Differential Geometry - 1st Semester 2011/12

Ficha 2 (due Monday October 3)

1) Let $O(n, \mathbb{R})=\left\{A \in M_{n}(\mathbb{R}): A A^{T}=I\right\}$ be the set of $n \times n$ orthogonal matrices. Show that $O(n, \mathbb{R})$ is an embedded submanifold. Show that the tangent space $T_{I} O(n)$ can be identified with the space of $n \times n$ antisymmetric matrices.
2) Consider the map $\Phi: \mathbb{P}^{2} \rightarrow \mathbb{R}^{4}$ defined by

$$
\Phi([x, y, z])=\frac{1}{x^{2}+y^{2}+z^{2}}\left(x^{2}-z^{2}, y z, x z, x y\right) .
$$

Show that $\left(\mathbb{P}^{2}, \Phi\right)$ is an embedded submanifold of \mathbb{R}^{4}.
3) Let M and N be smooth manifolds, and $\Phi: M \rightarrow N$ a smooth map. Let $q \in N$ be a regular value. Show that

$$
T_{p} \Phi^{-1}(q)=\left\{v \in T_{p} M: d_{p} \Phi \cdot v=0\right\}
$$

4) Let M be a smooth manifold, $A \subset M$ and $i: A \hookrightarrow M$ the canonical inclusion. Show that (A, i) is an embedded submanifold of M of dimensions $k \Longleftrightarrow$ for each $p \in M$, there exists a coordinate system $\left(U,\left(x^{1}, \ldots, x^{m}\right)\right)$ centered at p such that

$$
A \cap U=\left\{p \in U: x^{k+1}(p)=\cdots=x^{m}(p)=0\right\} .
$$

