Differential Topology Make-up Exam January 30, 2009 Duration: 1h30m + 1h30m. Justify your answers.

Part 1

- 1. Let M be a manifold and $A \subset M$ be a submanifold with codimension greater or equal to 2. Prove that if $M \setminus A$ is simply connected then M is simply connected.
- **2.** Let M, N be manifolds, $V \subset M$ be open and consider the restriction map

$$\rho_V \colon C^r(M,N) \to C^r(V,N)$$

sending f to $f_{|V}$ (where $0 \le r \le \infty$).

- (a) Show ρ_V is continuous for the weak topologies.
- (b) Give an example showing this is not necessarily the case for the strong topologies.
- **3.** The *limit set* L(f) of a map $f: M \to N$ between smooth manifolds is

 $L(f) = \{y \in N \mid \exists (x_n) \in M \text{ without convergent subsequences so that} f(x_n) \to y\}.$

Let $1 \le r \le \infty$ and $\mathcal{L} = \{ f \in C^r_S(M, N) \colon f(M) \cap L(f) = \emptyset \}.$

- (a) Show that given $f \in \mathcal{L}$ there exists $V \subset N$ open so that $f: M \to V$ is proper.
- (b) Show that if dim $N > 2 \dim M$ and $\partial M = \partial N = \emptyset$ then embeddings are dense in \mathcal{L} (in the strong topology).

Part 2

- **4.** Let N be a simply connected manifold and $M \subset N$ be a compact codimension 1 submanifold, $\partial M = \partial N = \emptyset$.
 - (a) Show that M is the level set of a regular value of a smooth function $f: N \to \mathbb{R}$ if and only if M is orientable.
 - (b) What happens if we remove the condition that the value be regular?
- 5. Let M and N be compact oriented n-manifolds without boundary and assume N is connected. Prove that the degree of a map $f: M \to N$ equals the intersection number of the graph of f with $M \times y$ in $M \times N$ for any $y \in N$
- **6.** Let M and N be smooth compact manifolds without boundary and $f: M \to \mathbb{R}$ and $g: N \to \mathbb{R}$ be Morse functions with k and l critical points respectively. Show that if E is a smooth fiber bundle over N with fibre M then E admits a Morse function with kl critical points.