Differential Geometry - 1st Semester 2011/12
 Ficha 6 (due Wednesday December 14)

1) Let $\xi=(\pi, E, M)$ be a real vector bundle of rank r with a connection ∇. Let $\left\{s_{a}\right\}$ and $\left\{s_{a}^{\prime}\right\}$ denote two local frames that are related by a matrix $A \in C^{\infty}\left(U_{\alpha}, G L(r)\right)$ in a trivializing chart $\left(U_{\alpha}, \phi_{\alpha}\right)$, i.e. $s_{a}^{\prime}=A^{b}{ }_{a} s_{b}$.
a) Show that the associated connection one-forms ω and ω^{\prime} are related by

$$
\omega^{\prime}=A^{-1} \omega A+A^{-1} d A .
$$

b) Show that the associated 2 -form curvatures Ω and Ω^{\prime} are related by

$$
\Omega^{\prime}=A^{-1} \Omega A
$$

2) Given two real vector bundles $\xi=(\pi, E, M)$ and $\eta=(\tau, F, M)$, show that there exists a vector bundle $\operatorname{Hom}(E, F)$ whose fibers are spaces of homomorphisms $\operatorname{Hom}\left(E_{p}, F_{p}\right)$ $(p \in M)$. Determine the transition functions of $\operatorname{Hom}(E, F)$ in terms of the transition functions of ξ and η. Show that there is a bundle isomorphism $\operatorname{Hom}(E, F) \simeq E^{*} \otimes F$.
3) Consider the complex line bundle $\xi=\left(\pi, \mathbb{C P}^{2} \backslash\{[0,0,1]\}, \mathbb{C P}^{1}\right)$, where $\pi([z, w, t])=$ $[z, w] .(\mathbb{C P}=$ complex projective space $)$. Take

$$
\begin{array}{lll}
U_{1}=\left\{[z, 1] \in \mathbb{C P}^{1}: z \in \mathbb{C}\right\}, & \phi_{1}([z, 1, t])=([z, 1], t), \\
U_{2}=\left\{[1, w] \in \mathbb{C P}^{1}: w \in \mathbb{C}\right\}, & \phi_{2}([1, w, t])=([1, w], t),
\end{array}
$$

as trivializing charts.
Show that:
a) there exists a cocycle $g_{21}: U_{1} \cap U_{2} \rightarrow \mathbb{C} \backslash\{0\}$ given by

$$
g_{21}([z, 1])=\frac{\bar{z}}{|z|}
$$

b) for this cocyle, the 1-forms

$$
\omega^{1}=\frac{1}{2} \frac{z d \bar{z}-\bar{z} d z}{1+|z|^{2}} \quad, \quad \omega^{2}=\frac{1}{2} \frac{w d \bar{w}-\bar{w} d w}{1+|w|^{2}}
$$

define a connection ∇ on ξ;
c) in U_{1}, the curvature 2 -form reads

$$
\Omega=\frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}
$$

4) Consider two complex vector bundles E_{i} over $M(i=1,2)$. Show that the total Chern class satisfies

$$
c\left(E_{1} \oplus E_{2}\right)=c\left(E_{1}\right) \cup c\left(E_{2}\right) .
$$

