooth one-parameter family of Hamiltonian diffeo-
morphisms ¢ by ¢ and set
wi=dd

i.e. x¢:= ¢y -&. By construction ¥ is a smooth one-parameter family of Maurer—
Cartan elements whose component x° in I'(Eo 1) vanishes at S_,,. However it
might not be a smooth one-parameter family of geometric Maurer-Cartan ele-
ments.

Using the automorphism of the bigraded algebra ¢,, : BFV(E) — BFV(E)
constructed in the proof of Theorem 1.13 we obtain a smooth one-parameter family
of Maurer-Cartan elements § := ¢,,(€2 + x) — with respect to a BFV-bracket

[, -]'5py for another Poisson bivector field I1,,, on £ — whose component 0% in T(€)
vanishes on S. Furthermore

= (2 + (1) = °
and the graph of 47 intersects the zero section of & — FE transversally for all
t € [0,1] since (Q°+ &) and hence (Q2° + x¥) do so. Consequently we can apply

Proposition 9 in Chapter 6, i.e. there is a smooth one-parameter family A of
sections of GL, (&) such that

At(QO) - 5?
holds for arbitrary t € [0,1]. By Lemma 2.12 the smooth one-parameter family

d
<a5 = _@’tZS(At) o Asl) € F(End(g)[071}) = F(g[OJ} & g[%yl})

te(0,1]
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integrates to a smooth one-parameter family A of the graded Poisson algebra
(BFV(E)7 ['7 ]QBFV) Hence

Py = Qg,jol oo ¢Zu0
is a smooth one-parameter family of inner automorphisms of (E,II) satisfying
Vi Xo+ BEV>1(E) = 2+ xo0) — Q+ BFV>(E)
= (8,0 0 A0 d,)(Q+x0) — Q° + BFV>y(E)
= (8,) 0 A)(d)) — Q° + BFV>(E)
= 0,.(6)) — Q° + BFV5y(E)
= Q"+ - Q"+ BFV5(E)
= X + BFVxi(E),

and zﬂ “Xo 18 a smooth one-parameter family of Maurer—Cartan elements of (£, IT).

We calculate

(¢r o) xo+ BFVai(E) = (o) - xg+ BFVsy(E)
Oy - X? + BEV5(F)
= &+ BFVsy(E).

Because é is a smooth one-parameter family of normalized and hence geometric
Maurer—Cartan elements of (E,1I), so is (¢ 0 ¢) - xo and consequently

(($o9) - x0, P 1)
is a gauge homotopy from xg to (¢1 0 ?1) - xo, i.e.

Xo ~a (¢10¢1) - Xo-
By construction

LgeO(XO) = —Mo = LgeO(a) and LgeO((Qpl oY1) Xo) = —p = Lgeo(ﬁ)

hold. Since «, (3, xo and (¢1 0 ¢y) - xo are geometric Maurer—Cartan elements we
can apply Corollary 2.19 and find ¢ and /) € Inn,(BFV (E)) satisfying

G-a=xo and 7 -((¢10%1) x0) =0 respectively.

In particular (C- yo, ¢) is a gauge homotopy from a to xo and (- ((¢10¢1) - x0), 7))
is a gauge homotopy from (¢ 0 11) - xo to 5. Finally

a ~g Xo ~a (¢1091) - xo ~c B
yields a ~¢g f3. O
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3. Deformation Groupoids

DEFINITION 3.1. A gluing function is a smooth function p : [0, 1] — [0, 1] satisfying

(i) p(0) =0 and p(1) =1,
(i) p is equal to 1/2 on [1/3,2/3] and
(iii) the restriction of p to ]0,1/3[ and ]2/3, 1] are diffeomorphisms to p(]0, 1/3][)
and p(]1/3,1]) respectively.

REMARK 3.2. The existence of a gluing function is proved in Lemma 12 in Chapter
6. In the proofs of Lemma 2.5 and Lemma 2.22 an operation O, on composable
pairs of Hamiltonian and gauge homotopies respectively was constructed. We refer
to this operation as the composition (of Hamiltonian homotopies and gauge ho-
motopies respectively) with respect to O,. The existence of O, implies transitivity
of the relations ~g and ~¢.

Given a coisotropic vector bundle (F,II), we want to equip the set of coisotropic
sections C(E,II) and the set of geometric Maurer-Cartan elements Dge,(E, II)
with the structure of groupoids such that the sets of isomorphism classes of ob-
jects are isomorphic to the moduli space of coisotropic sections M(FE,II) and the
moduli space of geometric Maurer-Cartan elements N (F,II) respectively. The
isomorphism between M(FE,II) and N (F,II) established Theorem 2.25 general-
izes to a surjective morphism between these groupoids and we will give an explicit
description of its kernel.

DEFINITION 3.3. Given a coisotropic vector bundle (F, IT) a smooth two-parameter
family of Hamiltonian diffeomorphisms ® is a smooth map

d:Ex[0,12 = E, (et,s)— ®(t s)(e)
satisfying the following conditions:

(i) ®(0, s) is the identity for all s € [0, 1] and
(ii) there is a smooth function
F:Ex[0,1 =R, (et,s)— F(t s)e)
such that ®(-,s) is the smooth one-parameter family of Hamiltonian dif-
feomorphisms generated by F(-, s), i.e.
d

2= 2(7:8) = Xpo o)l @
holds for all (¢, s) € [0, 1)%.

A

An isotopy of Hamiltonian homotopies of (E,11) is a pair (f1, ®) where

(a) /i is a smooth [0, 1]*-family of sections of E whose restriction jy, is a
coisotropic section of (E,II) for all (¢,s) € [0, 1],
(b) @ is a smooth two-parameter family of Hamiltonian diffeomorphisms

such that
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(a’) both restrictions of i to £ x {0} x {s} and E x {1} x {s} respectively
are constant in s and

(b’) the graph S, of ug,s) is equal to the image of S,
arbitrary (t,s) € [0, 1]2.

under ®(t, s) for

(0,5)

Given an isotopy of Hamiltonian homotopies (ji, ®) we say that it is an isotopy
of Hamiltonian homotopies from the Hamiltonian homotopy (fi(0), ®(,0)) to the
Hamiltonian homotopy (fi(,1), P,1)). We also refer to the pair consisting of these
Hamiltonian homotopies as the vertical boundary of (fi, CTD) The horizontal bound-
ary is the pair consisting of the Hamiltonian homotopies (i (o,s), (id)sejo,1) and

(:u(l,s)a (id)se[o,l])'

DEFINITION 3.4. Let (E,II) be a coisotropic vector bundle. We define a relation
~y on the set of Hamiltonian homotopies of (E,II) by

(ﬂa @) =H (’97 ¢) =
there is an isotopy of Hamiltonian homotopies from (fi, @) to (7, ¢).

~

LEMMA 3.5. (a) The relation ~g on the set of Hamiltonian homotopies of
(E,1I) is an equivalence relation.
(b) Let p and p' be two gluing functions. Then the compositions of Hamilton-
ian homotopies with respect to p and p' coincide up to ~p.
(¢) The Hamiltonian homotopies

id,, O,(f,¢) and (1, $)0,id,,

are equivalent to (i, $) under ~p.
(d) The Hamiltonian homotopies

(i, @) 7' O, ¢)  and (1, 9)0,(j1, )™
are equivalent to id,, under ~p.

(e) Composition with respect to p descends to the set of equivalence classes of
Hamiltonian homotopies modulo ~g and is associative there.

PROOF. (a) Any Hamiltonian homotopy (/i, ) comes along with an iso-
topy of Hamiltonian homotopies

id(p,e) = ((ﬂ)se[o,l]a (@)se[o,u)
from (i ) to (i, @). A
Given an isotopy of Hamiltonian homotopies (i, ®) from (fi(,0), P,0))
to (:U(t,l)’ q)(t,o)), the pair

A

(ﬂa Q)) ! = (M(t,l*ﬁ)? q)(t,lfs))
is an isotopy of Hamiltonian homotopies from (1), ®(1,0)) to (1,0, Pt,0))-

A

Let (fi, ®) be an isotopy of Hamiltonian homotopies from (1i(,0), P(,0))
to (1(,1), Pe,1y) and (2, V) an isotopy of Hamiltonian homotopies from
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(Yt,0)5 Y (1,0)) to (1,1, ¥e,1)) and suppose that (1¢1), Pe1)) = (V(1,0): Yr,0))
holds. Choose a gluing function p and define the vertical composition

(0, 1)0Y (4, ®) := (0O o, YOV D)

of (fi, ) and (7, U) with respect to p by
(Heape)  0<s<1/3
@O a)(t,s) = < pen 1/3<s5<2/3 and
(Vit2p(s)-1) 2/3<s<1
(P(ope)  0<s<1/3
(\I/DXCD)(t, s) = Puy 1/3<s<2/3 respectively.
(Wit2ps)-1) 2/3<s<1

Observe that (7, @)DX(,&, ®) is an isotopy of Hamiltonian homotopies
from (,u(t,()), CD(LO)) to (V(t,l)a \I’(t71)).

(b) Let (4, @) be a Hamiltonian homotopy from u to v and suppose p and p/
are two gluing functions. Choose a smooth function o : [0, 1] — [0, 1] that
is zero on [0, 1/3], equal to 1 on [2/3, 1] and the restriction to |1/3,2/3[ is
a diffeomorphism to o(]1/3,2/3[). Existence of such a function is proved
similar to the existence of a gluing function. The smooth one-parameter

family of gluing functions

p(s) = (1—o(s))p+o(s)p
defines an isotopy of Hamiltonian homotopies
(:&a é)Dﬁ(s) (ﬁa 1;)

~ ~

from ([, ¢) to (v,).
(c) The Hamiltonian homotopy (4, )0, id,, is given by

Popy 0<t<1/3 and ] P20 0<t<1/3
{1 1/3<t<1 ©1 1/3<t<1

Choose a smooth function o : [0,1] — [0, 1] that is zero on [0, 1/3], equal
to 1 on [2/3,1] and the restriction to |1/3,2/3[ is a diffeomorphism to

o(11/3,2/3]). Setting ((fi, 2)0, id,..) o g,() with

0.(6) = (1= (1= ()t

yields an isotopy of Hamiltonian homotopies from (j1, )0, id,, to (fta@), Pa))
where « is a diffeomorphism of [0, 1] relative to the boundary. Now

(H((1-0(s))a(t)+o(s)t) » P(1—0(s))alt)+o(s)t) )
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Similiarly one finds an isotopy of Hamiltonian homotopies from
iy, B, (i1, ) to (fi, P).
(d) The Hamiltonian homotopy (f, ¢)~'0,(f1, ¢) is given by

H20(t) 0<t<1/3 ©2p(t) 0<t<1/3
1 1/3<t<2/3 and 01 1/3<t<2/3.
Pa0—pr) 2/3<t<1 Pau-p) 2/3<t<1

Choose a smooth function o : [0, 1] — [0, 1] that is zero on [0, 1/3], equal
to 1 on [2/3,1] and the restriction to |1/3,2/3[ is a diffeomorphism to
o(]1/3,2/3[). Then

H20(t)(1—0(5)) 0<t<1/3 P20(t)(1—0(s)) 0<t<1/3
Ha—o(s)) 1/3<t<2/3 4 a-os) 1/3<t<2/3
Ha(1-p(t)(1-a(s)) 2/3 ST <1 Pa1-p(t)(1-o(s)) 2/3<t<1

defines an isotopy of Hamiltonian homotopies from (i, @) '0,(i, ¢) to
id,,. Similarly one finds an isotopy of Hamiltonian homotopies from

(1, )3, (71, §) " to id,.

(e) Let (f1,®) and (©, V) be isotopies of Hamiltonian homotopies such that
P1,5) = ¥(o,5). Choose a gluing function p and define horizontal composi-
tion

S GNCH (A &Y . (reH s G HE
(V7 \IJ)D,O (M? CI)) T (VDp 7‘11Dp CI))
of (1, &D) and (7, ‘i/) with respect to p by

(

Heons)  0<t<1/3
(ﬁli\fﬂ)(t, $) =4 (L) 1/3<t<2/3 and
(Vep(t)-15) 2/3<s<1

(D500).) 0<s<1/3
(WO D)(t,s) == { Dy 1/3<s<2/3
| Uiopy 10 0P 2/3<s<1

Observe that (7, \@)Df (f1,®) is an isotopy of Hamiltonian homotopies
from (V(t,(])a ‘11(t70))|:1p(u(t70), (I)(t,O)) to (V(t,1)7 \I/(t71))Dp(,lj,(t71), CID(tJ)), This im-
plies that O, descends the set of equivalence classes with respect to ~p.

Suppose (/l,g%), (v, zﬂ) and (7,¢) are Hamiltonian homotopies such
that

¢1 =10 and Y1 =
hold. We want to prove

~

A= (,9)0, (0,9)0,(0,8)) = ((7,8)8,(5,9)) Ty, 6) = B
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where p is an arbitrary gluing function. Let 6,, ¥ be two smooth one-
parameter families of diffeomorphisms of [0, 1] relative to the boundary
that start at the identity such that

(i) the diffeomorphism 6, maps

0,1/5], [1/5,2/5], [2/5,3/5], [3/5,4/5], [4/5,1] to
[0,1/9], [1/9,2/9], [2/9,1/3], [1/3,2/3], [2/3,1],

(ii) the diffeomorphism 9J; maps

0,1/5], [1/5,2/5], [2/5,3/5], [3/5,4/5], [4/5,1] to
0,1/3), [1/3,2/3], [2/3,7/9], [7/9,8/9], [8/9,1].

The existence of such smooth one-parameter families of diffeomorphisms
of [0,1] is proved in Lemma 13 in Chapter 6. We consider

At = (70,60, 6.00). (60,68, 60.0)
and
B(t,s) = ((((fmpmupmws(t»), <<<¢mp¢>mp$><ﬁs<t>>)).

These are two isotopies of Hamiltonian homotopies from A to A(¢,1) and
from B to B(t,1) respectively. Observe that A(t, 1) is given by

(

Poysty 0<t<1/5 Py (51) 0<t<1/5
" 15<t<2/5 | 1/5<t<2/5
Vas(5t—2) 2/5 <t <3/5  , Q Yay(st-2) © D1 2/5<t<3/5
” 3/a<t<4/5 |wnod 3/4 <t <4/5
(Tasst—4) 4/5<t <1 (Passt—ayoPro¢r 4/5<t<1

where a1, ap and ag are diffeomorphisms of [0, 1] relative to the boundary.
Similarly B(t, 1) is given by

(pn  0<t<1/5 (65150 0<t<1/5
" 1/5<t<2/5 | 1/5<t<2/5
Vgyst—2) 2/5 <t <3/5 < Usy(se—2) © 1 2/5<t<3/5.
" 3/a<t<4/5  |wnod 3/4<t<4/5
(TBs(5t—4) 4/5 <t <1 | Ppsst—ay0V10¢p1 4/5<t <1

Now we choose a smooth function o : [0, 1] — [0, 1] that is zero on [0, 1/3],
equal to 1 on [2/3, 1] and the restriction to ]1/3,2/3[ is a diffeomorphism
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to 0(]1/3,2/3[) and define C(t, s) to be

(

H(1=o () (58) +0(5)B1 (51) 0<t<1/5

" 1/5<t<2/5

V(1—o(s))as (5t—2)+o(s)Bs (5t—2) 2/9 <t <3/5

1 3/4<t<4/5
(| T(—10(s)as (5t—4) +o(s)ss(5t—4) 4/5 <t <1
’qb(l—a(s))oq (5t)+0(s)B1 (5¢) 0<t<1/5

D1 1/5 <t< 2/5
Y(1—o(s))as (5t—2)+0(s)82 (5t—2) © D1 2/5<t<3/5.
P10 ¢y 3/4§t§4/5

| P(—10(s))as (5t—4) +o(s)8s(5t—4) O P10 P1 4/5 <t <1

Observe that C(t, s) is an isotopy of Hamiltonian homotopies from A(t, 1)
to B(t,1). This implies

and hence A ~y B, i.e. O, is associative up to ~y.
O

DEFINITION 3.6. A (small) groupoid G is a (small) category such that every mor-
phism is invertible.

DEFINITION 3.7. Given a coisotropic vector bundle (E, IT), the groupoid of coisotropic
sections C(E,I1) of (E,1I) is the small groupoid with

(a) the set of objects is the set of coisotropic sections C(E,II) of (£, 1I),

(b) the set of morphisms Hom(yu, ) between two coisotropic sections p and
v is the set of all Hamiltonian homotopies from p to ¥ modulo ~y and

(c) the composition is induced from composition of Hamiltonian homotopies
with respect to some gluing function.

LEMMA 3.8. Let (E,II) be a coisotropic vector bundle. The set of isomorphism
classes of objects of C(E, 1) is the moduli space of coisotropic sections M(E,1I).

PROOF. This follows immediately from the definition of C(E,II), ~y and
M(EII). O

REMARK 3.9. The groupoid C(E,II) is a “categorification” of M(E,II). It seems
very likely that it is the first level of a tower of such categorifications of M(E, II).
In fact it should be possible to understand C(E,II) as a truncation of a weak co-
groupoid éw(E ,II) at its two-morphisms which are presumably given by isotopies
of Hamiltonian homotopies.
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DEFINITION 3.10. Let (E,II) be a coisotropic vector bundle. Equip I'(A(&p,12 @
5[’571]2) with the structure of a graded Poisson algebra given by the trivial extension
the graded Poisson bracket [-,-]ppy on BFV(E). We denote the restriction map

D(A(Epape ® Epp2)) — BFV(E), B = Bl inxis)
by ev ).

A smooth two-parameter family of inner automorphisms ® is a morphism of graded
Poisson algebras

A

O (BEV(E), [ ]srv) — (T(A(Epa @ Ep ), [ IBrv)

satisfying the following conditions:

(i) ev(o,s o = (id)seo,115 )
(i) there is 4 € T'(A(Ep,2 ® €y yp2)) such that ev(. s o® is the smooth one-

parameter family of inner automorphisms of (BFV(E), [, :|pry) gener-
ated by ev(. 4 oy, ie.

d .

% ’T:t(eVT,S Oq))() = _[evt,s O, €Vis oq)(')]BFV

holds for all (¢, s) € [0, 1)%.
We abbreviate ev ) od by @)
An isotopy of gauge homotopies of (E,1I) is a pair (B, <i>) where
(a) 3 is a smooth [0, 1]2-family of sections of A(€ ® £*) whose restriction Bit,s)

is a geometric Maurer—Cartan element for all (¢, s) € [0, 1]?,
(b) @ is a smooth two-parameter family of inner automorphisms of

(BFV(E), [, |srv)
such that

(a’) the restrictions B ) and (1) are constant in s € [0, 1],
(1) Bits) = Pi.s) - Boo,s) holds for arbitrary (¢,s) € [0, 1]°.

Given an isotopy of gauge homotopies (3,®) we say that it is an isotopy of
gauge homotopies from the gauge homotopy (5,0), P(,0)) to the gauge homotopy
(B(t, 1), Pu,1)). We also refer to the pair consisting of these gauge homotopies as
the vertical boundary of (ﬁ, &D) The horizontal boundary is the pair consisting of
the gauge homotopies (3(,s), (id)seo,17) and (B, (id)sepo,11)-

DEFINITION 3.11. Let (E,II) be a coisotropic vector bundle. We define a relation
~ on the set of gauge homotopies by

(@7@) =a (B?qg) =
there is an isotopy of gauge homotopies from (&, ) to (3, 3).
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LEMMA 3.12. (a) The relation ~¢g on the set of gauge homotopies of (E,1I)
18 an equivalence relation.
(b) Let p and p' be two gluing functions. Then the compositions of gauge
homotopies with respect to p and p' coincide up to ~¢g.
(¢) The gauge homotopies

ide, O,(4, @) and (&, )0,id,,
are equivalent to (&, p) under ~g.

(d) The gauge homotopies

~ ~ ~

(a, Sb)ilmp(é% @) and (&, 9)0,(q, 90)71
are equivalent to id,, under ~q.

(e) Composition with respect to p descends to the set of equivalence classes of
gauge homotopies modulo ~¢ and is associative there.

PrOOF. The proof can be copied mutatis mutandis from the proof of Lemma
3.5. In particular isotopies of gauge homotopies with matching boundary compo-
nents can be composed wvertically and horizontally with respect to a gluing func-
tion. U

DEFINITION 3.13. Given a coisotropic vector bundle (F,II), the groupoid of geo-
metric Maurer—Cartan elements Dgeo(E, 1) of (E,1II) is the small groupoid with

(a) the set of objects is the set of geometric Maurer—Cartan elements Dy, (E, I1)
of (E,II),

(b) the set of morphisms Hom(«, 5) between two geometric Maurer—Cartan
elements o and 3 is the set of all gauge homotopies form « to # modulo
~q and

(c) the composition is induced from the composition of gauge homotopies
with respect to some gluing function.

LEMMA 3.14. Let (E,1II) be a coisotropic vector bundle. The set of isomorphism
classes of objects in Dgeo(E,I1) is the moduli space of geometric Maurer—Cartan

elements N (E,1I).

Proor. This follows immediately from the definition of ﬁgeo(E, IT), ~g and
N(E,TI). O

REMARK 3.15. The groupoid Dy (E, 1) is a “categorification” of N'(E,II). It
seems very likely that it is the first level of a tower of such categorifications of
N (E,II). In fact it should be possible to understand Dge, (£, II) as a truncation

of a weak oo-groupoid ﬁgeo(E,H) at its two-morphisms which are presumably
given by isotopies of gauge homotopies.

DEFINITION 3.16. A gauge homotopy (B, g?)) of a coisotropic vector bundle (F, 1)

is pure if the smooth one-parameter family of inner automorphisms ¢ lies in
Inn.,(BFV(E)), i.e. is generated by an element of BF'V ., (E,II).
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A morphism of f)geo(E, IT) is pure if it can be represented by a pure gauge homo-
topy. We denote the set of pure morphisms between two geometric Maurer—Cartan
elements « and (3 of (F,II) by Homs(a, ) C Hom(a, 3).

DEFINITION 3.17. Given a coisotropic vector bundle (E,IT), we define ﬁgzeé(E, 1)
to be the full subgroupoid of f)geo(E, IT) whose set of objects is the set of geometric
Maurer—Cartan elements Dy, (E, II) of (E, IT) and whose set of morphisms between

two Maurer—Cartan elements « and [ is Homs1(a, ).

REMARK 3.18. It is easy to check that D! (E,II) is a full subgroupoid:

geo
(i) for every geometric Maurer—Cartan element «, the identity morphism id,
is pure,
(i) the inverse of any pure morphism of Dy, (F, IT) is pure and
(iii) given two composable pure morphisms of ﬁgeo(E, IT) their composition is
pure again.

In Theorem 3.25 we will establish that ﬁgze})(E ,11) is normal, i.e. given a morphism

f € Hom(a, 3) and a pure morphism g € Hom=*(3, 3), the morphism f~'ogo f
is pure.

LEMMA 3.19. Let (E,1I) be a coisotropic vector bundle. The maps
Leeo and f/geo
introduced in Corollary 2.19 and Remark 2.2/ yield a morphism of groupoids
Lyeo : Dyeo( B, ) — C(FE,TI)

that is surjective on the sets of objects and on all morphism sets.

PROOF. That L, is a well-defined map from the set of morphisms from « to
B in Dgeo(E, IT) to the set of morphisms from Lgeo () t0 Lgeo(3) in C(£, IT) follows
from the fact that the map Ly, from the set of gauge homotopies to the set of
Hamiltonian homotopies introduced in Remark 2.24 extends to a map from the set
of isotopies of gauge homotopies to the set of isotopies of Hamiltonian homotopies.
Furthermore Ly, is a morphism of groupoids because L : Inn(BFV(E)) —
Hom(E, II) is a morphism of groups — see Lemma 2.14 and Remark 2.24.
The map Ly, was defined as an Inns(BFV (E))-invariant extension of Ly, see
Corollary 2.19. Since the latter map was surjective — see Theorem 1.13 — so is
Legeo.
Surjectivity of Le, on the level of morphisms was essentially established in the
proof of Theorem 2.25: there a lift ((¢ 0 ) - dp, ¢ 0 1)) of a Hamiltonian homotopy
(=i, ¢) was constructed such that

ZA—JgeO((¢2 © 7;) = 0o, Qg o 1&) = (—ﬂ, 95)
holds, i.e. ﬁgeo is surjective. This implies that L, is surjective on the level of
morphisms. O
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DEFINITION 3.20. Let F': G — 'H be a morphism of small groupoids. The kernel
of F'is the subgroupoid ker (F') of G with

(a) the set of objects is the set of objects of G,
(b) the set of morphisms from X to Y is the set of all morphisms of G from
X to Y that map to an identity morphism under F'.

The image of F is the subgroupoid im (F") of H with

(a) the set of objects is the set of objects of H that have nonempty preimage
under F

(b) the set of morphisms from X to Y is the set of all morphisms of H from
X to Y that have nonempty preimage under F'.

LEMMA 3.21. The kernel of any morphism of groupoids F' : G — H is normal, i.e.
let f be a morphism from X toY in G and g a morphism from'Y to 'Y in ker (F)
then f~Yo go f is a morphism in ker (F).

Proor. We simply compute
F(f~logof) = F(f)oF(g)oF(f)=F(f"")oF(f)
= F(f'of)=F(idx) = idpx)
and consequently f~'ogo f is in ker (F). O
DEFINITION 3.22. Let K be a normal subgroupoid of a small groupoid G.

The quotient of G/K of G by K is the small groupoid with

(a) the set of objects is the set of isomorphism classes of IC,
(b) the set of morphisms is the set of equivalence classes of morphisms in G
with respect to the following equivalence relation:

a € Homg(X,Y) is equivalent to 8 € Homg(W, Z) <
there are f € Homy (X, W) and g € Homg (Y, Z) such that
goa=fof
holds.

There is a natural morphism of groupoids 7 : G — G/K that is surjective on the
set of objects and on all morphism sets.

REMARK 3.23. Observe that K is required to be a normal subgroupoid for the
quotient G/K to be a well-defined groupoid.

LEMMA 3.24. Suppose F' : G — H is a morphism of groupoids.

Then F' induces an isomorphism of groupoids

[F]: G/ker (F) = im (F).
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PROOF. First F restricts to a morphism of groupoids Flim ) : G — im (F)
which is surjective on the sets of objects and on all sets of morphisms. The kernel
of this restriction coincides with ker (F') which is a normal subgroupoid of G.
Consider the diagram

T Plm®) im (F)
G/ ker (F).

Given an object [X] of G/ ker (F') choose any representative X in G and set
[FI([X]) := F(X).
Moreover let [a] be a morphism of G/ ker (F'). Again choose a representative a in
G and set
[Fl(la]) == F(a)

It is straightforward to check that [F] is well-defined and is an isomorphism of
groupoids. U

THEOREM 3.25. Let (E,II) be a coisotropic vector bundle.
The kernel of the morphism

Lyeo : Dyeo( B, ) — C(F,TI)
is the subgroupoid DZL(E,TI), see Definition 3.17.

geo

PROOF. Suppose [(&, g?))] represents a pure morphism in ﬁgeo(E, IT), i.e. we can
assume without loss of generality that (&, ¢) is pure, hence ¢ € Inn.,(BFV (E)).
Because of

[A/geo(ééa gg) = (Lgeo(é‘)a (id)tE[O,l]) - ((Lgeo(ao))te[o,l}a (id)tE[O,l])

~

the morphism [(&, ¢)] lies in the kernel of Lge,.

On the other hand suppose [(&, QAS)] is a morphism in f)geo(E, IT) that lies in the
kernel of Lge,. This means that Lge, (&, ¢) is ~py-equivalent to

((Lgeo(aO))tE[O,l}a (id)tG[O,l])7

i.e. there is an isotopy of Hamiltonian homotopies

A ~

(=i, ®)
from (Lgeo(d), ¢) t0 ((Lgeo(c0))eeo) (id)icoq). We want to “lift” this isotopy of

Hamiltonian homotopies to an isotopy of gauge homotopies from (&, gZ;) to a pure
gauge homotopy. Observe that this would imply that the morphism of Dy, (E, II)

represented by (&, QAS) is pure.

The first step in the lifting procedure is the construction of a smooth two-parameter
family of normalized Maurer—Cartan elements (3 of (E, II) such that L, (5) = —/i.
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Such a family can be constructed in the same fashion that the smooth one-
parameter family of normalized Maurer—Cartan elements é was constructed in
the proof of Theorem 2.25. Furthermore the smooth two-parameter family of
Hamiltonian diffeomorphisms ¢ lifts to a smooth two-parameter family of inner
automorphisms 1& := R(¢p). Observe that because jiqs) = fi,1) = f(1,s) holds for
all (¢,s) € [0,1]?, the same holds for B And since p5) = @1y = id is true for
arbitrary (¢, s) € [0,1]2, the same is true for v).

The Maurer—Cartan elements o and (g ) are both geometric and have the same
image under Lg,. By Corollary 2.19 there is n € Inns(BFV(FE)) satisfying
o =1 B,s). Now consider 4 := (¢! on) - or in more detail

Vt,s) = (w(;ls) on) -+ Bit,s)-

This is a smooth two-parameter family of Maurer—Cartan elements of (E,II) with
Lgeo(Vit,5)) = —I40,5)- In particular the vanishing locus of the component of Q-+ 4
in ['(€) is Sﬂ(o,s), i.e. the graph of o,). Because () is a normalized Maurer—
Cartan element for all (¢, s) € [0, 1]* the component of Q + 3, in T'(€) intersects
the zero section of £ — FE transversally. Hence so does the component of {2+ )

in ['(€) for all (¢,s) € [0,1]*. We compute
Y05 = Wo © 1) - Bos) =1 Bos) = o,
i.e. Y(o,5) I constant in s € [0, 1].

Consider the smooth two-parameter family of Maurer—Cartan elements ! - 4 of
(E,1I). It satisfies

A 77" Y0, = B
(ii) the component of ™! - v in () intersects the zero section of & — E
in S, for all (¢,s) € [0,1]* and

H(0,s)
(iii) this intersection is transversal for all (¢, s) € [0, 1]2.

In the proof of Theorem 2.25 we explained how to apply Proposition 9 in Chapter

6 to the smooth one-parameter family of Maurer-Cartan elements (7™ s))ie[0,1]

— for s € [0, 1] fixed — to obtain a smooth one-parameter family of inner automor-

phisms ¥, € Inn,, (BFV(E)) such that

Dty - (07" Y0.9)) + BFVs1(E) = 07" - ) + BF V51 (E)

holds for all (¢,s) € [0,1]*. Since the construction of ¥ is essentially given
by solving an ordinary differential equation with initial value id and generat-
ing derivation smoothly depending on 7y, the one-parameter family of smooth

one-parameter families of inner automorphisms v, yields a smooth two-parameter
family of inner automorphisms 6.

Define a smooth two-parameter family of Maurer-Cartan elements y of (E,II) by

X(ts) := (Vi) 0N 0 Ors) oM 1) “ Yio.5) = (Yes) 0N 0 Oy o) - g
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and calculate
X(ts) + BFVo1(E) = (Yusyonobuson) vos + BFVa(E)
Vi) - Vts) + BEV=1(E)
= 0 Bus + BFV>i(E)
Since B is a smooth two-parameter family of normalized Maurer—Cartan elements,
71 - (B is a smooth two-parameter family of geometric Maurer-Cartan elements and

hence so is x. However (Y, 1& ono 6o n~!) is not an isotopy of gauge homotopies
because (X(1,s5))sefo,1] 18 not necessarily constant in s € [0, 1]. Observe that

X(1.s) + BEV>1(E) =1 Bus) + BFV>1(E)

and since (Bq1,s))sejo,1) Is constant in s € [0, 1], so is the component of (X (1,s))sefo,1]
in I'(€), i.e. (x@,5))sefo,1] is a one-parameter family of geometric Maurer—Cartan
element such that (X?LS))SE[OJ] is constant. So we obtain a smooth one-parameter
family of normalized Maurer—Cartan elements (o X(l,s))se[o,l] whose component
in I'(€) is constant. Fix s € [0,1]. Following Remark 1.14 and Theorem 2.13,
Chapter 4 there is 0(,s) € Inn.,(BFV (F)) such that

sy - (071 X)) =07 X

holds for all s € [0,1]. Theorem 2.13 in Chapter 4 also works for smooth one-
parameter families, i.e. (0(,))refo] yield a smooth two-parameter family of auto-
morphisms. Next we define

W= ((nodus o nto Yits) 01M 0O 0 77_1) ~p) and
é‘ = (nodus o n o Yie,s) 00O 0 n~ 1) respectively.

The pair (c&,é‘) is an isotopy of gauge homotopies. Observe that for s = 1 we
obtain (1) = nodu1y o bunyon ' € Inn.,(BFV(FE)), i.e. the gauge homotopy
(@1, CA(t,l)) is pure.
The isotopy of gauge homotopies (w, ¢ ) satisfies

Laeo(@it,s)s Cit) = (—Htt)s P(t)
for e}H (t,s) € [0,1]* by construction. In particular the images of (w0), ((,0)) and
(&, ¢) under Lge, coincide. Consequently L((w0)) = L(¢¢) holds for all ¢ € [0, 1],

hence L(¢; o C(;}))) = (id)sejo,1)- Lemma 2.14 implies that there is a unique 7 €
Inn., (BFV(E)) such that

Gr =T 0 C(t,o)
is true for all ¢ € [0, 1]. The pair

(Tt *W(t,s), Tt © C(t,s))

defines an isotopy of gauge homotopies from the gauge homotopy

(7¢ - W(t,0), Tt © C(t,o)) =((rr o C(t,O)) o, o) = (o, ¢r)
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to the gauge homotopy

(7 - w1y, ) = (T om0 8e1y 0 Oy 0 ™") - 0, 7 0 0 d(e1y © Oy 0 ).
The latter gauge homotopy is pure, hence (d,q@) is equivalent to a pure gauge
homotopy. U
DEFINITION 3.26. Let (E,II) be a coisotropic vector bundle.
The BFV-groupoid ﬁ(E,H) of (E,1I) is the quotient of the groupoid geometric
Maurer—Cartan elements Dy, (E, IT) by Dy, (E, II).
COROLLARY 3.27. Let (E,1I) be a coisotropic vector bundle.
The morphism of groupoids

Lyeo : Dyeo( B, ) — C(F,TI)

introduced in Lemma 5.19 induces an isomorphism of groupoids L between the
BFV-groupoid D(E,11) of (E,II) and the groupoid of coisotropic sections C(E,1I)
of (E,1I).

PRrROOF. By Lemma 3.19 the morphism L, is surjective on the sets of objects
and on all morphism sets, hence im (Lge,) = C(E,II). In Theorem 3.25 the kernel
of Lgeo was identified with the subgroupoid Dg,
an isomorphism of groupoids

L =Ly : D(E,TT) = C(E,TI),
see Lemma 3.24. U

(E,1II). Consequently Lge, induces

L



CHAPTER 6

Technical Remarks

LEMMA 4. The family of morphisms (Uk(t) : S(a) — a)gen defined by Uy(t) = 0,
Uy (t) := 4 and

. 1
U)o @ @) = 3 sien(0) Y Y g
o€y 21 jit-+i=k—1
a([[ - [0e(20)), Upy () (@o2) @+ @ To(jyin))], -
e ']7 Uj, (t)(xa(jl+"'+j(l—l)+2) Q- ® -Ta(k))D-
which was introduced in the proof of Theorem 3.7 in Chapter 2 satisfies the family
of ordinary differential equations

d
E’t:SUk(t)(xl Q- .Tk)

B sign(7)  _x.
= > > Zsz (Ui ($)(@o() ® @ 20y, ) ® -+

I>1 jit-+5i=kT€S)
e ® Ujl(8)(xo'(j1+"'+j(l—1)+1)) Q- ® xa(k‘)))
and the initial conditions U;(0) = id and U*(0) =0 for k # 1.

PROOF. By definition Ui (t) = ¢ so U;(0) = id and

0 0)0) = (X2, 6,0))) = (X, b)) = (D3 0 Ui(5))()
is satisfied.

Suppose we established the ordinary differential equation for (U;(t));<x. We want
to prove that this implies that the ordinary differential equation is satisfied for
Uk(t) too. The definition of Uy(t) implies

d : 1
%’t:SUk(t)(.Tl ®®xk) = Z &gn(a)Z Z kl‘]l']l'

oLy 1>1 ji+-+j=k—1

(Ha<[[' o [[[Xsa ¢s]> Ujl]’ sz]’ o ']7 Ujl])

‘HHa(H[' e [¢57 Ujl]a e ']7 Uj(l—l)]’ %|t5sz (t)]))

where we suppressed the arguments (241, ..., Zsx)) and s € [0, 1]. The first term
comes from deriving ¢;, the second one from deriving one of the factors U, (t) with
m < k. We denote the two terms by A, and By respectively.

159
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Ai(s) contains terms of the form [---[[[Xs, ¢s], Uj, (s)],Ujy(s)],---].  Using the
graded Jacobi identity consecutively yields

. 1
=D sien(@) ) D ) kruslal oGl

oEY 1>1 r+s=l ao1t+tart
= B+ Ba=k—

H(MPWWM&L%$~$%MAH~WM%L%&~$%$)
Applying I, | = Hy[IL4(+), -] + g+, Ha(+)] leads to

Ak(S) =
. 1
( 252 2. D Tl
oEY I>1 r+s=l a1+-+art
+B1 - +Bs=h—1
DY (Uay W®UW®HMPwW&%J~L%®0
. 1
( Z sign(o) Z Z Z sl o B Al
oEY >1 r+s=l c1t-+tart

B+ Bs=h—

HMH~MJ%M~HhDﬂJW¢W@%$%$~$%$O-

We claim that the identity

. 1
>_sign(@)) ) k(I — 1)yl

oED 121 jit-+i=k-1

-Ji!

H4M~WA&M~L%Hm%MJMM)

. 1
Z sign(o) Z Z Z el e Bl

oEY 1>1 r4s=l oc1ttart
+B1 -+ +Bs =k~

Hu[([[ o [d)S? Ual]v t ']7 Uar])vna<[[' t HXSv Uﬂl]v Uﬂ2]7 o ']7 Uﬁs])]

is true. This means that By(s) cancels the second term in the expression for Ay(s)
given above. The identity is derived easily by applying the induction hypothesis
about %\t:sUm(t) for m < k to By(s).

Finally we claim that the equality

. 1
> sign(e) > ) > kr's‘al PRI AR

gEY 1>1 r+s=l o1ttart
= 1+ Bs=k—

D()fj-l) (Ual PSR Uar ® I ([[ ) [¢Sv Uﬂl] o ']7 Uﬂs]))

- > X ZuSlgn (D (U @+ ® Uj)

121 jit+ji=k T€X
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holds which implies that Ug(t) satisfies the ordinary differential equation. To
establish the equality we first use the recursive definition of U,,(t) to arrange the
terms of the form ITy[[- - - [¢r, Up, (¢)], - - - ], Up,(t)] into some Ug(t). One arrives at

S Y Y et e e )

I>1 j1+-45=k 1€

It remains to prove that this is equal to

Z Z Z [lSIgn S(Ujl®“'®sz)'

121 ji+-+i=k T€L

We construct a third map for which it is easy to show that is it equal to the last
two expressions, hence they coincide.

Assume one is given k distinguishable objects and [ boxes. Each of the box can
be filled with a fixed number of objects which is bigger than 0. The number of
boxes that can contain exactly j; objects is w; (0 < j; < -+ < jn). The identities
wy + -+ w, = r and wyj; + - wyim = k must be satisfied. We label this
situation by (I|(j1,w1), ..., (ji,w;)) and denote the number wyj; + -« Wy jm by
|(7|(j1,w1), .., (Ji,w;))]. Furthermore we assume that boxes that can be filled by
the same number of objects are indistinguishable. The number of different ways
to put the k objects into these boxes is given by

k!
w1! e wm'(]l')wl e (]m')wm

Consider

) X wy-
21 [(U(G1yw1) s (Frmywm)) =k TEXE

sign(r
Z Z Z |...wmy(ﬁg)wl)...(jmy)wm

DUy ® - @Uy® QU ®---@Uj,).

It is straightforward to check that this map is equal to

D D B e e R/

I>1 j1+-+j=k T7€X

on the one hand and to
sign(r
Y Y b e eU;)
I>1 ji4+-+j= kTEZk '

on the other hand. O

LEMMA 5. Given a Poisson manifold (M,11), the composition of diffeomorphisms
equips the sets Ham(F, 1) and Ham(M, II) with the structure of groups.
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PROOF. Let I and G be two smooth functions on M x [0, 1] and (¢)¢efo,1] and
(é¢)tefo,1] the two one-parameter families of Hamiltonian diffeomorphisms gener-
ated by F' and G respectively, i.e. ¢y = id = ¢y and

d d
5, lt=s =X 5 o, |t=s =X
dt|t7 Pt Fslos dt‘t o Gs s

hold for arbitrary s € [0,1]. We compute

Clesliop) ) = Tl 00)0)

dt
= @[ Xk, () ()]sn) + (0% 0 3 ([Xa., ]sn)
= (¢5o0)([(65 ) Xrys Jsn) + (95 0 99)([Xa,, Jsn)
= (¢s o 903)* ([(¢gl)*XFs + Xa,, ']SN) .

Hence the smooth one-parameter family of diffeomorphisms (¢, o @t)te[o,l} is gen-
erated by the smooth one-parameter family of vector fields

((gb;l)*XFt + XGt)tG[O,l]‘

Next we calculate

(67 ) Xe = (&) (=L, Flsn) = —[(¢; )" (1), (¢, )" (F)]sw
= —[LFo¢ Jsn = Xpog-
We applied Corollary 1.14 in Chapter 3 to obtain the last equality. Consequently
(6 X + Xay = Xpogrt + Xaw = X(poort )

i.e. (¢ 0@t)tepo] is a smooth one-parameter family of diffeomorphisms starting at
the identity and generated by the smooth one-parameter family of Hamiltonian
vector fields associated to the function

H:Mx[0,1] =R, H(z,t):= F(¢; (x),t) + G(x,1).

Similarly one checks that (¢, 1)t€[071} is a smooth one-parameter family of diffeo-
morphisms starting at the identity and generated by the smooth one-parameter
family of Hamiltonian vector fields associated to the function

K:Mx|[0,1] =R, K(x,t):=-G(¢;"(v),1).

These two calculations imply that Ham (M, IT) is a group with respect to composi-
tion. That Ham (M, II) is also a group with respect to composition is an immediate
consequence. ]

LEMMA 6. Let A and B be two manifold of the same dimension, K a compact

locally metrizable topological space and © a continous map from A x K to B such
that

(a) the restriction ©, of © to A x {u} is an embedding of A into B for
arbitrary k € K and
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(b) there are submanifolds X and Y of A and B respectively and a fized

diffeomorphism ¢ : X =Y such that the restriction of © to X x {u} is
equal to ¢ for every u € K

hold. Then the intersection (),c, ©u(A) contains an open neighbourhood of Y in
B.

PRrOOF. Observe that this is a local claim: the intersection
C = (] ©u(A)
ueK
is an open neighbourhood of Y in B if it is true for every point y € Y.
Fix an arbitrary y € Y. We have to show that there is an open neighbourhood U,
of y in B that is contained in C'. We first prove that for every u € K there exists

an open neighbourhood V,(u) of y in B which is contained in C' and é(u) > 0 such
that for all v € K with distance less than d(u) from u

Vy(u) C ©,(A)
holds.

Because O, is an embedding and the dimensions of A and B match, the set ©,(A)
is an open neighbourhood of y in B, i.e. for any chart of B centered at y there
is a €(y) > 0 such that the open ball Bs.,)(y) centered at y with radius 3e(y) is
contained in ©,(A). Consider the sphere Ss(,)(y) centered at y with radius 2e(y).
Pick a point z on this sphere. Since © is continuous the preimage of B, () is an
open subset of A x K. Denote the preimage of z under ©, by a € A. Obviously
(a,u) is contained in the preimage of B.(,(z)and since this preimage is open we can
find an open neighbourhood of (a,u) in A x K which is contained in this preimage.
Since both A and K are locally metrizable, so is the product and consequently we
can find d(z) > 0 and p(z) > 0 such that the product By.y(a) x By)(u) lies in
the preimage of B, (2) under O, i.e. the image of By.)(a) X B, under © lies
in Be(y)(z).

The family of subsets (Ba(:)(©,"(2))):e8,.,, @) is an open cover of the compact set

-----

with a; := ©,'(2). Now set

p:=min (p(z1),...,p(zm)) >0

and observe that for every x € ©,1(Sa)(y)) and v € K with distance less than
p from u the image O, () is contained in

{xeB:e(y) <lz—yl <3e(y)}
This implies that the image of ©,'(Bse)(y)) X B,(u) contains
{reB:|r—y|<ey)}
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In more detail ©;'(Bse,)(y)) is contractible and hence its image under O, is
contractible too. Moreover we proved that for v € K with distance less than p
from u the image of ©,'(Bs.(y)(y)) under O, contains a manifold diffeomorphic to
the sphere which is contained in

{r € B:e(y) <|z—y| <3e(y)}

Because y also lies in the contractible image of O, (Bse,) (y)) under ©,, the image
contains By (y) for arbitrary v € B,(u). Consequently the image of A under ©,
contains By (y) too for all v € B,(u).

We proved that for every u € K there is an open neigbourhood V), (u) := By (y)
of y in B and an open neighbourhood B,(u) of u in K such that

Vy(u) C ©4(4)
holds for all v € B,(u). Notice that we suppressed the dependence of p on w.

The family of sets (B,(u))uex is an open cover of K. Because K is compact we
can find a finite subcover (B, (u;))i=1,.., and we set

-----

This is an open subset of B satisfying y € U, and by construction it is contained

C= (] 6u4)

ueK

O

LEMMA 7. The linear operator h on BEV (E) of degree —1 introduced in the proof
of Lemma 2.7 in Chapter 4 satisfies the relation

[h,6] = hod+0d0h=id—(Ap") o (A).

.....
.....

.....

two frames yield a frame of A(€ & £¥). Locally the differential ¢ is given by

e Za
;yabi'

and h is given by

h(f(z,y,c)b™ - bi) : Zb’( f (z,t-y,c )tk)b“.-.bik.
0



6. TECHNICAL REMARKS 165
We compute (id —(Ap*) o (A*)) first:

NN (g, )b - b)
)b“ bZ f($,0,6)‘bj50

(f(zt-y,e)(tb™) - - (b)) dt

(id —(Ap”

(0]
—~

=8
<

(f(x,t -y, )tF) dep™ - - b

:/1 (aafa(xt Y,¢) -y ) tRdE (b - - )

k (/O flz,t-y, c)t("’_l)dt) (b .. b)),

(hd)(f (x,y, )b ---b*) = h (Z(—l)(a_l)f(x,y, o)yl (bt - bl -b““)>

I
o\
o &|&

.
Il

Next we calculate

a=1
_ Z Z(_l)(afl)bj (/ a(fy )(.T,t y, C)t(kl)dt) (bzl U A bzk)
j=1 a=1 o Oy
e k 1 8][. )
= > > (=ne (/ 57t y,C)y"“tkdt) (bbb
j=1 a=1 o 9Y
k 1
3 ( | et c>t<“>dt) (8" - -5%)
a=1 0
e k 1
- 9 i i 7 i
= SN0 ([ o) @
j=1 a=1 o Y

1
+k ( fla,tey, c)t<“>dt) (b - b
0
and

(6h)(f (z,y, c)b™ - -

bi*) =
—f (x,t-y,c )tkdt) bt .. .bik)
0 dy

(/ a—f z,t-y,c tkdt) (b -+ b*)
so(f

f k d a, da 101 X i
a—a:t y,c)t dt) <Z(—1) ylebit e h ‘

a=1

é
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We conclude with

(hé + 0R)(f(z,y,c)b™ -- - b™*) =

- / Z(ag (z,1-y,c) yj) tE (i - - )

+k(/fxty, ’“dt) (b - %)

= (id—(Ap") o (A))(f(z,y, )b - - b™).
U
LEMMA 8. The vanishing ideal of R¥ x {0} in R¥*+e) = RF @ R® is generated by

the linear fibre coordinates on R®.

PrRoOOF. That the ideal generated by the linear fibre coordinates on R€ is con-
tained in the vanishing ideal of R* x {0} in R**+® is evident.

The reverse inclusion is proved as follows: Let h be a smooth function on R(¥+¢)
whose restriction to R* x {0} vanishes. Then

ba) = hog) = hw0) = [ (hlat )

- [ (S )u=s ([ gres-va)

holds, i.e. h(z,y) lies in the ideal generated by the linear fibre coordinates on
Re. U

PROPOSITION 9. Let E — S be a vector bundle and consider the pull back € — E

of E — S along E — S. Suppose By is a smooth one-parameter family of sections
of & = E, i.e. a section of the pull back Eyqy of € — E along E x [0,1] — FE,
satisfying the following conditions:

(a) The section [y is equal to the tautological section Qy of € — E
(b) The intersection of the graph of 3y with the zero section of € — E is S.
(¢c) This intersection is transversal, i.e.

T (graph(f3,)) + T E = TE
holds for all x € S.
Then there is a smooth one-parameter family of sections Ay of GL, (&) such that
Ay - Qg =
is true for all t € [0, 1].

Moreover the statement remains true for smooth one-parameter families of sec-
tions of the restriction of & — E to an open neighbourhood U of S in E that is
contractible along fibres, see Definition 2.24 in Chapter/.
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Proor. We apply the homotopy A introduced in the proof of Lemma 2.7 in
Chapter 4 to the smooth-one parameter family (3;)cp,1) and obtain a smooth
one-parameter family

M, = —h(f)
of elements of I'(€ ® £*) = I'(End(&)). The identity 6(5;) = [Q0, Bi]¢ = 0 and
[h,0] =hod+0doh=1id—(Ap*) o (Ai")
which was established in Lemma 7 imply
My - Qo = [Qo, Mile = 6(M,) = By — (Ap*) o (A") ()

Moreover (Ai*)(3;) = 0 because part of the definition of Ai* is restriction to S and
B¢ vanishes there for all ¢ € [0,1]. Hence

My - = 5
holds for all ¢ € [0, 1].

Let & be a section of £. In local coordinates one checks that

Mt‘S €= —h(ﬁt)‘s &= ﬂt

where - is the fibre derivative along &, see Remark 3.10 in Chapter 3. That the
fibrewise derivative of — [,

Ex - Ex> 6 = (f ’ (_ﬂt))‘x

is fibrewise invertible at every point x € S is equivalent to the statement that the
intersection of graph(/;) and the zero section of &€ — E is transversal at S. One
the other hand the former statement is equivalent to

M,|s

being a fibrewise invertible endomorphism. Consequently the restriction of (My)iepo1)
to S is a smooth one-parameter family of sections of GL(E|s) = GL(E).

The map
det(m) : E x [0,1] 25 €@ & L ANP(EQE) 2R x E

is smooth. Denote the projections from E x [0, 1] to E and [0, 1] by pr; and pr,

respectively. For every (y,t) € Sx|0,1] we have det(m)(y,t) # 0, hence there is an

open neighbourhoods V' (y,t) of (y,t) in E x [0, 1] such that for all (z,s) € V(y, )

the endomorphism M(z) is invertible. This yields an open cover pry(V (y,t)) of

0, 1] and by compactness there is a finite subcover (pry(V (y, 1)), ..., pra(V(y,tn)))-
Hence
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is an open neighbourhood of y in E such that for all z € V(y) the endomorphism
M,(z) in invertible for arbitrary ¢ € [0, 1]. Taking the union

V.= U V(y)
yes
yields an open neighbourhood of S in E where M, is invertible for all ¢ € [0, 1].
Define a smooth one-parameter family of endomorphisms of €|y by

d
me ‘= (@Mt) Mt_l.

It satisfies

d
my(B;) = (%Mt) (%)
on V and for arbitrary ¢ € [0,1]. Choose a fibre metric g on &€ — E and define
a smooth one-parameter family of fibre wise linear endomorphisms n; of £ on the
complement of S by

d
n(2) : & L (3], >—< (@Mt) (Q)], > &..
Here P(g) denotes the orthogonal projection of £, to < (). > with respect to
g. By definition this smooth one-parameter family (n;):cjo,1) of sections of &£|p\g
satisfies

() = (%Mt) (Q°)

on E'\ S and for arbitrary ¢ € [0, 1].

It is possible to find an open neighbourhood W of S in E such that its closure W
is still contained in V. In fact, choose an embedding of the normal bundle of S in
V' and equip it with a fibre metric. Let W be given by all elements of the normal
bundle with distance less than 1 from the base point over which they lie. Then the
closure of W is given by all the elements of the normal bundle with distance less
than or equal to 1 from the base point over which they lie. This is still contained
in V. Consequently (V, E\ W) is an open cover of E and hence there is a partition
of unity (p1, p2) of E subordinated to this open cover, see [Mi] for instance. We
set

Qg = p1My + pPany

which is a smooth one-parameter family of sections of £ defined over all of E. It
satisfies

() = (M) @)

for arbitrary ¢ € [0, 1].



6. TECHNICAL REMARKS 169
The ordinary differential equation

d

— A, =a,0A Ag =1id

dt t t £y 0

can be solved fibre wise and one obtains a smooth one-parameter family of sections

(A¢)icpoa) of GL4(E). Furthermore one verifies easily

d
E(At(QO)) = a;(A(%)),  A(Q°) = Q°
which is exactly the flow equation satisfied by (5;):cjo,1] since
d d d
00 = G0n@) = (530) @) =a@), h=9

This implies that the equality
Ay - Q0 = ﬁt
holds for all ¢ € [0, 1].

Since the homotopy h can be restricted to open neighbourhoods of S in F that
are contractible along fibres, the whole procedure can be repeated for smooth one-
parameter families not defined over all of F but over any open neighbourhood of

S in F which is contractible along fibres. 0
LEMMA 10. The signs of the evaluation of the two maps L, and R, introduced
in the proof of Theorem 3.6 in Chapter 4 on homogeneous elements &1, ...,&, of
L(AE) are
n—2
i=1
n—2
r(€l &) = =1+ (n—i+1)(|&]+1)
i=1
respectively.

ProOOF. The homological transfer of L..-algebra structures described in Sec-
tion 2, Chapter 2 uses an Ly [1]-algebra structure as its input data. Hence we first
have to transfer the differential graded Lie algebra

(BFV(E), [, |srv, [, ]Brv)

to this setting with the help of the décalage-isomorphism. In this process the
bracket [&;, &;]pry picks up the sign (—1)U&HD. The structure map L, involves
(n — 1) such factors and hence we pick up the sign of (—1) to

n—1

> (&l +1).

i=1
Moreover every homotopy comes with a minus sign. The maps L,, and R,, contain
(n —2) and (n — 1) copies of h respectively. Finally we transfer the induced
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structure maps back to the skew-symmetric setting where we pick up the sign of
(—1) to
> (=&l +1).

i=1

Summing up all the exponents yields

[y

n— n

d (I + 1)+ (n=2)+ D (= i)l +1) + 2> =
= n+Z(n—i+1)(!§il+1)+Z2
= n+i(n—i+1)(!fil+1)+Z2

i=1

for L,, and similarly

7
[N}

m=—1)+ ) (n—i+1)(|&]+1)+ 2,

i

for R,,. O

LEMMA 11. Let [-, -] be the graded Poisson bracket of degree 0 on BFV (E) en-
coding the pairing between € and E*. Denote the inclusion I'(AE) — BFV(E) by
Ap*, the projection BFV (E) — I'(AE) by Ai* and the homotopy introduced in the
proof of Lemma 2.7 in Chapter 4 by h.

Then

N ([ (&), B([- - - (p* (§r—)), A" (&), (X)) e)]e) - - -]a)la) = %(51 & X)ls

holds for arbitrary sections &1, ... & of E and X and element of BFV (E) of ghost-
momentum degree 0, i.e. T'(AE). Here & -+ & - X is the fibre derivative of X
interpreted as a vertical vector field on E — S, see Remark 3.10 in Chapter 3.

.........

.....

the dual frame on €£.
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We prove the Lemma inductively. For k = 1 it follows from

A€ R(X)]g) = fZ / -(z,t -y, 0))dt])

; 0X
:Z/\z (<&V > /(y(xOc)dt)

= Z/\Z (< &0 > (a:Oc)
= (§'X)|s.

Assume we established the claimed identity for & < n. First we compute

N ([€1, h([€2s - - - P([Em—1)5 P([§ns R(X)]@)]G) - - - la)]a)

1

= LoD (& Em- - ([&n, R(X)]G)) s

1 0X
= m( “&n-1) <Z<§ b > / o5 (@ t-y,c )dt>)‘

Observe that only the part of

0X
| Bt v a

of polynomial degree (n — 1) With respect to the ﬁbre coordinates (y")iz1
tributes.

.....

degree (n — 1) with respect to the fibre coordinates. This 1mphes

1 X
1 0X 1
= e <z <& > / N >dt>>\s

1 ;. 0X ! n—1
e NI <Z<£b>—y<xy,>(/o / )dt)))|s

1
= a(fl"'f(n—l) &n - X)ls
1
— a6 Xl
n!
Consequently the claimed formula holds for all n > 1. 0

LEMMA 12. There is a smooth function p: [0,1] — [0, 1] satisfying

(i) p(0) =0 and p(1) =1,
(i) p is equal 1/2 on [1/3,2/3] and
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(iil) the restriction of p to]0,1/3[ and|2/3, 1] are diffeomorphisms to p(]0,1/3[)
and p(]1/3,1]) respectively.

PROOF. First we construct a non-negative smooth function ¢ : R — R that
vanishes on [1/3,2/3]. We define o with the help of the smooth function

0 <0
hz) = {exp (-1) z>o0

by setting o(x) := h(z —2/3) + h(1/3 — x). On the complement of [1/3,2/3] it is
strictly positive. Finally we define

(Jo o(r)dr)
(fol U(T)dT)

for z € [0,1]. The symmetry of o(z) with respect to # = 1/2 implies that
p(1/2) = 1/2 holds. Moreover p has strictly positive derivative on the complement
of [1/3,2/3] and hence it is a local diffeomorphism there. Consequently its inverse
on ]0,1/3[ and on ]2/3, 1] respectively is a smooth function. O

p(z) ==

LEMMA 13. Giwen two n-tuples 0 < a1 < --- < a, < 1 and 0 < by < --- <
b, < 1 there is a smooth one-parameter family of diffeomorphisms (fs)scjo1) of
0, 1] relative to the boundary and starting at the identity such that fi(a;) = b; is
satisfied for allt=1,...,n,

ProoOF. We prove a slightly more general result: let ¢ be some real number
in0,1and 0 < ay < ---<a, <¢, 0<b <---b, <ctwo tuples of points in
10, c[. We claim that there is a smooth one-parameter family of diffeomorphisms
(fs)sepo, of [0,c] such that fi(a;) = b; holds for all i = 1,...,n and that there is
a open neighbourhood of {0} U {¢} where f; is equal to id for all s € [0, 1].

We first prove the claim for n = 1, i.e. let a and b be two arbitrary elements of
10, ¢[. Choose a function x that is 1 on the closed interval I with endpoints a and
b and vanishes outside an open neighbourhoods of I in ]0,¢[. Define the vector
field

0

X(s):=(b—a)k(s)=—

0s
It generates a smooth one-parameter family of diffeomorphisms (f;)seo,1) which
starts at the identity and maps a to a+s(b—a). In particular f;(a) = b. Moreover
there is a neighbourhood of {0} U {c} where f; is equal to id for all s € [0, 1].

Now let n > 1. First we find a smooth one-parameter family of (g.')scjo,1) dif-
feomorphisms relative to the boundary and starting at the identity that maps
an to b,. Consider the (n — 1)-tuples 0 < by < -+ < bp—1) < b, and 0 <
gi(ar) < -+ < gt(am-1)) < b, respectively. By induction hypothesis there is a
smooth one-parameter family of diffeomorphisms (hg”_l))se[o,l] of [0,b,] such that
hgnil)(g?(ai)) = b, for i = 1,...,n — 1 and there is a open neighbourhood of
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{0} U {b,} where h{"™V is equal to id for all s € [0,1]. We extend A" ™" by
the identity outside of [0, b,] and consider the smooth one-parameter family of
diffeomorphisms (f7')scjo,1) given by

g;‘(s) 0<s<1/3

g1 1/3<s<2/3

n—1 n

hép(s))_l ogp 2/3<s<1

where p is a gluing function, see Definition 3.1 in Chapter 5. By construction

(f)sepo,) starts at the identity, maps a; to b; for all i = 1,...,n and there is a
open neighbourhood of {0} U {1} where fI is equal to id for all s € [0, 1]. O
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