Differential Geometry - 1st Semester 2011/12
 Ficha 4 (due Wednesday November 2)

1) a) Show that $S L(n, \mathbb{R})$ is a Lie group.

Hint: Consider the level set $f^{-1}(1)$, where the map $f: G L(n, \mathbb{R}) \rightarrow \mathbb{R}$ is given by $f(A)=\operatorname{det} A$.
b) Let G be a Lie group with Lie algebra \mathfrak{a}. Consider conjugation by a group element $g \in G$, i.e. consider the map $\psi_{g}: G \rightarrow G$ with $h \mapsto g h g^{-1}$. This induces the Lie algebra automorphism $\operatorname{ad}(g): \mathfrak{g} \rightarrow \mathfrak{g}$ with $\operatorname{ad}(g)(X)=\left(\psi_{g}\right)_{*} X$. Determine $\operatorname{ad}(g)(X)$.
2) Let X, Y denote smooth vector fields on a smooth manifold M, and $w \in \Omega(M)$ a differential form.
a) Show that

$$
L_{[X, Y]} w=L_{X}\left(L_{Y} w\right)-L_{Y}\left(L_{X} w\right)
$$

b) Let $w \in \Omega^{1}(M)$. Using local coordinates $\left(U,\left(x^{1}, \ldots, x^{m}\right)\right)$, show that

$$
d w(X, Y)=X(w(Y))-Y(w(X))-w([X, Y])
$$

3) Let M be a smooth manifold of dimension m, and D a k-dimensional smooth distribution on M. Then, in the neighborhood of any $p \in M$ there exist $(m-k)$ linearly independent 1 -forms $w^{1}, \ldots w^{m-k}$ such that $w^{i}(X)=0$ when $X \in D$.
a) Show that D on M is involutive \Longleftrightarrow
$d w^{i}=\sum_{j=1}^{m-k} \alpha^{i}{ }_{j} \wedge w^{j}$, where $\alpha^{i}{ }_{j} \in \Omega(M)$ denote 1-forms $(i, j=1, \ldots,(m-k))$.
b) Show that $I(D)=\{w \in \Omega(M): w$ annihilates $D\}$ is an ideal of the external algebra $\Omega(M)$.
4) Let M be a symplectic manifold with symplectic form ω. Show that:
a) M has even dimension $d=2 n$.
b) ω^{n} is a volume form on M (hence, any symplectic manifold is orientable).
c) Any smooth function $f \in C^{\infty}(M)$ is constant along the flow generated by the Hamiltonian vector field X_{f}.
d) The flux of the Hamiltonian vector field X_{f} preserves the symplectic form, i.e. $L_{X_{f}} \omega=0$.
e) The Poisson bracket $\{.,\}:. C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ defines a Lie algebra structure on $C^{\infty}(M)$.

VSSF
f) The map $f \in C^{\infty}(M) \mapsto X_{f}$ (with X_{f} Hamiltonian vector field on M) is a homomorphism of Lie algebras.
g) Consider local coordinates $\left(x^{i}, y^{i}\right)$ on an open set $U \subset M$. Then, these coordinates are Darboux $\Longleftrightarrow\left\{x^{i}, x^{j}\right\}=\left\{y^{i}, y^{j}\right\}=0,\left\{x^{i}, y^{j}\right\}=-\delta^{i j}$.
5) Let N be a smooth manifold. Show that the cotangent bundle $T^{*} N$ is a symplectic manifold (its canonical symplectic form is $\omega=d \theta$, where θ denotes the 1 -form on $T^{*} N$ given as follows: let $p \in N, \eta \in T_{p}^{*} N$ and $(p, \eta) \in T^{*} N$. Then $\theta_{(p, \eta)}=\pi^{*} \eta$, where $\pi: T^{*} N \rightarrow N$ is the canonical projection.).

