

Group stacks in geometry

Behrang Noohi (notes taken by Christoph Wockel)

June 5, 2009

I 2-group theory

groups = symmetries of objects in a category

higher structures \rightsquigarrow 2-groups = symmetries of objects in a 2-category

Example I.1. For a stack \mathcal{X} , the self-equivalences $\operatorname{Aut}(\mathcal{X})$ are a groupoid, together with a monoidal structure, which one can think of as a group objects in groupoids.

Definition I.2. A strict 2-group is a

- group objects in groupoids
- groupoid object in groups
- 2-groupoid with one object

In particular, it is a monoidal category.

One can weaken

- associativity by introducing "associators"
- identity by introducing "unitators"
- inverses by introducing "invertors"

In the above example, the composition is associative on the nose and the unit is one the nose, but the inverses are only weak.

Example I.3. • \mathcal{X} a stack \rightsquigarrow Aut (\mathcal{X})

- $\mathcal{P} \to \mathcal{X}$ a (Hitchin gerbe) "principal bundle for a 2-group (in this case BS^1)"
- G reductive algebraic group (over alg. closed field of char. 0), $\tilde{G} \to (G, G)$ (where \tilde{G} is the universal cover) then $\tilde{G} \to G$ is a crossed module $\rightsquigarrow [G/\tilde{G}]$ is a Picard stack, the *stacky abelianization of G* (is important in the theory of character sheaves, was generalised by M. Kamgarpour)

Definition I.4. A morphism $f : \mathbb{G} \to \mathbb{H}$ of 2-groups is a weak monoidal functor (between the underlying monoidal categories), i.e. there exists natural isomorphisms $f(xy) \xrightarrow{\eta_{x,y}} f(x)f(y)$ (satisfying some coherence condition). A 2-morphism $f \Rightarrow g$ is a 2-monoidal transformation between monoidal functors.

Fact: Most 2-groups and morphisms appearing in nature are weak.

Good news: Every weak 2-group G is "equivalent" to a strict 2-group.

Bad news: A weak morphism $f : \mathbb{G} \to \mathbb{H}$ between strict 2-group is in general not *not* equivalent to a strict morphism.

Main Problem (for this talk): Understand the groupoid of weak morphisms $Weak(\mathbb{G}, \mathbb{H})$ for \mathbb{G} and \mathbb{H} (not necessarily strict 2-groups).

Strategy:

- Find crossed-module modules for G and H.
- Use butterflies.

Definition I.5. A crossed module is a group homomorphism $[G_1 \xrightarrow{\partial} G_0]$, together with a right action $G_1 \curvearrowright G_0$, such that

• $\partial(\alpha^g) = g^{-1}\alpha g$

•
$$\alpha^{\partial\beta} = \beta^{-1}\alpha\beta$$

Example I.6. • *G* arbitrary $\Rightarrow [1 \rightarrow G]$

- A abelian $\Rightarrow [A \rightarrow 1]$
- A, B abelian $\Rightarrow [A \rightarrow B]$
- G arbitrary $\Rightarrow [G \rightarrow \operatorname{Aut}(G)]$
- $G \curvearrowright V \Rightarrow [V \xrightarrow{1} G]$

I.1 Crossed modules are 2-groups and vice versa

Construction:

- G a strict 2-group \curvearrowleft set $G_0 = \operatorname{Ob}(\mathbb{G})$ and $G_1 = \operatorname{Mor}(1_{\mathbb{G}}, \cdot)$
- if $[G_1 \to G_0]$ is a crossed module, then we obtain a strict 2-group by setting $G_0 \rtimes G_1$ to me the morphisms and G_0 to be the objects. Then the set pr_1 to be the source map and $(g, \alpha) \mapsto g \partial \alpha$ to be the target map (this is the action groupoid of G_1 , acting on G_0 by ∂). Then the group multiplication on objects and morphisms defines a 2-group structures on this groupoid.

Theorem I.7. The above construction can be extended to give an equivalence between the 2category of 2-groups and the 2-category of crossed modules (with the appropriate detinition of morphisms and 2-morphisms of crossed modules).

Notation: $\pi_0([G_1 \xrightarrow{\partial} G_0]) := \operatorname{coker}(\delta)$ (a group), $\pi_1([G_1 \xrightarrow{\partial} G_0]) = \operatorname{ker}(\partial)$ (abelian). If \mathbb{G} is a weak 2-group, then $\pi_0(\mathbb{G})$ is the group of isomorphism classes and $\pi_1(\mathbb{G})$ is $\operatorname{Aut}(1_{\mathbb{G}})$.

Fact: The above equivalence respects π_0 and π_1 .

From now on: use the same notation for crossed modules and strict 2-groups (identified via the above theorem).

Definition I.8. A morphism $f : \mathbb{G} \to \mathbb{H}$ is an *equivalence* if the induced maps on π_0 and π_1 are isomorphisms (note that this may not have a strict inverse!).

What is a weak morphism of crossed modules $\mathbb{G} \to \mathbb{H}$? It consists of maps $p_i : G_i \to H_i$ and $G_0 \times G_0 \to H_1$ of pointed sets, that satisfy

- $p_0(\partial \alpha) = \partial p_0(\alpha)$
- $p_1(\alpha\beta) = p_1(\alpha)p_1(\beta)^{\epsilon(\partial\alpha,\partial\beta)}$
- $p_0(xy) = p_0(x)p_0(y)\partial(\epsilon(x,y))$
- cocycle condition: $\epsilon(x, y)^{p_1(z)} \epsilon(xy, z) = \epsilon(y, z) \epsilon(x, yz)$
- equivariance: $\epsilon(x^{-1}, x)p_1(\alpha^x) = p_1(\alpha)^{p_1(x)}\epsilon(\partial\alpha, x)\epsilon(x^{-1}, \partial x)$

(this is what you get from using the identification of crossed modules with strict 2-groups and rephrase the notion of a weak morphism of 2-groups w.r.t. this identification) This is practically useless (is in particular wrong if \mathbb{G} and \mathbb{H} are topological or Lie group (or algebras))!

II Crossed modules vs. group stacks

Fix a Grothendieck site S and do everything over S (phrase everything in terms of sheaves over S). If $\mathbb{G} = [G_1 \to G_0]$ is a crossed module, then we obtain a quotient stack $[\mathbb{G}] := [G_0/G_1]$ (a group stack over S). If $f : \mathbb{G} \to \mathbb{H}$ is a morphism (over S) of crossed modules, then we obtain a morphism $[f] : [\mathbb{G}] \to [\mathbb{H}]$.

Bad news: Not every morphism $[\mathbb{G}] \to [\mathbb{H}]$ comes from $f : \mathbb{G} \to \mathbb{H}$.

Definition II.1. A butterfly $B : \mathbb{G} \to \mathbb{H}$ is a commutative diagam

such that the NE-SW sequence is short exact (+compatibility of actions). A morphism of butterflies is an isomorphism $E \to E'$ commuting with the four maps.

Example II.2. Strict morphisms give rise to butterflies.

Theorem II.3. A butterfly $B : \mathbb{G} \to \mathbb{H}$ induces a morphism of group stacks $[B] : [\mathbb{G}] \to [\mathbb{H}]$. Furthermore, $B \mapsto [B]$ induces an equivalence of groupoids

Butterfly(
$$\mathbb{G}, \mathbb{H}$$
) \cong Weak(\mathbb{G}, \mathbb{H})

Example II.4. • \mathbb{G} associated to $1 \to G$, \mathcal{A} associated to $1 \to A$ for A abelian. Then butterflies are the same as central extensions of G by A.

• $\mathbb{H} = [H \to \operatorname{Aut}(H)]$, \mathbb{G} associated to $1 \to G \rightsquigarrow$ butterflies are uniquely determined by the exact NE-SW sequence end thus are the same as arbitrary extensions of G by H

II.1 The bicategory of butterflies

 \mathcal{CM}_S : bicategory with objects crossed modules, morphisms butterflies and 2-morphisms morphisms of butterflies. Define composition by taking the fiber product of and kill H_1 inside it $(E_1 \times_{H_0} E_2)/H_1$. The homotopy fiber of the butterfly is determined by the NW-SE sequence

Corollary II.5. A butterfly is an equivalence iff the NW-SE sequence is also exact.

Theorem II.6 (Aldrovandi-Noohi). We have biequivalences

- $\mathcal{CM}_S \cong \operatorname{GrSt}_S$
- $\operatorname{Br} \mathcal{CM}_S \cong \operatorname{Br} \operatorname{Gr} \operatorname{St}_S$
- $\operatorname{Pic} \mathcal{CM}_S \cong \operatorname{PicSt}_S$

Theorem II.7. These are biequivalent to a "localization" of the corresponding strict bicategory w.r.t. equivalences.

Corollary II.8 (Deligne).

$$D^{[-1,0]}(Ab_S) \cong \operatorname{PicSt}_S, \quad (A \to B) \mapsto [B/A]$$

II.2 Applications to group stack actions on stacks

Definition II.9. Let Γ be a group stack and \mathcal{X} be a stack. An action of Γ on \mathcal{X} is an equivalence class of a weak morphisms $\Gamma \to \operatorname{Aut}(\mathcal{X})$ (i.e. an object in Weak $(\Gamma, \operatorname{Aut}(\mathcal{X}))/\sim$).

Assume Γ is a group (for simplicity). **Recall:** our strategy was

- Find a crossed module model for $Aut(\mathcal{X})$
- use butterflies

Example II.10. Let $\mathcal{X} = \mathbb{P}(n_1, ..., n_k)$ be a weighted projective stack. This is the quotient stack of the weighted diagonal action of \mathbb{G} on $\mathbb{A}^n - \{0\}$ via $\lambda \mapsto \lambda^{n_1, ..., n_k}$ (where \mathbb{G} is the multiplicative group scheme and $\lambda^{n_1, ..., n_k}$ is the diagonal matrix with $\lambda^{n_1}, ..., \lambda^{n_k}$ on the diagonal). In this case, $\operatorname{Aut}(\mathcal{X})$ can be "computed". Let $G_{n_1, ..., n_k} \subseteq \operatorname{GL}(k)$ be the centralizer of the matrices $\lambda^{n_1, ..., n_k}$. Define $\operatorname{PGL}(n_1, ..., n_k) = [\mathbb{G}_m \to G_{n_1, ..., n_k}]$, induced by $\lambda \mapsto \lambda^{n_1, ..., n_k}$ (trivial action).

Theorem II.11 (Behrend–Noohi). $[PGL(n_1, ..., n_k)] \cong Aut(\mathbb{P}(n_1, ..., n_k))$

Corollary II.12. To give an action of Γ on $\mathbb{P}(n_1, ..., n_k)$ is the same as giving

- a central extension $1 \to \mathbb{C}^{\times} \to E \to \Gamma \to 1$
- a linear representation $E \xrightarrow{\rho} GL(k)$ such that $\rho|_{G_m} = \partial$ and images of ρ and ∂ commute

up to an appropriate equivalence relation (conjugation on ρ).

II.3 Application to group cohomology with coefficients in a crossed module

(Dedecker, Breen, Borovoi, Granada school)

 $\mathbb{G} = [G_1 \to G_0]$ a crossed module, T a discrete group, acting strictly on \mathbb{G} . \rightsquigarrow definition of H^{-1}, H_0, H^1 is always possible, for H^2 only works for a braiding,...

Borovoi's definition (of H^1): of $H^1(\Gamma, \mathbb{G}) = \{1 - \text{cocyles}\} / \sim$, where a 1-cocycle is a pair (p, ε) such that

- $p: \Gamma \to G_0$ and $\varepsilon: \Gamma \times \Gamma \to G_1$ are pointed set maps
- $p(\sigma\tau) \cdot \partial \varepsilon(\sigma, \tau) = p(\sigma) \cdot^{\sigma} p(\tau)$
- $\varepsilon(\sigma, \tau\nu) \cdot^{\sigma} \varepsilon(\tau, \nu) = \varepsilon(\sigma\tau, \nu) \cdot \varepsilon(\sigma, \tau)^{\sigma\tau} p(\nu)$

and \sim is some cumbersome equivalence relation.

The butterfly definition: A 1-cocycle is a diagram

such that p is a set map such that $p(xy) = p(x) \cdot \pi(x) p(y)$ (a crossed homomorphism) and p respects the actions. Two such diagrams are equivalent if one is isomorphic to the conjugate of the other by some $g \in G_0$.

II.4 Application to classification of forms of algebraic stacks

Let \mathcal{X} be an algebraic stack over a field K. Assume \mathcal{X} is nice (so that we have descent theory). We want to classify all \mathcal{Y} such that $\mathcal{Y} \times_K \bar{K} \cong \mathcal{X} \times_K \bar{K}$.

Required input: as before, we need a crossed module model \mathbb{G} for $\operatorname{Aut}(\mathcal{X})$. Then, $\mathbb{G}(\overline{K})$ will be a $\operatorname{Gal}(\overline{K}/K)$ -equivariant crossed module. We have

{forms of
$$\mathcal{X}$$
} $\cong H^1(\text{Gal}(\bar{K}/K), \mathbb{G}(\bar{K})).$

The right hand side can be computed using butterfly 1-cocycles.

Example II.13 (Brauer-Severi stacks). By definition, these are forms of $\mathbb{P}(n_1, ..., n_k)$. We have

{forms of $\mathbb{P}(n_1, ..., n_k)_K$ trivialized over F} $\cong H^1(\text{Gal}(F/K), \text{PGL}(n_1, ..., n_k)(F)).$

So, a Brauer-Severi stack is determined by the following data:

- a central extension $1 \to F^* \to E \xrightarrow{\pi} \text{Gal}(F/K) \to 1$ such that the conjugation action of E on F^* is compatible with the action of Gal(F/K) on F^*
- a crossed homomorphism $\rho: E \to \operatorname{GL}(k, F)$ whose image commutes with matrices $\lambda^{n_1, \dots, n_k}$ (note that E acts on GL(k, F) via π).

Two such data give rise to the same Brauer-Severi stack iff they are "conjugate" via some $g \in \operatorname{GL}(k, F)$, that is, $\rho'(x) = g^{-1}\rho(x) \cdot \pi^{(x)}g$.