Differential Geometry - 1st Semester 2011/12
 Ficha 3 (due Wednesday October 19)

1) Let $N \subset M$ be an embedded submanifold, and $p \in N$. Show that as a subspace of $T_{p} M$, the tangent space $T_{p} N$ is given by

$$
T_{p} N=\left\{X \in T_{p} M: X f=0 \text { whenever } f \in C^{\infty}(M) \text { and } f_{\mid N}=0 .\right\}
$$

2) Let $N \subset M$ be an immersed submanifold of M. Let X, Y be smooth vector fields on M. Show that if X and Y are tangent to N, so is $[X, Y]$. You may want to use the result from 1).
3) Show that the 2-dimensional distribution on $M=\mathbb{R}^{3}$, defined by the vector fields

$$
X_{1}=\frac{\partial}{\partial x} \quad, \quad X_{2}=\mathrm{e}^{-x} \frac{\partial}{\partial y}+\frac{\partial}{\partial z},
$$

does not have integral manifolds.
4) Consider the following 2-dimensional distribution on $M=\mathbb{R}^{3} \backslash\{0\}$,

$$
D_{p}=\operatorname{span}\left(X_{p}, Y_{p}, Z_{p}\right),
$$

where

$$
X=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y} \quad, \quad Y=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z} \quad, \quad Z=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} .
$$

Show that D cannot be generated globally by two vector fields.
5) Consider a distribution on $M=\mathbb{R}^{3}$ generated by the vector fields

$$
X_{1}=\frac{\partial}{\partial x}+\cos x \cos y \frac{\partial}{\partial z} \quad, \quad X_{2}=\frac{\partial}{\partial y}-\sin x \sin y \frac{\partial}{\partial z} .
$$

Verify that the distribution is involutive. Determine the foliation that integrates it. Hint: consider leaves of the form

$$
L_{\alpha}=\{(x, y, f(x, y)+\alpha): x, y \in \mathbb{R}\}
$$

based on surfaces $F_{\alpha}(x, y, z)=z-f(x, y)=\alpha \in \mathbb{R}$.

