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I 2-group theory

groups = symmetries of objects in a category

higher structures  2-groups = symmetries of objects in a 2-category

Example I.1. For a stack X , the self-equivalences Aut(X ) are a groupoid, together with a
monoidal structure, which one can think of as a group objects in groupoids.

Definition I.2. A strict 2-group is a

• group objects in groupoids

• groupoid object in groups

• 2-groupoid with one object

In particular, it is a monoidal category.

One can weaken

• associativity by introducing ”associators”

• identity by introducing ”unitators”

• inverses by introducing ”invertors”

In the above example, the composition is associative on the nose and the unit is one the nose,
but the inverses are only weak.

Example I.3. • X a stack  Aut(X )

• P → X a (Hitchin gerbe) ”principal bundle for a 2-group (in this case BS1)”

• G reductive algebraic group (over alg. closed field of char. 0), G̃→ (G,G) (where G̃ is the
universal cover) then G̃ → G is a crossed module  [G/G̃] is a Picard stack, the stacky
abelianization of G (is important in the theory of character sheaves, was generalised by M.
Kamgarpour)

Definition I.4. A morphism f : G → H of 2-groups is a weak monoidal functor (between the
underlying monoidal categories), i.e. there exists natural isomorphisms f(xy)

ηx,y−−→ f(x)f(y)
(satisfying some coherence condition). A 2-morphism f ⇒ g is a 2-monoidal transformation
between monoidal functors.

Fact: Most 2-groups and morphisms appearing in nature are weak.

Good news: Every weak 2-group G is ”equivalent” to a strict 2-group.
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Bad news: A weak morphism f : G→ H between strict 2-group is in general not not equivalent
to a strict morphism.

Main Problem (for this talk): Understand the groupoid of weak morphisms Weak(G,H) for
G and H (not necessarily strict 2-groups).

Strategy:

• Find crossed-module modules for G and H.

• Use butterflies.

Definition I.5. A crossed module is a group homomorphism [G1
∂−→ G0], together with a right

action G1 x G0, such that

• ∂(αg) = g−1αg

• α∂β = β−1αβ

Example I.6. • G arbitrary ⇒ [1→ G]

• A abelian ⇒ [A→ 1]

• A,B abelian ⇒ [A→ B]

• G arbitrary ⇒ [G→ Aut(G)]

• G y V ⇒ [V 1−→ G]

I.1 Crossed modules are 2-groups and vice versa

Construction:

• G a strict 2-group x set G0 = Ob(G) and G1 = Mor(1G, ·)

• if [G1 → G0] is a crossed module, then we obtain a strict 2-group by setting G0 o G1 to
me the morphisms and G0 to be the objects. Then the set pr1 to be the source map and
(g, α) 7→ g∂α to be the target map (this is the action groupoid of G1, acting on G0 by ∂).
Then the group multiplication on objects and morphisms defines a 2-group structures on
this groupoid.

Theorem I.7. The above construction can be extended to give an equivalence between the 2-
category of 2-groups and the 2-category of crossed modules (with the appropriate detinition of
morphisms and 2-morphisms of crossed modules).

Notation: π0([G1
∂−→ G0]) := coker(δ) (a group), π1([G1

∂−→ G0]) = ker(∂) (abelian). If G is a
weak 2-group, then π0(G) is the group of isomorphism classes and π1(G) is Aut(1G).

Fact: The above equivalence respects π0 and π1.
From now on: use the same notation for crossed modules and strict 2-groups (identified via the
above theorem).

Definition I.8. A morphism f : G→ H is an equivalence if the induced maps on π0 and π1 are
isomorphisms (note that this may not have a strict inverse!).

What is a weak morphism of crossed modules G → H? It consists of maps pi : Gi → Hi and
G0 ×G0 → H1 of pointed sets, that satisfy
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• p0(∂α) = ∂p0(α)

• p1(αβ) = p1(α)p1(β)ε(∂α,∂β)

• p0(xy) = p0(x)p0(y)∂(ε(x, y))

• cocycle condition: ε(x, y)p1(z)ε(xy, z) = ε(y, z)ε(x, yz)

• equivariance: ε(x−1, x)p1(αx) = p1(α)p1(x)ε(∂α, x)ε(x−1, ∂x)

(this is what you get from using the identification of crossed modules with strict 2-groups and
rephrase the notion of a weak morphism of 2-groups w.r.t. this identification) This is practically
useless (is in particular wrong if G and H are topological or Lie group (or algebras))!

II Crossed modules vs. group stacks

Fix a Grothendieck site S and do everything over S (phrase everything in terms of sheaves over
S). If G = [G1 → G0] is a crossed module, then we obtain a quotient stack [G] := [G0/G1] (a
group stack over S). If f : G→ H is a morphism (over S) of crossed modules, then we obtain a
morphism [f ] : [G]→ [H].

Bad news: Not every morphism [G]→ [H] comes from f : G→ H.

Definition II.1. A butterfly B : G→ H is a commutative diagam
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G0 H0

such that the NE-SW sequence is short exact (+compatibility of actions). A morphism of
butterflies is an isomorphism E → E′ commuting with the four maps.

Example II.2. Strict morphisms give rise to butterflies.

Theorem II.3. A butterfly B : G → H induces a morphism of group stacks [B] : [G] → [H].
Furthermore, B 7→ [B] induces an equivalence of groupoids

Butterfly(G,H) ∼= Weak(G,H)

Example II.4. • G associated to 1 → G, A associated to 1 → A for A abelian. Then
butterflies are the same as central extensions of G by A.

• H = [H → Aut(H)], G associated to 1→ G  butterflies are uniquely determined by the
exact NE-SW sequence end thus are the same as arbitrary extensions of G by H

II.1 The bicategory of butterflies

CMS : bicategory with objects crossed modules, morphisms butterflies and 2-morphisms mor-
phisms of butterflies. Define composition by taking the fiber product of and kill H1 inside it
(E1 ×H0 E2)/H1. The homotopy fiber of the butterfly is determined by the NW-SE sequence

Corollary II.5. A butterfly is an equivalence iff the NW-SE sequence is also exact.
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Theorem II.6 (Aldrovandi-Noohi). We have biequivalences

• CMS
∼= GrStS

• Br CMS
∼= BrGrStS

• Pic CMS
∼= PicStS

Theorem II.7. These are biequivalent to a ”localization” of the corresponding strict bicategory
w.r.t. equivalences.

Corollary II.8 (Deligne).

D[−1,0](AbS) ∼= PicStS , (A→ B) 7→ [B/A]

II.2 Applications to group stack actions on stacks

Definition II.9. Let Γ be a group stack and X be a stack. An action of Γ on X is an equivalence
class of a weak morphisms Γ→ Aut(X ) (i.e. an object in Weak(Γ,Aut(X ))/ ∼).

Assume Γ is a group (for simplicity). Recall: our strategy was

• Find a crossed module model for Aut(X )

• use butterflies

Example II.10. Let X = P(n1, ..., nk) be a weighted projective stack. This is the quotient stack
of the weighted diagonal action of G on An−{0} via λ 7→ λn1,...,nk (where G is the multiplicative
group scheme and λn1,...,nk is the diagonal matrix with λn1 , ..., λnk on the diagonal). In this case,
Aut(X ) can be ”computed”. Let Gn1,...,nk ⊆ GL(k) be the centralizer of the matrices λn1,...,nk .
Define PGL(n1, ..., nk) = [Gm → Gn1,...,nk ], induced by λ 7→ λn1,...,nk (trivial action).

Theorem II.11 (Behrend–Noohi). [PGL(n1, ..., nk)] ∼= Aut(P(n1, ..., nk))

Corollary II.12. To give an action of Γ on P(n1, ..., nk) is the same as giving

• a central extension 1→ C× → E → Γ→ 1

• a linear representation E
ρ−→ GL(k) such that ρ|Gm = ∂ and images of ρ and ∂ commute

up to an appropriate equivalence relation (conjugation on ρ).

II.3 Application to group cohomology with coefficients in a crossed
module

(Dedecker, Breen, Borovoi, Granada school)
G = [G1 → G0] a crossed module, T a discrete group, acting strictly on G.  definition of
H−1, H0, H

1 is always possible, for H2 only works for a braiding,...

Borovoi’s definition (of H1): of H1(Γ,G) = {1−cocyles}/ ∼, where a 1-cocycle is a pair (p, ε)
such that

• p : Γ→ G0 and ε : Γ× Γ→ G1 are pointed set maps

• p(στ) · ∂ε(σ, τ) = p(σ) ·σp(τ)

• ε(σ, τν) ·σε(τ, ν) = ε(στ, ν) · ε(σ, τ)
στp(ν)
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and ∼ is some cumbersome equivalence relation.

The butterfly definition: A 1-cocycle is a diagram

G1
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}}
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AA

Γ G0

such that p is a set map such that p(xy) = p(x) ·π(x) p(y) (a crossed homomorphism) and p
respects the actions. Two such diagrams are equivalent if one is isomorphic to the conjugate of
the other by some g ∈ G0.

II.4 Application to classification of forms of algebraic stacks

Let X be an algebraic stack over a field K. Assume X is nice (so that we have descent theory).
We want to classify all Y such that Y ×K K̄ ∼= X ×K K̄.

Required input: as before, we need a crossed module model G for Aut(X ). Then, G(K̄) will
be a Gal(K̄/K)-equivariant crossed module. We have

{forms of X} ∼= H1(Gal(K̄/K),G(K̄)).

The right hand side can be computed using butterfly 1-cocycles.

Example II.13 (Brauer-Severi stacks). By definition, these are forms of P(n1, ..., nk). We
have

{forms of P(n1, ..., nk)K trivialized over F} ∼= H1(Gal(F/K),PGL(n1, ..., nk)(F )).

So, a Brauer-Severi stack is determined by the following data:

• a central extension 1→ F ∗ → E
π−→ Gal(F/K)→ 1 such that the conjugation action of E

on F ∗ is compatible with the action of Gal(F/K) on F ∗

• a crossed homomorphism ρ : E → GL(k, F ) whose image commutes with matrices λn1,...,nk

(note that E acts on GL(k, F ) via π).

Two such data give rise to the same Brauer-Severi stack iff they are ”conjugate” via some
g ∈ GL(k, F ), that is, ρ′(x) = g−1ρ(x) ·π(x)g.


