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I survey my results on applications of isoperimetric and isocapacitary
inequalities to the theory of Sobolev spaces.

I began to work on this topic many years ago, when as a fourth year
undergraduate student I discovered that Sobolev type inequalities are equiv-
alent to isoperimetric and isocapacitary inequalities [M1], [M2]. It turned
out that classes of domains and measures involved in imbedding and com-
pactness theorems could be completely described in terms of length, area
and capacity minimizing functions. Moreover, without change of proofs, the
same remains true for spaces of functions defined on Riemannian manifolds
[M4], [M5], [G]. Nowadays, it is a vast domain of research with applications
to nonlinear partial differential equations, geometry, spectral theory, Markov
processes, and potential theory.

Most results presented in these lectures can be found in the books [M4]
and [MP], where a lot more related information is contained.
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1 Classical isoperimetric inequality and its

applications

Consider the problem of maximizing the area a of a plane domain Ω with
rectifiable boundary of a fixed length l.

Figure 1: The disc gives the best result.

The maximizing property of the disk can be written as the isoperimetric
inequality

4πa ≤ l2. (1)

The n-dimensional generalization of (1) is

(mng)
n−1

n ≤ cnHn−1(∂g), (2)

where g is a domain with smooth boundary ∂g and compact closure, and
Hn−1 is the (n − 1)-dimensional area. The constant cn is such that (2)

becomes equality for any ball, that is cn = n−1v
−1/n
n with vn standing for

the volume of the unit ball. Inequality (2) holds for arbitrary measurable
sets with Hn−1 replaced by the so called perimeter in the sense of De Giorgi
(1954-1955).

How does this geometric fact concern Sobolev imbedding theorems? The
answer is given by the following result [FF], [M1].

Theorem 1.1 Let u ∈ C∞
0 (Rn). There holds the inequality:( ∫

Rn

|u|
n

n−1dx
)n−1

n ≤ C(n)

∫
Rn

|∇u|dx, (3)

where the best constant is the same as in the isoperimetric inequality (2).

Proof. First we prove the lower estimate for C(n). Figure 1 shows the graph
of the function uε(|x|) to be inserted in (3). (The function is not smooth but
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1

ε

Figure 2: The function uε.

it is Lipschitz and can be approximated by smooth functions in the norm
∥∇u∥L1(Rn)).

We have

v
n−1

n
n ≤

( ∫
Rn

|uε|
n

n−1dx
)n−1

n ≤ C(n)

∫
Rn

|∇uε|dx

= C(n)nvn

∫ 1+ε

1

∣∣∣duε
dr

∣∣∣rn−1dr = (1 +O(ε))nvnC(n).

It follows that
n−1v−1/n

n ≤ (1 +O(ε))C(n).

and finally
C(n) ≥ (nv1/n

n )−1 = cn.

In order to prove (3) we need the coarea formula:∫
Rn

|∇u|dx =

∫ ∞

0

Hn−1(Et)dt, (4)

where Et = {x : |u(x)| = t}. It is known by Sard’s lemma that almost all
level sets are C∞ manifolds. (Note that by Whitney’s extension theorem,
any multidimensional compact set can be a level set of a C∞ function and
thus the words “almost all” cannot be omitted.)

Next we give a plausible argument in favour of the coarea formula. This
is not a rigorous proof, as we assume all level sets to be good.

We write dx = dHn−1dν and |∇u(x)| = dt/dν, where dν is the element
of the trajectory orthogonal to Et. We obtain∫

Rn

|∇u(x)|dx =

∫ ∞

0

∫
Et

dt

dν
dHn−1dν
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|u|=t+dt

|u|=t

Figure 3: Level surfaces and lines of quickest descent, i.e. the lines orthogonal
to the level surfaces.

=

∫ ∞

0

dt

∫
Et

dHn−1 =

∫ ∞

0

Hn−1(Et)dt.

A rigorous proof of the coarea formula for smooth functions can be found in
[M4], Sect. 1.2.4. This formula was proved for the so called asymptotically
differentiable functions of two variables, by A. S. Kronrod (1950). H. Federer
obtained a more general result for Lipschitz mappings Rn → Rm (1959). The
result was extended to the functions of bounded variation by Fleming and
Rishel (1980).

Let us prove (3). By the coarea formula and by the isoperimetric inequal-
ity (2), ∫

Rn

|∇u|dx =

∫ ∞

0

Hn−1(Et)dx ≥ nv1/n
n

∫ ∞

0

(mnNt)
n−1

n dt,

where Nt = {x : |u(x)| ≥ t}. It follows from the definition of the Lebesgue
integral that ( ∫

Rn

|u|
n

n−1dx
)n−1

n
=

( ∫ ∞

0

mnNtd(t
n

n−1 )
)n−1

n

=
( n

n− 1

∫ ∞

0

(mnNt)
n−1

n (mnNt)
1
n t

1
n−1dt

)n−1
n
. (5)

By using the obvious inequality

t(mnNt)
n−1

n ≤
∫ t

0

(mnNτ )
n−1

n dτ.

we conclude that the right-hand side of (5) does not exceed( n

n− 1

∫ ∞

0

(mnNt)
n−1

n

( ∫ t

0

(mnNτ )
n−1

n dτ
) 1

n−1
dt

)n−1
n
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=

∫ ∞

0

(mnNt)
n−1

n dt

Thus we have obtained (3) with the best possible constant. The proof of
Theorem is complete. �

Now, we consider a more general inequality:( ∫
Ω

|u|qdµ
)1/q

≤ C

∫
Ω

|∇u|dx, (6)

where q ≥ 1, Ω is an open subset of Rn, µ is an arbitrary measure and
u ∈ C∞

0 (Ω).

Theorem 1.2 Inequality (6) with q ≥ 1 holds if and only if

µ(g)1/q ≤ CHn−1(∂g) (7)

for every bounded open set g with smooth boundary, g ⊂ Ω.

Proof. We start with the necessity. Let uε ∈ C∞
0 (Ω), uε = 1 on g, g ⊂ Ω

with smooth ∂g and uε = 0 outside of the ε-neighborhood of g. By (6)

µ(g)1/q ≤ C

∫
Ω

|∇uε|dx→ CHn−1(∂g) as ε→ 0,

for all bounded g with smooth ∂g.
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Ωε

u  =1ε

Figure 4: The function uε.

Sufficiency can be established by repeating the previous proof with q
instead of n/(n− 1), and µ instead of mn. �

Note that we have obtained a Sobolev type inequality (6) with the best
possible constant

C = sup
g

µ(g)1/q

Hn−1(∂g)
.
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Example 1.3 Consider the inequality of the Hardy-Sobolev type:( ∫
Rn

|u|q dx
|x|α

)1/q

≤ C

∫
Rn

|∇u|dx, (8)

where q ≥ 1 and α < n. We try to find q and the best constant.

0
B\g

g\B
g

Figure 5: The volumes of B and g are equal.

Let B = {x ∈ Rn : |x| < R}, mnB = mng. We write

µ(g) =

∫
g

dx

|x|α
≤

∫
g∩B

dx

|x|α
+R−αmn(B \ g)

≤
∫
B

dx

|x|α
= nvn

∫ R

0

ρn−1−αdρ =
nvn
n− α

Rn−α,

where R = v
−1/n
n (mng)

1/n.
This means that

µ(g) ≤ nv
α/n
n

n− α
(mng)

n−α
n . (9)

Now by (2)

µ(g) ≤ n

n− α
vα/nn (n−1v−1/n

n )
n−α
n−1 Hn−1(∂g)

n−α
n−1 ,

that is

µ(g)
n−1
n−α ≤ (n− α)(1−n)/(n−α)(nvn)

(α−1)/(n−α)Hn−1(∂g).

Hence the best constant in (8) with q = (n− α)/(n− 1) is given by

C = (n− α)(1−n)/(n−α)(nvn)
(α−1)/(n−α).
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Example 1.4 Let u ∈ C∞
0 (Rn). Using Theorem 1.2, we obtain the inequal-

ity: ∫
Rn−1

|u(x′, 0)|dx′ ≤ 1

2

∫
Rn

|∇u(x)|dx,

where x′ = (x1, . . . , xn−1), where 1/2 is the best constant. This example
shows that the measure µ in (6) might be not absolutely continuous with
respect to the Lebesgue measure.

Remark 1.5 If Ω = Rn, the inequality

µ(g)1/q ≤ CHn−1(∂g) (10)

follows from
µ(Bρ(x))

1/q ≤ C1ρ
n−1.

for all balls Bρ(x) = {y : |y − x| < ρ}. (See [M4], p. 56-57.)

Remark 1.6 There is the following simple generalisation of the coarea for-
mula: ∫

Ω

ϕ(x)|∇u(x)|dx =

∫ ∞

0

dt

∫
Et

ϕ(x)dHn−1, (11)

where ϕ is a Borel function, and Et = {x : |u(x)| ≥ t}. Moreover, we can
write ∫

Ω

F (x,∇u)dx =

∫ ∞

0

dt

∫
Et

F (x, ν(x))dHn−1, (12)

where ν(x) = ∇u(x)
|∇u(x)| i.e. the normal unit vectors and F is a continuous

positive homogeneous function of degree 1, i.e. F (x, αy) = |α|F (x, y) for all
real α.

Now one can easily characterise more general Sobolev type inequalities.
Let us consider the inequality( ∫

Ω

|u|qdµ
)1/q

≤ C

∫
Ω

F (x,∇u)dx, (13)

where q ≥ 1 and µ is an arbitrary measure. Repeating the proof of Theorem
1.2 (with obvious changes), one arrives at the following assertion.

Theorem 1.7 The inequality (13) with q ≥ 1 is equivalent the inequality

µ(g)1/q ≤ C

∫
Ω∩∂g

F (x, ν(x))dHn−1,

for all sets g such that g ⊂ Ω and ∂g is smooth.
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Remark 1.8 Consider the interpolation inequality( ∫
Ω

|u|qdµ
)1/q

≤ C
( ∫

Ω

|∇u|dx
)θ( ∫

Ω

|u|rdν
)(1−θ)/r

,

which may be written as

∥u∥Lq(µ) ≤ C∥∇u∥θL1
∥u∥1−θ

Lr(ν).

This integral inequality is equivalent to

µ(g)1/q ≤ CHn−1(∂g)
θν(g)(1−θ)/r

The proof is rather similar to that of Theorem 1.2. For more information see
[M4], Chapter 2.

2 Sobolev type inequality for functions with

unrestricted boundary values

Let us consider the functions, which are not zero on the whole boundary. Let
u be a function in C∞(Ω), u = 0 on a ball B, B ⊂ Ω. Let us consider the
inequality

∥u∥Lq(Ω) ≤ C∥∇u∥L1(Ω). (14)

Ω

E t

Figure 6: The level sets are not closed if the function u is not constant on
∂Ω.

Let q ≥ 1. Repeating the above proof of the Gagliardo-Nirenberg in-
equality (3), we make use of the coarea formula∫

Ω

|∇u|dx =

∫ ∞

0

Hn−1(Et)dt
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and we also need the inequality

(mnNt)
1/q ≤ CHn−1(Et),

where as before
Nt = {x ∈ Ω : |u(x)| ≥ t}.

But now Et is not the whole boundary of Nt, just a part.

Remark 2.1 If ∂Ω does not contain inward cusps then it is clear intuitively
that

Hn−1(∂Ω ∩ ∂g) ≤ cHn−1(Ω ∩ ∂g) (15)

for all g, g ∩ B = ∅ and we can use the classical isoperimetric inequality (2)
in order to obtain (14) with a certain C = C(Ω).

If we have a cusp, (n− 1)-measure of the interior part of ∂g is small and
we may not apply the isoperimetric inequality (2).

g

Figure 7: The set g in a domain with cusp. H1(Ω ∩ ∂g) << H1(∂Ω ∩ ∂g)

Example 2.2 What can we expect for bad domains? Let us consider the
curvilinear triangle given in Fig.8.

x

x0
Ω

a

aα

1

2

B

g

Figure 8: The domain Ω is bounded by lines x2 = 0, x1 = 1, and the curve
x2 = xα1 , α > 1.

Here g = {x ∈ Ω : x1 < a}, H1(Ω ∩ ∂g) = aα and m2(g) = aα+1/(α + 1).
Hence

(m2g)
α/(α+1) = (α+ 1)−α/(α+1)H1(Ω ∩ ∂g).
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One can show that there exists a constant C such that

(m2g)
α/(α+1) ≤ CH1(Ω ∩ ∂g)

for all g, g ⊂ Ω\B. Inequalities of such a form are called relative isoperimetric
inequalities (Dido’s problem). The last inequality enables one to prove the
Sobolev type estimate (14) with q = (α + 1)/α. The proof is the same as
that of Theorem 1.2.

Definition 2.3 We introduce the area minimizing function

λ(s) = inf Hn−1(Ω ∩ ∂g)

where infimum is extended over all admissible sets g with mng ≥ s. In case
n = 2 it is more appropriate to speak about the length minimizing function
but we shall not mention this any more.

The following visible technical assertion was proved in [M4], Sect. 3.2.2.
In its formulation and in the sequel we call an open subset g of Ω admissible
if Ω ∩ ∂g is a smooth surface.

Lemma 2.4 Let g be an admissible subset of Ω such that Hn−1(Ω∩∂g) <∞.
Then there exists a sequence of functions {wm}m≥1 with the properties:

1) wm is locally Lipschitz in Ω;

2) wm(x) = 0 in Ω \ g,

3) wm(x) ∈ [0, 1] in Ω,

4) for any compactum K ⊂ g there exists an integer N(e), such that
wm(x) = 1 for x ∈ K and m ≥ N(e),

5) lim supm→∞

∫
Ω

|∇wm(x)|dx = Hn−1(Ω ∩ ∂g).

Now we are in a position to obtain a necessary and sufficient condition
for the Sobolev type inequality (14) to hold for all functions u ∈ C∞(Ω),
u = 0 on a ball B, B ⊂ Ω.

Theorem 2.5 The best constant in (14) with q ≥ 1 is given by

C = sup
g

mn(g)
1/q

Hn−1(Ω ∩ ∂g)
,

where the supremum is extended over all admissible sets g.
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The proof of sufficiency is the same as that in Theorem 1.2. Necessity
follows by setting the functions wm from Lemma 2.4 into (14).

Remark 2.6 This theorem means that (14) holds if and only if the last
supremum is finite which is equivalent to the inequality

lim inf
s→0

s−1/qλ(s) > 0. (16)

Example 2.7 Consider the union Ω of the squares

Qm = {(x, y) : 2−m−1 ≤ x ≤ 3 · 2−m−2, 0 < y < 2−m−2}

and the rectangles

Rm = {(x, y) : 3 · 2−m−2 ≤ x ≤ 2−m, 0 < y < 1}

where m = 0, 1, . . . (Fig. 9). One can show that there exist constants c1 and
c2 such that

c1s ≤ λ(s) ≤ c2s

(see [M4], p. 171).

y

0 1

1

Q

Rm

m−1

x

Figure 9: For this domain the inequality (14) holds for q = 1 and does not
hold for any q > 1.

Example 2.8 Let Ω be an n-dimensional “whirlpool”

{x = (x′, xn), |x′| < φ(xn), 0 < xn < 1}, (17)
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x

x x0

n

1 i

Figure 10: For the β-cusp, inequality (14) holds if and only if q ≤ 1+1/β(n−
1).

where φ is a continuously differentiable convex function on [0, 1], φ(0) = 0
(see Fig. 10). The area minimizing function satisfies

c [φ(t)]n−1 ≤ λ
(
vn−1

∫ 1

0

[φ(t)]n−1dτ
)
≤ [φ(t)]n−1 (18)

for sufficiently small t. (See [M4], p. 175-176).
In particular, for the β-cusp

Ω =
{
x :

n−1∑
i=1

x2
i < x2β

n , 0 < xn < 1
}

(β > 1)

one has

c1s
α ≤ λ(s) ≤ c2s

α, α =
β(n− 1)

β(n− 1) + 1
.

Example 2.9 Let us consider a tube of finite volume narrowing at infinity
Ω = {x = (x′, xn), |x′| < φ(xn)}, where φ is a convex continuously differ-
entiable function on [0,∞] (see Fig. 11). One can show that for sufficiently
large t the area minimizing function satisfies

c [φ(t)]n−1 < λ
(
vn−1

∫ ∞

t

|φ(t)]n−1dτ
)
≤ [φ(t)]n−1.

(see [M4], p. 176-178).
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0

x
x

x

i

1

n

Figure 11: For the ”β-tube” inequality (14) holds if and only if q < 1 −
1/β(n− 1).

In particular, the area minimizing function of the ”β-tube” of finite vol-
ume

Ω = {x : |x′| < (1 + xn)
−β, 0 < xn <∞}, β(n− 1) > 1,

is subject to the inequalities

c1s
α ≤ λ(s) ≤ c2s

α, α =
β(n− 1)

β(n− 1) − 1
.

3 Compactness criterion

The following theorem was proved by Sobolev’s student Kondrashov (1938).
An earlier compactness result of the same nature which concerns the imbed-
ding of L1

2(Ω) into L2(Ω) is called Rellich’s lemma.

Theorem 3.1 Let Ω be bounded and satisfy the cone property. Then

(1) W l
p(Ω) is compactly imbedded in L∞(Ω) if pl > n.

(2) W l
p(Ω) is compactly imbedded into Lq(Ω) if q < pn

n−pl , n ≥ pl.

In the following compactness theorem, Ω is an arbitrary open set of fi-
nite volume. Compare this result with Remark 2.6 where the boundedness
criterion for the same imbedding operator is formulated.
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Theorem 3.2 The ball

{u ∈ L1
1(Ω) : ∥u∥L1

1(Ω) ≤ 1}

is precompact in Lq(Ω), n/(n− 1) > q ≥ 1 if and only if

lim
s→0

λ(s)

s1/q
= ∞. (19)

Proof. (Sufficiency) Consider the domain Ω. Take a subdomain ω such that
ω ⊂ Ω and mn(Ω \ ω) < s, where s < mnΩ.

Now we take another domain ω1 such that

ω ⊂ ω1 ⊂ ω1 ⊂ Ω.

Define a smooth function η with η = 1 on ω and η = 0 on Ω \ ω1.
Now for all u ∈ L1

1(Ω)

∥u∥Lq(Ω) ≤ ∥(1 − η)u∥Lq(Ω) + ∥ηu∥Lq(Ω)

≤ sup
g⊂Ω\ω

(mng)
1/q

Hn−1(Ω ∩ ∂g)
∥∇((1 − η)u)∥Lq(Ω) + ∥u∥Lq(ω1)

≤ s1/q

λ(s)
∥∇((1 − η)u)∥L1(Ω) + ∥u∥Lq(ω1)

≤ s1/q

λ(s)
(∥∇u∥L1(Ω) + max |∇η|∥u∥L1(ω)) + ∥u∥Lq(ω1)

≤ s1/q

λ(s)
∥∇u∥L1(Ω) + C(s)∥u∥Lq(ω1).

Let {uk}k≥1 be a sequence satisfying

∥∇uk∥L1(Ω) + ∥uk∥L1(ω1) ≤ 1.

Since the boundary of ω1 is smooth, the imbedding operator L1
1(ω1) → Lq(ω1)

is compact and we may suppose that {uk}k≥1 is a Cauchy sequence in Lq(ω1).
We have

∥um − ul∥Lq(Ω) ≤
2s1/q

λ(s)
+ C(s)∥um − ul∥Lq(ω1)

and hence

lim sup
m,l→∞

∥um − ul∥Lq(Ω) ≤
s1/q

λ(s)
.

It remains to pass to the limit in the right-hand side as s→ 0 and take (19)
into account.
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(Necessity) Let the imbedding L1
1(Ω) ⊂ Lq(Ω) be compact. Then L1

1(Ω) ⊂
Lq(Ω) and the elements of a unit ball in W 1

1 (Ω) have absolutely equicontin-
uous norms in Lq(Ω). Hence, for all u ∈ L1

1(Ω)( ∫
g

|u|qdx
)1/q

≤ ε(s)

∫
Ω

(|∇u| + |u|)dx, (20)

where g is an arbitrary admissible subset of Ω whose measure does not exceed
s and ε(s) tends to zero as s→ +∞.

We insert the sequence {wm} from Lemma 2.4 into (20). Then for any
compactum K ⊂ g

mn(K)1/q ≤ cε(s)(Hn−1(Ω ∩ ∂g) +mn(g))

and hence
mn(g)

1/q ≤ c1ε(s)Hn−1(Ω ∩ ∂g).

The theorem is proved.

Example 3.3 The compactness condition (19) for the whirlpool domain in
Example 2.8 is equivalent to

lim
x→0

( ∫ x

0

[f(τ)]n−1dτ
)1/q

[f(x)]1−n = 0.

Let, in particular, f(x) = xβ, β > 1. Then L1
1(Ω) is compactly imbedded

into Lq(Ω) if and only if

q <
β(n− 1) + 1

β(n− 1)

Example 3.4 For the domain shown in Fig.12, the imbedding operator from
L1

1(Ω) into L1(Ω) is compact for α < 2, bounded and noncompact for α = 2
and unbounded for α > 2 (see [M4], Sect. 4.10.3).

4 The case p = 1, q < 1 in the Sobolev type

inequality (14)

Let u be a function in Ω measurable with respect to the Lebesgue measure
mn. We associate with u its nonincreasing rearrangement u∗ on (0,∞) which
is introduced by

u∗(t) = inf{s > 0 : mn(Ms) ≤ t}, (21)
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α−   m
2

2−
m

2−
m

Figure 12: This domain is borrowed from vol.2 of Courant-Hilbert

where Ms = {x ∈ Ω : |u(x)| > s}.
Clearly u∗ is nonnegative and nonincreasing on (0,∞); u∗(t) = 0 for

t ≥ mn(Ω). Furthermore, it follows from the definition of u∗ that

u∗(mn(Ms)) ≤ s (22)

and
mn(Mu∗(t)) ≤ t, (23)

the last because the function s→ mn(Ms) is continuous from the right.
The nonincreasing rearrangement of a function has the following impor-

tant property.

Lemma 4.1 If p ∈ (0,∞), then∫
Ω

|u(x)|pdx =

∫ ∞

0

(u∗(t))pdt.

Proof. The required equality if a consequence of the formula∫
Ω

|u(x)|pdx =

∫ ∞

0

mn(Mt)d(t
p)

and the identity
m1(M

∗
s ) = mn(Ms), s ∈ (0,∞), (24)

in which M∗
s = {t > 0 : u∗(t) > s}. To check (24), we first note that

m1(M
∗
s ) = sup{t > 0 : u∗(t) > s} (25)
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by the monotonicity of u∗. Hence, (22) yields

m1(M
∗
s ) ≤ mn(Ms).

For the inverse inequality, let ε > 0 and t = mn(M
∗
s ) + ε. Then (25) implies

u∗(t) ≤ s and therefore

mn(M
∗
s ) ≤ mn(Mu∗(t)) ≤ t

by (23). Thus mn(Ms) ≤ m1(M
∗
s ) and (24) follows.

Let u ∈ C∞(Ω), u = 0 on a ball B, B ⊂ Ω, as in Section 4. Here we
show that the case q < 1 in inequality (14), also admits a complete solution
(see [M4], Sect. 4.4 and [MN]). Let, as before, λ(s) be the area minimizing
function.

Theorem 4.2 Let Ω be a domain in Rn, B is an open ball, B ⊂ Ω and
0 < q < 1.

(i)(Sufficiency) If

D :=

∫ mn(Ω)

0

( s1/q

λ(s)

) q
1−q ds

s
<∞, (26)

then (14) holds for all u ∈ C∞(Ω), u = 0 on B. The constant C satisfies
C ≤ c1(q)D

(1−q)/q.
(ii)(Necessity) If there is a constant C > 0 such that (14) holds for all

u ∈ C∞(Ω), u|B = 0, then (26) holds and C ≥ c2(q)D
(1−q)/q.

Proof. (Sufficiency) Note that (26) implies mn(Ω) < ∞ and that λ is a
positive function. By monotonicity of mn(Nt), one obtains∫

Ω

|u|qdx =
∞∑

j=−∞

∫ 2j+1

2j

mn(Nt)d(t
q)

≤
∞∑

j=−∞

µj(2
q(j+1) − 2qj),

where µj = mn(N2j). We claim that the estimate

m∑
j=r

µj(2
q(j+1) − 2qj) ≤ cD1−q∥∇u∥qL1(Ω) (27)
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is true for any integers r,m, r < m. Once (27) has been proved, (26) follows
by letting m→ ∞ and r → −∞ in (27). Clearly, the sum on the left in (27)
is not greater than

µm2q(m+1) +
m∑

j=1+r

(µj−1 − µj)2
jq. (28)

Let Sr,m denote the sum over 1 + r ≤ j ≤ m. Hölder’s inequality implies

Sr,m ≤
[ m∑
j=1+r

2jλ(µj−1)
]q{ m∑

j=1+r

(µj−1 − µj)
1/(1−q)

λ(µj−1)1/(1−q)

}1−q
. (29)

We have
(µj−1 − µj)

1/(1−q) ≤ µ
1/(1−q)
j−1 − µ

1/(1−q)
j .

Hence, by the monotonicity of λ, the sum in curly braces is dominated by

m∑
j=1+r

∫ µj−1

µj

λ(t)q/(q−1)d(t1/(1−q)),

which does not exceed D/(1 − q). By the coarea formula the sum in square
brackets in (29) is not greater than

2
∞∑

j=−∞

∫
N

2j−1\N2j

|∇u|dx.

Thus
m∑

j=1+r

(µj−1 − µj)2
qj ≤ cD1−q∥∇u∥qL1(Ω).

To conclude the proof of (27), we show that the first term in (28) is also
dominated by the right part of (27). Indeed, if µm > 0, then

µm2mq ≤ (2mλ(µm))q(µm/λ(µm))q/(1−q)µm)1−q

≤ c∥∇u∥qL1(Ω)

( ∫ µm

0

( t

λ(t)

)q/(1−q)
dt

)1−q
.

The sufficiency of (26) follows.
In the proof of necessity we need the following simple observation.

Lemma 4.3 Let {v1, . . . , vN} be a finite collection in the space C(Ω)∩L1
p(Ω),

p ∈ [1,∞). Then for x ∈ Ω the function

x 7→ v(x) = max{v1(x), . . . , vN(x)}

18



belongs to the same space and

∥∇v∥L1(Ω) ≤
N∑
i=1

∥∇vi∥L1(Ω).

Proof. An induction argument reduces consideration to the case N = 2.
Here

v = (v1 + v2 + |v1 − v2|)/2.

Furthermore

∇v =
1

2
(∇v1 + ∇v2 + sgn(v1 + v2)(∇v1 −∇v2))

almost anywhere in Ω. Therefore,

|∇v(x)| ≤ max{|∇v1(x)|, |∇v2(x)|}

for almost all x ∈ Ω. The last inequality gives

|∇v(x)| ≤ |∇v1(x)| + |∇v2(x)|,

thus concluding the proof.
Continuation of Proof of Theorem 4.2 (Necessity) First we remark that
the claim implies mn(Ω) < ∞ and that λ(t) > 0 for all t ∈ (0,mn(Ω)]. Let
j be any integer satisfying 2j ≤ mn(Ω). Then there exists a subset gj of Ω
such that

mn(gj) ≥ 2j, and Hn−1(Ω ∩ gj) ≤ 2λ(2j).

By the definition of λ and the coarea formula there is a function uj ∈ C∞(Ω)
subject to uj ≥ 1 on gj, uj = 0 on B and

∥∇uj∥L1(Ω) ≤ 4λ(2j).

Let s be the integer for which 2s ≤ mn(Ω) < 2s+1. For any integer r < s, we
put

fr,s(x) = max
r≤j≤s

βjuj(x), x ∈ Ω,

where
βj = (2j/λ(2j))1/(1−q).

By the above lemma

∥∇fr,s∥L1(Ω) ≤ c
s∑
j=r

βj∥∇uj∥L1(Ω),
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and one obtains the following upper bound for ∥∇fr,s∥L1(Ω):

∥∇fr,s∥L1(Ω) ≤ c
s∑
j=r

βjλ(2j). (30)

We now derive a lower bound for the norm of fr,s in Lq(Ω). Since fr,s(x) ≥
βj for x ∈ gj, r ≤ j ≤ s, and mn(gj) ≥ 2j, the inequality

mn({x ∈ Ω : |fr,s(x)| > τ}) < 2j

implies τ ≥ βj. Hence

f ∗
r,s(t) ≥ βj for t ∈ (0, 2j), r ≤ j ≤ s,

where f ∗
r,s is the nonincreasing rearrangement of fr,s. Then∫ mn(Ω)

0

(f∗
r,s(t))

qdt ≥
s∑
j=r

∫ 2j

2j−1

(f ∗
r,s)

qdt ≥
s∑
j=r

βqj 2
j−1,

which implies

∥fr,s∥qLq(Ω,µ) ≥
s∑
j=r

βqj 2
j−1. (31)

Next, we note that if inequality (14) holds for all u ∈ C∞(Ω) ∩ L1
1(Ω), then

it holds for all u ∈ C(Ω) ∩ L1
1(Ω). In particular,

∥fr,s∥Lq(Ω) ≤ C∥∇fr,s∥L1(Ω).

Now (30) and (31) in combination with the last inequality give

C ≥ c
(
∑s

j=r β
q
j 2

j)1/q∑s
j=r βj(2

j)
= c

( s∑
j=r

2j/(1−q)

(λ(2j))q/(1−q)

)(1−q)/q
.

By letting r → −∞ and by the monotonicity of λ, we obtain

C ≥ c
( s∑
j=−∞

( 2j

λ(t)

) q
1−q

2j
) 1−q

q ≥ c
( ∫ mn(Ω)

0

( t

λ(t)

) q
1−q
dt

) 1−q
q

.

This completes the proof of Theorem 4.2. �
Example 4.4 Consider the Nikodym domain depicted in Figure 6. Let
εm = δ(2−m−1) where δ is a Lipschitz function on [0, 1] such that c1δ(t) ≤
δ(2t) ≤ c2δ(t). Then c3δ(s) ≤ λ(s) ≤ c4δ(s) (see [M4], Sect. 3.4). Therefore,
inequality (14) holds if and only if∫ 1

0

( s1/q

δ(s)

)q/(1−q)ds
s
<∞.
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5 Imbeddings into fractional Sobolev spaces

Definition 5.1 We introduce the seminorm

⟨u⟩q,µ =
( ∫

Ω

∫
Ω

|u(x) − u(y)|qµ(dx, dy)
)1/q

, (32)

where µ is a measure on Ω × Ω, µ(E ,F) = µ(F , E), and Ω is any open set.

Here we shall deal with the inequality

⟨u⟩q,µ ≤ C

∫
Ω

|∇u|dx, (33)

where u ∈ C∞(Ω) ∩ L1
1(Ω).

We show that inequality (33) is equivalent to an isoperimetric inequality
of a new type.

Theorem 5.2 Inequality (33) holds with q ≥ 1 if and only if for any g ⊂ Ω
such that Ω ∩ ∂g is smooth, the isoperimetric inequality

µ(g,Ω \ g)1/q ≤ 2−1/qCHn−1(Ω ∩ ∂g) (34)

holds.

Proof. (Sufficiency) Denote by u+ and u− the positive and negative parts
of u, so that u = u+ − u−. Since,

⟨u⟩q,µ ≤ ⟨u+⟩q,µ + ⟨u−⟩q,µ

and ∫
Ω

|∇u+|dx+

∫
Ω

|∇u−|dx =

∫
Ω

|∇u|dx,

it suffices to prove (33) for nonnegative Lipschitz functions u. Clearly

⟨u⟩qq,µ =

∫
Ω

∫
Ω

|u(x) − u(y)|qµ(dx, dy) =

∫
Ω

∫
Ω

∣∣∣ ∫ u(x)

u(y)

dt
∣∣∣qµ(dx, dy).

By Minkowski’s inequality

⟨u⟩q,µ ≤ 21/q

∫ ∞

0

( ∫
Ω

∫
Ω

χ(u(x) > t > u(y))µ(dx, dy)
)1/q

dt

= 21/q

∫ ∞

0

µ(Nt,Ω \Nt)
1/qdt.
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By using (34) we obtain

⟨u⟩q,µ ≤ C

∫ ∞

0

Hn−1(Et)dt = C

∫
Ω

|∇u|dx.

(Necessity) Let {wm} be the sequence from Lemma 2.4. Then

⟨wm⟩ ≤ 21/2C

∫
Ω

|∇wm|dx→ 21/2CHn−1(Ω ∩ ∂g) as m→ ∞

and

lim
m→∞

∫
Ω

∫
Ω

|wm(x) − wm(y)|qµ(dx, dy)

= 21/q

∫
g

∫
Ω\g

µ(dx, dy) = 21/qµ(g,Ω \ g)1/q.

The result follows.

Corollary 5.3 (One-dimensional case) Let

Ω = (α, β), −∞ ≤ α < β ≤ ∞.

The inequality( ∫
Ω

∫
Ω

|u(x) − u(y)|qµ(dx, dy)
)1/q

≤ C

∫
Ω

|u′(x)|dx

with q ≥ 1 holds for all u ∈ C∞(Ω) if and only if

µ(I,Ω \ I)1/q ≤ 2−1/qC (35)

for all intervals I, I ⊂ Ω, and

µ(I,Ω \ I)1/q ≤ 21−1/qC (36)

for all intervals I ⊂ Ω such that I contains one of the ends of Ω.

Proof. Necessity follows directly from (34) by setting g = I. Let us prove
the sufficiency of (35). Represent an arbitrary open set g ⊂ Ω as the sum of
non-overlapping intervals Ik. Then by (35) and (36)

µ(g,Ω \ g)1/q = (
∑
k

µ(Ik,Ω \ g))1/q ≤ (
∑
k

µ(Ik,Ω \ Ik))1/q

≤
∑
k

µ(Ik,Ω \ Ik)1/q ≤ 2−1/qC
∑
k

H0(Ω ∩ ∂Ik)

which is the same as (34). The result follows from Theorem 5.2.
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Example 5.4 We deal with functions in Rn and prove the inequality:( ∫
Rn

∫
Rn

|u(x) − u(y)|q

|x− y|n+αq
dxdy

)1/q

≤ C

∫
Rn

|∇u|dx, (37)

where u ∈ C∞
0 (Rn), n > 1, 0 < α < 1 and q = n/(n− 1 + α).

Let us introduce the set function

g → I(g) :=

∫
g

∫
Rn\g

dxdy

|x− y|n+αq .

By Theorem 5.2 we only need to prove the isoperimetric inequality

(I(g))
n−1

n−αq ≤ c(α, n)Hn−1(∂g) (38)

for q = n/(n − 1 + α). Let ∆ be the Laplace operator in Rn. If u = rλ, we
may write

∆u =
1

rn−1
(rn−1ur)r = λ(λ+ n− 2)rλ−2.

Setting λ = 2 − n− αq, we arrive at

∆y|x− y|2−n−αq = (n− 2 + αq)|x− y|−n−αq.
Using (2) and Example 1.3, we obtain

I(g) =
1

αq(n− 2 + αq)

∫
g

∫
Rn\g

∆y|x− y|2−n−αqdydx

=
1

αq(n− 2 + αq)

∫
g

∫
∂g

∂

∂νy
|x− y|2−n−αqdydx

≤ 1

αq

∫
∂g

∫
g

|x− y|n−1+αqdxdsy

≤ nv
1− 1−αq

n
n

αq(1 − αq)
(mng)

1−αq
n Hn−1(∂g) ≤

(nvn)
1− 1−αq

n−1

αq(1 − αq)
Hn−1(∂g)

1+ 1−αq
n−1 .

Since

1 − αq =
(n− 1)(1 − α)

n− 1 + α
,

inequality (38) follows.

Remark 5.5 Inequality (37) can be interpreted as the imbedding

L̊1
1(Rn) ⊂ W̊α

q (Rn)

where L̊1
1(Rn) is the completion of the space C∞

0 (Rn) in the norm ∥∇u∥L1(Rn)

and W̊α
q (Rn) is the completion of C∞

0 (Rn) in the fractional Sobolev norm( ∫
Rn

∫
Rn

|u(x) − u(y)|q

|x− y|n+αq
dxdy

)1/q

.
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6 Capacity minimizing functions and their ap-

plications to Sobolev type inequalities

Definition 6.1 Wiener’s capacity of a compact set F ⊂ Ω with respect to
Ω is defined by

capF = inf
u≥1 onF

∫
Ω

|∇u(x)|2dx, (39)

where u ∈ C∞
0 (Ω). Its obvious generalization is the p-capacity

cappF = inf
u≥1 onF

∫
Ω

|∇u(x)|pdx, (40)

where u ∈ C∞
0 (Ω), p ≥ 1.

For basic properties of the p-capacity see [M4], Ch. 2.
The following arguments are very convincing but not fully rigorous be-

cause of the presence of critical points. The complete proof can be found in
[M4], Ch. 2.

Let u ∈ C∞
0 (Ω). We write |u| in the form of a composition λ(v), where

v(x) is the volume of the set bounded by the level surface of |u| passing
through the point x. By the coarea formula (4),

∥∇u∥Lp(Ω) =
{∫ mn(Ω)

0

|λ′(v)|p
∫
v(x)=v

|∇v(x)|p−1ds(x)dv
}1/p

. (41)

We note that by Hölder’s inequality we have the following estimate for the
area s(v) of the surface {x : v(x) = v}

[s(v)]p =
( ∫

v(x)=v

(dv
dν

)(p−1)/p(dν
dv

)(p−1)/p

ds
)p

≤
∫
v(x)=v

(dv
dν

)p−1

ds
( ∫

v(x)=v

dνds

dv

)p−1

,

where dν is an element of the trajectory orthogonal to a level surface. Because
of the obvious identity ∫

v(x)=v

dνds = dv

we find ∫
v(x)=v

|∇v(x)|p−1ds(x) ≥ [s(v)]p, (42)
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where s(v) is the area of the level surface v(x) = v.
Minimizing the integral ∫

Ω

|∇(λ(v(x))|pdx

over all smooth functions on the segment [0,mnΩ] such that λ(0) = 0 subject
to the inequality λ(v) ≥ 1 for v ≤ mn(F ), we obtain another expression for
the p-capacity

capp(F ) = inf
{∫ mn(Ω)

mn(F )

[ ∫
v(x)=v

|∇v(x)|p−1ds(x)
]1/(1−p)

dv
}1−p

(43)

Here the infimum is taken over all functions u in the definition (40). This use-
ful identity is known as the Dirichlet principle with prescribed level surfaces,
Pólya-Szegö [1951].

Estimating the integral over the level surface v(x) = v with the aid of
(42), we derive the following lower estimate from (43) for p-capacity

capp(F ) ≥ inf
{∫ mn(Ω)

mn(F )

dv

[s(v)]p/(p−1)

}1−p
(44)

From (44) and (2) we obtain

capp(F ) ≥ nv
p
n
n

∣∣∣p− n

p− 1

∣∣∣p−1

|[mn(Ω)]
p−n

n(p−1) − [mn(F )]
p−n

n(p−1) |1−p, (45)

if p ̸= n, and

capp(F ) ≥ nnvn

[
log

mn(Ω)

mn(F )

]1−n
, (46)

if p = n. In particular, if n > p then

capp(F ) ≥ nvp/nn

(n− p

p− 1

)p−1

[mn(F )](n−p)/n. (47)

The application of p-capacity to imbedding theorems is based on following
inequality which plays the same role for p ≥ 1 as the coarea formula for
p = 1.

Theorem 6.2 (see [M3], [M4]) The inequality∫ ∞

0

cappNt d(t
p) ≤ pp

(p− 1)p−1

∫
Ω

|∇u|pdx (48)

holds, where u ∈ C∞
0 (Ω), p ≥ 1 and the constant is the best possible.
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For p > 1 this inequality is obtained in the following manner. In view of
(41)

∥∇u∥pLp(Ω) =

∫ φ(mnΩ)

0

∣∣∣ d
dφ
λ(v(φ))

∣∣∣pdφ, (49)

where φ is a new independent variable defined by the formula

φ(v) =

∫ mn(Ω)

v

[ ∫
v(x)=v

|∇v(x)|p−1ds(x)
]1/(1−p)

dv.

In view of Hardy’s inequality the right hand side of (49) majorizes(p− 1

p

)p ∫ ∞

0

[λ(v(φ))

φ

]p
dφ =

(p− 1)p−1

pp

∫ ∞

0

φ1−pd[λ(v(φ))]p.

It remains to apply identity (43) which implies

capp(Nλ(v(φ))) ≤ φ1−p. (50)

Remark 6.3 Inequality (48) with a rougher constant can be obtained quite
simply by the following truncation argument.

Let as before Nt = {x : |u(x)| ≥ t}. Clearly,∫
Ω

|∇u|pdx =
∞∑

k=−∞

∫
N

2k\N2k+1

|∇u|pdx =
∑

2kp
∫
N

2k\N2k+1

∣∣∣∇u− 2k

2k

∣∣∣pdx
≥

∞∑
k=−∞

2kpcappN2k+1 ≥ C(p)
∞∑

k=∞

cappN2k(2(k+1)p − 2kp)

≥ C(p)
∑
k

∫ 2k+1

2k

cappNtd(t
p) = C(p)

∫ ∞

0

capp(Nt)d(t
p),

concluding the proof.

Remark 6.4 Inequalities (44)-(47) may be called isocapacitary inequalities.
In the next theorem we deal with the isocapacitary inequality

µ(g)p/q ≤ Ccappg (51)

where µ is an arbitrary measure, g is an arbitrary open set with smooth
boundary such that g ⊂ Ω, and q ≥ p ≥ 1. By (4), this inequality coincides
with the isoperimetric inequality (52) for p = 1.

The following criterion shows the importance of (51).
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Theorem 6.5 (i) Assume that there exists a constant C such that (51) holds
with q ≥ p ≥ 1 Then the inequality( ∫

Ω

|u|qdµ
)1/q

≤ D∥∇u∥Lp(Ω) (52)

holds for all u ∈ C∞
0 (Ω) with

D ≤ p(p− 1)(1−p)/pC1/p.

(ii) Conversely, if (52) holds for all u ∈ C∞
0 (Ω) with q > 0 and p ≥ 1, then

the isocapacitary inequality (51) holds with

D ≥ C1/p.

Proof. The assertion (ii) follows directly from the definition of p-capacity.
Let us prove (i). We have∫

Ω

|u|qdµ =

∫ ∞

0

µ(Nt)d(t
q) = q

∫ ∞

0

µ(Nt)
p/qtp−1µ(Nt)

(q−p)/qtq−pdt.

Since µ(Nt) is a nonincreasing function,

µ(Nt)
p/qtp ≤ p

∫ t

0

µ(Nτ )
p/qτ p−1dτ.

It follows that∫
Ω

|u|qdµ ≤ q

∫ ∞

0

µ(Nt)
p/qtp−1

(
p

∫ t

0

µ(Nτ )
p/qτ p−1dτ

) q−p
p
dt

=
(
p

∫ ∞

0

µ(Nτ )
p/qτ p−1dτ

)q/p
.

Now by (51) and (48)(
p

∫ ∞

0

µ(Nτ )
p/qτ p−1dτ

)q/p
≤ Cq/p

(
p

∫ ∞

0

capp(Nτ )τ
p−1dτ

)q/p
≤ Cq/p

( pp

(p− 1)p−1

∫
Ω

|∇u|pdx
)q/p

.

The proof is complete.
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Definition 6.6 We introduce the capacity minimizing function

νp(s) := inf
{g:µ(g)≥s}

cappg

which coincides with the area minimizing function

λ(s) = inf
{g:µ(g)≥s}

Hn−1(∂g)

for p = 1.

Remark 6.7 Clearly, the isocapacitary inequality (51) is equivalent to

sp/q

νp(s)
≤ C.

Let µ(Ω) < ∞. One can show that for q ≥ p ≥ 1 the ball {u ∈ C∞
0 (Ω) :

∥∇u∥Lp(Ω) ≤ 1} is precompact in Lq(Ω, µ) if and only if

sp/q

νp(s)
→ 0 as s→ 0

(see [MP], Sect. 8.6).
Making obvious changes in the proof of Theorem 4.2 one can show that

inequality (52) with q < p holds if and only if∫ µ(Ω)

0

( sp/q

νp(s)

)q/(p−q)ds
s
<∞.

If µ(Ω) < ∞, the same condition is necessary and sufficient for the precom-
pactness of the ball {u ∈ C∞

0 (Ω) : ∥∇u∥Lp(Ω) ≤ 1} in Lq(Ω, µ), q < p (see
[MP], Sect. 8.5, 8.6).

Remark 6.8 The following important statement formulated in terms of the
p-capacity minimizing function shows that the Sobolev type inequality (52)
is a consequence of a certain weighted integral inequality for functions of one
variable. This result leads to the best constants in inequalities of type (52)
and, as most of the previous results, can be directly extended to functions
on Riemannian manifolds.

Theorem 6.9 Let p ≥ 1 and q > 0. Assume that the capacity minimizing
function νp(s) has the inverse ν−1

p . If for all absolutely continuous functions
h on (0,∞) such that h(0) = 0:( ∫ ∞

0

|h(τ)|q|dν−1
p (1/τ)|

)1/q

≤ D
( ∫ ∞

0

|h′(τ)|pdτ
)1/p

, (53)

then (52) holds for all u ∈ C∞
0 (Ω).
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Proof. Let

ψ(t) =

∫ ∞

t

[ ∫
|u(x)|=τ

|∇u(x)|p−1ds(x)
]1/(1−p)

dτ.

and let t(ψ) denote the inverse function. Then∫
Ω

|u|qdµ =

∫ ∞

0

µ(Nt(ψ))d(t(ψ)q)

and ∫
Ω

|∇u|pdx =

∫ ∞

0

|t′(ψ)|pdψ

(see Sect 2.2 and 2.3. of [M4] for more details). Clearly,

µ(Nt(ψ)) ≤ ν−1
p (capp(Nt(ψ))))

and it remains to note that

capp(Nt(φ)) ≤
1

ψ(t)p−1

(see (50) and Lemma 2.2.2/1 in [M4]).

Remark 6.10 It is obvious that similar results with the same proofs remain
valid for functions with unrestricted boundary values. This influences only
the definition of the corresponding p-capacity. In particular, if the set of
admissible functions in the definition of capp(F ) consists of functions van-

ishing on a ball B, B ⊂ Ω, and such that u ≥ 1 on F , then everything
said about Sobolev inequalities before in this section holds for functions with
unrestricted boundary values which are equal to zero on B.

A few words on the so-called logarithmic Sobolev inequalities. Let µ be a
measure in Ω, µ(Ω) = 1, p ≥ 1 and let νp be the capacity minimizing function
generated by µ (see Definition 6.6). The inequality

exp

(
−

∫
Ω

log+ 1

|u|
dµ

)
≤ 4∥∇u∥Lp(Ω) exp

(
−1

p

∫ 1

0

log νp(s) ds

)
(54)

for all u ∈ L̊1
p(Ω) was proved in 1968 by Maz’ya and Havin [MH]. It shows,

in particular, that ∫ 1

0

νp(s) ds = +∞
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implies ∫ 1

0

log+ 1

|u|
dµ = +∞

for all u ∈ L1
p(Ω). This fact allows for certain applications of (54) to complex

function theory [MH].
Inequality (54) is completely different from the logarithmic Sobolev in-

equality obtained in 1978 by Weissler [We]:

exp

(
4

n

∫
Rn

|u|2 log |u| dx
)

≤ 2

πen

∫
Rn

|∇u|2 dx ,

where ∥u∥L2(Rn) = 1, which is equivalent (see Beckner and Pearson [BP]) to
the well-known Gross inequality of 1975 [Gr]∫

Rn

u2 log

(
u2

/ ∫
Rn

u2 dµ

)
dµ ≤ C

∫
Rn

|∇u|2 dµ , (55)

where
dµ = (2π)−n/2exp(−|x|2/2) dx .

Various extensions, proofs and applications of (55) were the subject of many
studies.

Remark 6.11 The inequality∫
Ω

u2 dµ ≤ c

∫
Ω

|∇u|2dx (56)

holds if and only if

sup
F

µ(F )

cap(F )
<∞ ,

where F is an arbitrary compact set in Ω. For the case Ω = Rn, n > 2,
other criteria for the validity of (56) are known. The following one is due to
Kerman and Sawyer [KeS] :

For every open ball B in Rn,∫
B

∫
B

dµ(x)dµ(y)

|x− y|n−2
≤ c µ(B) .

Another two criteria for (56) were obtained by Maz’ya and Verbitsky [MV1]:

(i) The pointwise inequality

I1(I1µ)2(x) ≤ c I1(µ)(x) <∞ a.e.
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holds, where I1 stands for the Riesz potential of order 1, i.e. I1µ = |x|1−n ⋆µ.

(ii) For every compact set F ⊂ Rn,∫
F

(I1µ)2 dx ≤ c cap(F ) .

One more condition necessary and sufficient for (56) was found by Ver-
bitsky [Ve]:

For every dyadic cube P in Rn,∑
Q⊂P

[
µ(Q)

|Q|1−1/n

]2

|Q| ≤ c µ(P ) ,

where the sum is taken over all dyadic cubes Q contained in P , and c does
not depend on P .

We now state the main result of the paper [MV2] by the author and
Verbitsky, characterizing arbitrary complex-valued distributions V subject
to the inequality∣∣∣ ∫

Rn

|u|2V dx
∣∣∣ ≤ c

∫
Rn

|∇u|2 dx for all u ∈ C∞
0 . (57)

This characterization reduces the case of distributional potentials V to
that of nonnegative absolutely continuous weights.

Theorem 6.12 Let V ∈ (C∞
0 )′, n > 2. Then the inequality (57) holds, if

and only if there is a vector-field Γ ∈ L2(Rn, loc) such that V = div Γ, and∫
Rn

|u(x)|2|Γ(x)|2 dx ≤ C

∫
Rn

|∇u(x)|2 dx ,

for all u ∈ C∞
0 . The vector field Γ can be chosen in the form Γ = ∇∆−1V .

7 Isoperimetric function and a Brezis-Gallouët-

Wainger type inequality

Theorem 7.1 Let Ω be a domain with mn(Ω) <∞ and let∫ mn(Ω)/2

0

dµ

[λ(µ)]p′
<∞ ,
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where p+ p′ = pp′ and λ(µ) denotes λM(µ) for M = mn(Ω)/2. Furthermore,
let for some r ∈ (1, p) ∫ mn(Ω)/2

0

dµ

[λ(µ)]r′
= ∞ .

Then for any ε ∈ (0,mn(Ω)/2) and u ∈ L1
p(Ω)

oscΩu ≤ c(p, r)
{( ∫ ε

0

dµ

[λ(µ)]p′

)1/p′

∥∇u∥Lp(Ω)

+
( ∫ mn(Ω)/2

ε

dµ

[λ(µ)]r′

)1/r′

∥∇u∥Lr(Ω)

}
. (58)

Proof. Let the numbers T and t be chosen so that

mn{x : u(x) > T} ≤ mn(Ω)/2 ≤ mn{x : u(x) ≥ T},

mn{x : u(x) > t} ≤ ε ≤ mn{x : u(x) ≥ t} .
Furthermore, let S := ess supΩ u. Then

(S − t)pcp(Kt,s) ≤
∫

|∇u|p dx

and

(t− T )rcr(KT,t) ≤
∫

|∇u|r dx .

Quite similar to (44) we obtain

cp(Kt,S) ≥
( ∫ ε

0

dµ

[λ(µ)]p′

)1−p

and

cr(KT,t) ≥
( ∫ mn(Ω)/2

ε

dµ

[λ(µ)]r′

)1−r
.

This leads to the estimate

ess sup
Ω
u− T ≤

( ∫ ε

0

dµ

[λ(µ)]p′

)1/p′

∥∇u∥Lp(u≥T )

+
( ∫ mn(Ω)/2

ε

dµ

[λ(µ)]r′

)1/r′

∥∇u∥Lr(u≥T ) .

An analogous estimate for T − ess infΩ u is proved in the same way. Adding
both estimates we arrive at (58). �

We specify this theorem for domains satisfying (16) with q = r′.
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Corollary 7.2 Let p > r > 1, mn(Ω) <∞ and let Ω ∈ J1/r′, i.e.

λ(µ) ≥ C µ1/r′ .

Then

oscΩu ≤ c0

(
ε(p−r)/pr∥∇u∥Lp(Ω) +

(
log

mn(Ω)

2ε

)1/r′

∥∇u∥Lr(Ω)

)
(59)

where ε ∈ (0,mn(Ω)/2) and c0 depends only on C, p and r.

Remark 7.3 Minimizing the right-hand side of (59) in ε we see that

oscΩu ≤ c1(1 + | log(c2∥∇u∥Lp(Ω))|)1/r′ (60)

provided
1 = ∥∇u∥Lr(Ω) ≤ c2 ∥∇u∥Lp(Ω) .

For the cusp (17) with φ(xn) = xβn, β > 1, we have by (18) that

λ(µ) ∼ µβ(n−1)/(β(n−1)+1)

and we may take r = β(n− 1) + 1.
This example can be used to show that the exponent 1/r′ of the power

of logarithm in (59) is sharp by setting u(x) = log log(ax−1
n ) into (59).

8 Conductor inequalities for a Dirichlet-type

integral on a topological space

Let X denote a locally compact Hausdorff space and let C(X ) stand for the
space of continuous real valued functions given on X . By C0(X ) we denote
the set of functions f ∈ C(X ) with compact supports in X .

We introduce an operator Fp defined on a subset dom(Fp) of C(X ) and
taking values in the cone of nonnegative locally finite Borel measures on X .
We suppose that 1 ∈ dom(Fp) and Fp is positively homogeneous of order
p ≥ 1, i.e. for every real α, f ∈ dom(Fp) implies αf ∈ dom(Fp) and

Fp[αf ] = |α|pFp[f ]. (61)

It is also assumed that Fp is contractive, that is λ(f) ∈ dom(Fp) and

Fp[λ(f)] ≤ Fp[f ], (62)
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for all f ∈ dom(Fp), where λ is an arbitrary real valued Lipschitz function
on the line R such that |λ′| ≤ 1 and λ(0) = 0. We suppose that the following
locality condition holds:

f(x) = c ∈ R on a compact set C =⇒
∫
C
Fp[f ] =

∫
C
Fp[c]. (63)

In this section we deal with the functional

f →
∫
X
Fp[f ] (64)

which is a far reaching generalization of the Dirichlet-type integral∫
Ω

(Φ(x,∇f))pdx+

∫
Ω

|f |pdν, (65)

where ν is a measure and the function

Ω × Rn ∋ (x, z) → Φ(x, z) ∈ R (66)

is continuous, positively homogeneous of degree 1 with respect to z. One can
take the space of locally Lipschitz functions on Ω as dom(Fp).

Let g and G denote open sets in X such that the closure ḡ is a compact
subset of G. We introduce the p-conductivity of the conductor G\g (in other
terms, the relative p-capacity of the set ḡ with respect to G) as

capp(ḡ, G)=inf
{∫

X
Fp[f ] : f ∈ dom(Fp), 0 ≤ f ≤ 1 on G

and f = 1 on a neighborhood of g
}
. (67)

I state a general conductor inequality in the integral form for the func-
tional (64).

Theorem 8.1 Let M denote an increasing convex (not necessarily strictly
convex) function given on [0,∞), M(0) = 0. Then the conductor inequality

M−1
(∫ ∞

0

M(tpcapp(Lat,Lt))
dt

t

)
≤ c(a, p)

∫
X
Fp[f ], (68)

holds for all f ∈ dom(Fp)∩C0(X ) and for an arbitrary a > 1. Here Lt = {x ∈
X : |f(x)| > t}, M is a positive convex function on (0,∞), M(+0) = 0, and
M−1 stands for the inverse of M . By capp we mean the p-capacity generated
by the operator Fp.
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Suppose that (63) is replaced by the following more restrictive locality
condition:

f(x) = const on a compact set C =⇒
∫
C
Fp[f ] = 0, (69)

which holds, for example, if the measure ν in (65) is zero. We choose M(ξ) =
ξq/p for ξ ≥ 0.

Corollary 8.2 Let q ≥ p and let Fp satisfy the locality condition (63). Then
for all f ∈ dom(Fp) ∩ C0(X ) and for an arbitrary a > 1(∫ ∞

0

(capp(Lat,Lt))
q/pd(tq)

)1/q

≤ C
(∫

X
Fp[f ]

)1/p

. (70)

If additionally Fp is subject to (69), then one can choose

C =
(q log a)1/q

a− 1
.

9 Sharp capacitary inequalities and their ap-

plications

Let Ω denote an open set in Rn and let the function

Ω × Rn ∋ (x, z) → Φ(x, z) ∈ R

be a continuous function, positively homogeneous of degree 1 with respect to
z. Clearly, the measure

Fp[f ] := |Φ(x,∇ f(x))|pdx

satisfies (61), (62), and (69). Hence, (70) implies the inequality(∫ ∞

0

(capp(Lt,X ))q/pd(tq)
)1/q

≤ C
(∫

X
|Φ(x,∇ f(x))|pdx

)1/p

, (71)

where capp is the p-capacity corresponding to the integral in the right-hand
side, C = const > 0 and f is an arbitrary function in C∞

0 (Ω). The next
assertion gives the sharp value of C for q > p. In the case q = p the sharp
value of C is given by

C =
p

(p− 1)(p−1)/p

and is obtained by the same argument as Theorem 6.2.
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Theorem 9.1 Inequality (71) with q > p holds withsub]Capacitary inequality
with the best constant

C =
( Γ( pq

q−p)

Γ( q
q−p)Γ(p q−1

q−p)

)1/p−1/q

. (72)

This value of C is sharp if Φ(x, y) = |y| and if either Ω is a ball or Ω = Rn.

Proof. Let

ψ(t) =

∫ ∞

t

(∫
|f(x)|=τ

|Φ(x,N(x))|p|∇ f(x)|p−1ds(x)
)1/(1−p)

dτ

with ds standing for the surface element andN(x) denoting the normal vector
at x directed inward Lτ . Further, let t(ψ) denote the inverse function of ψ(t).
Then ∫

Ω

|Φ(x,∇ f(x))|pdx =

∫ ∞

0

|t′(ψ)|pdψ (73)

(compare with 49). By Bliss’ inequality [Bl](∫ ∞

0

t(ψ)q
dψ

ψ1+q(p−1)/p

)1/q

≤
( p

q(p− 1)

)1/q

C
(∫ ∞

0

|t′(ψ)|pdψ
)1/p

, (74)

with C as in (72), and by (73) this is equivalent to(∫ ∞

0

d(t(ψ)q)

ψq(p−1)/p

)1/q

≤ C
(∫

Ω

|Φ(x,∇ f(x))|pdx
)1/p

.

In order to obtain (71) with C given by (72) it remains to note that

capp(Lt) ≤
1

ψ(t)p−1
(75)

(compare with (50)) The constant (72) is the best possible since (75) becomes
equality for radial functions. �

We introduce the weighted perimeter minimizing function σ on (0,∞) by

C(m) := inf

∫
∂g

|Φ(x,N(x))|ds(x), (76)

where the infimum is extended over all bounded open sets g with smooth
boundaries subject to

mn(g) ≥ m.

Similarly to (44), the following isocapacitary inequality holds

capp(g,G) ≥
(∫ mn(G)

mn(g)

dm

C(m)p′

)1−p
. (77)

Therefore, (71) leads to
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Corollary 9.2 For, all f ∈ C∞
0 (Ω),(∫ ∞

0

(∫ mn(Ω)

mn(Lt)

dm

C(m)p′

)−q/p′
d(tq)

)1/q

≤ C
(∫

Ω

|Φ(x,∇ f(x))|pdx
)1/p

(78)

with q > p and C defined by (72). For p = 1 the last inequality should be
replaced by (∫ ∞

0

C(mn(Lt))qd(tq)
)1/q

≤
∫

Ω

|Φ(x,∇ f(x))|dx (79)

with q ≥ 1.

By the way, this corollary, combined with the isoperimetric inequality

s(∂g) ≥ n1/n′
ω1/n
n mn(g)

1/n′
,

immediately gives the following well-known sharp result.

Corollary 9.3 Let n > p ≥ 1 and q = pn(n−p)−1. Then every f ∈ C∞
0 (Rn)

satisfies the Sobolev inequality

∥f∥L pn
n−p

(Rn) ≤ c ∥∇f∥Lp(Rn)

with the best constant

c = π−1/2n−1/2
( p− 1

n− p

)1/p′( Γ(n)Γ(1 + n/2)

Γ(n/p)Γ(1 + n− n/p)

)1/n

.

The next assertion resulting from (73) and (75) shows that a quite general
capacitary inequality is a consequence of a certain inequality for functions of
one variable.

Theorem 9.4 Let α and β be positive nondecreasing functions on (0,∞)
such that

sup

∫ ∞

0

β(ψ1−p) d(α(t(ψ))) <∞, (80)

with the supremum taken over all absolutely continuous functions [0,∞) ∋
ψ → t(ψ) ≥ 0 subject to t(0) = 0 and∫ ∞

0

|t′(ψ)|pdψ ≤ 1. (81)
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Then

sup

∫ ∞

0

β(capp(Lt,Ω)) dα(t) <∞ (82)

with the supremum extended over all f subject to∫
Ω

|Φ(x,∇f(x))|pdx ≤ 1. (83)

The least upper bounds (80) and (82) coincide.

In fact, the above Theorem 9.1 is a particular case of Theorem 9.4 corre-
sponding to the choice

α(t) = tq and β(ξ) = ξq/p.

The next result is another consequence of Theorem 9.4.

Theorem 9.5 For every c > 0

sup

∫ ∞

0

exp
( −c

capp(Lt,Ω)1/(p−1)

)
d(exp(c tp

′
)) <∞, (84)

where the supremum is taken over all f ∈ C∞
0 (Ω) subject to (83) and p′ =

p/(p− 1), p > 1.

Proof. It follows from a theorem by Jodeit [Jo], that

sup

∫ ∞

0

exp(t(ψ)p
′ − ψ)dψ <∞, (85)

with the supremum taken over all absolutely continuous functions [0,∞) ∋
ψ → t(ψ) ≥ 0 subject to t(0) = 0 and (81). Hence, for every c > 0,

sup

∫ ∞

0

exp(c t(ψ)p
′ − c ψ)dψ <∞.

It remains to refer to Theorem 9.4 with

α(t) = exp(c tp
′
) and β(ξ) = exp(−c ξ1/(1−p)).

A direct consequence of Theorem 9.5 and the isocapacitary inequality
(46) is the following Moser’s result.
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Corollary 9.6 (Moser [Mos]) Let mn(Ω) <∞ and let

{f} := {f ∈ C∞
0 (Ω) : ∥∇ f∥Ln(Ω) ≤ 1}.

Then

sup
{f}

∫
Ω

exp(nω1/(n−1)
n |f(x)|n′

)dx <∞.

Proof. The isocapacitary inequality (46) can be written as

mn(g) ≤ mn(G) exp
(
−nω1/(n−1)

n capn(g,G)1/(1−n)
)
.

Hence, putting c = nω
1/(n−1)
n and p = n in (84), we obtain∫ ∞

0

mn(Lt)d exp(nω1/(n−1)
n tn

′
) <∞.

The result follows. �
One needs no changes in proofs to see that the main results of this section,

Theorems 9.1 - 9.5 hold if Ω is an open subset of a Riemannian manifold Rn,
and ∇ f is the Riemannian gradient. As an application, we obtain another
Moser’s inequality [Mos].

Corollary 9.7 Let Ω be a proper subdomain of the unit sphere S2 and let
{f} be defined as in Corollary 9.6. Then

sup
{f}

∫
Ω

exp(4πf 2(ω)) dsω <∞ .

Proof. By Theorem 9.5 with c = 4π we have the capacitary integral in-
equality

sup
{f}

∫ ∞

0

exp
( −4π

cap2(Lt,Ω)

)
d(exp(4πt2)) <∞ . (86)

The classical isoperimetric inequality on S2

s(∂g)2 ≥ m2(g)(4π −m2(g))

(see Rado [Ra]), combined with (77) implies the isocapacitary inequality

cap2(ḡ, G) ≥ 4π

(
log

m2(G)(4π −m2(g))

m2(g)(4π −m2(G))

)−1

Setting here G = Ω, g = Lt, and using (86), we complete the proof. �
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Remark 9.8 We can go even further extending the above results to the
measure valued operator Fp[f ] in Section 8 subject to the condition

Fp[λ(f)] = |λ′(f)|pFp[f ] (87)

with the same λ as in (62). In fact, (87) implies∫
X
Fp[f ] =

∫ ∞

0

|t′(ψ)|pdψ, (88)

where t(ψ) is the inverse of the function

ψ(t) =

∫ ∞

t

∣∣∣ d
dτ

Fp[f ](Lτ )
∣∣∣1/(1−p)dτ.

Identity (88) is the core of the proof of the results in the present section.

10 Properties of Sobolev spaces generated by

quadratic forms with variable coefficients

In the preceding sections I showed that rather general inequalities, contain-
ing the integral

∫
Ω
[Φ(x,∇u)]p dx, are equivalent to isocapacitary inequalities

which relate (p,Φ)-capacity and measures. Although such criteria are of pri-
mary interest, we should note that their verification in particular cases is
often difficult. Even for rather simple quadratic forms

[Φ(x, ξ)]2 =
n∑

i,j=1

aij(x)ξiξj

the estimates for the corresponding capacities by measures are unknown.
Thus, the general necessary and sufficient conditions obtained in the

present chapter can not diminish the value of straightforward methods of
investigation of integral inequalities without using capacity. In the present
section this will be illustrated using as an example the quadratic form

[Φ(x, ξ)]2 = (|xn| + |x′|2)ξ2
n + |ξ′|2 ,

where x′ = (x1, . . . , xn−1), ξ
′ = (ξ1, . . . , ξn−1).

The inequality∫
Rn−1

[u(x′, 0)]2 dx′ ≤ c

∫
Rn

[Φ(x,∇u)]2 dx (89)
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holds for all u ∈ C∞
0 (Rn) if and only if the isocapacitary inequality

mn−1({x ∈ g, xn = 0}) ≤ c (2,Φ)-cap(g)

holds for any admissible set g. A straightforward proof of the preceding isoca-
pacitary inequality is unknown to the author. Nevertheless, the estimate (89)
is true and will be proved in the sequel.

Theorem 10.1 Let

[Φ(x,∇u)]2 = (|xn| + |x′|2)(∂u/∂xn)2 +
n−1∑
i=1

(∂u/∂xi)
2 .

Then (89) is valid for all u ∈ C∞
0 (Rn).

Proof. Let the integral in the right-hand side of (89) be denoted by Q(u).
For any δ ∈ (0, 1/2) we have∫

Rn−1

|u(x′, 0)|2 dx′ ≤ 2

∫
Rn

(|xn| + |x′|2)1/2

|xn|(1−δ)/2|x′|δ

∣∣∣∣u ∂u∂xn
∣∣∣∣ dx (90)

≤ 2 [Q(u)]1/2
(∫

Rn

|xn|δ−1|x′|−2δ|u|2 dx
)1/2

.

To give a bound for the last integral we use the following well-known gener-
alization of the Hardy-Littlewood inequality:∫

Rn−1

(∫
Rn−1

f(y) dy

|x′ − y|n−1−δ

)2
dx′

|x′|2δ
≤ c

∫
Rn−1

[f(y)]2 dy . (91)

(For the proof of this estimate see Lizorkin [Li]. Since the convolution with
the kernel |x′|δ+1−n corresponds to the multiplication by |ξ′|−δ of the Fourier
transform, (91) can be written as∫

Rn−1

|u|2|x′|−2δ dx′ ≤ c

∫
Rn−1

[(−∆x′)
δ/2u]2 dx′ ,

where (−∆x′)
δ/2 is the fractional power of the Laplace operator. Now we find

that the right-hand side in (90) does not exceed

c
(
Q(u) +

∫
Rn

|xn|δ−1[(−∆x′)
δ/2u]2 dx

)
. (92)
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From the almost obvious estimate∫ ∞

0

g2tδ−1 dt ≤ c
(∫ ∞

0

(g′)2t dt+

∫ ∞

0

g2 dt
)

it follows that

|ξ′|2δ
∫

Rn

|(Fx′→ξ′u)(ξ
′, xn)|2|xn|δ−1dxn

≤ c
(∫

R1

∣∣∣(Fx′→ξ′
∂u

∂xn

)
(ξ′, xn)

∣∣∣2|xn| dxn + |ξ′|2
∫

R1

|(Fx′→ξ′u)(ξ
′, xn)|2 dxn

)
where Fx′→ξ′ is the Fourier transform in Rn−1. So the second integral in (92)
does not exceed

c

∫
Rn

(|xn|(∂u/∂xn)2 + (∇x′u)
2) dx .

The result follows. �
The next assertion shows that Theorem 10.1 is exact in a certain sense.

Theorem 10.2 The space of restrictions to Rn−1 = {x ∈ Rn : xn = 0} of
functions in the set {u ∈ C∞

0 (Rn) : Q(u) + ∥u∥2
L2(Rn) ≤ 1} is not relatively

compact in L2(B
(n−1)
1 ), where B

(n−1)
ϱ = {x′ ∈ Rn−1 : |x′| < ϱ}.

Proof. Let φ denote a function in C∞
0 (B

(n−1)
1 ) such that φ(y) = φ(−y),

∥φ∥L2(Rn−1) = 1 and introduce the sequence {φm}∞m=1 defined by φm(y) =
m(n−1)/2φ(my). Since this sequence is normalized and weakly convergent

to zero in L2(B
(n−1)
1 ), it contains no subsequences converging in L2(B

(n−1)
1 ).

Further, let {vm}∞m=1 be the sequence of functions in Rn defined by

vm(x) = F−1
η′→x′ exp{−⟨η⟩2|xn|}Fx′→η′φm ,

where η ∈ Rn−1, ⟨η⟩ = (|η|2 + 1)1/2.
Consider the quadratic form

T (u) =

∫
Rn

[
(|xn| + |x′|2)

∣∣∣ ∂u
∂xn

∣∣∣2 + |∇x′u|2 + |u|2
]
dx .

It is clear that

T (u) = (2π)1−n
∫

Rn

(
|xn|

∣∣∣∂Fu
∂t

∣∣∣2 +
∣∣∣ ∂
∂t

∇ηFu
∣∣∣2 + ⟨η⟩2|Fu|2

)
dη dxn .

Differentiating the function T (vm), we obtain from the last equality that
T (vm) does not exceed

c

∫
Rn

[(1+⟨η⟩2|xn|+⟨η⟩4|xn|3)⟨η⟩2|Fφm|2+⟨η⟩4|∇Fφm|2] exp(−2⟨η⟩2|xn|)dηdxn .
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Thus we obtain

T (vm) ≤ c

∫
Rn−1

(⟨η⟩2|∇Fφm|2 + |Fφm|2)dη

= c1

(n−1∑
i=1

∥xiφm∥2
W 1

2 (Rn−1) + ∥φm∥2
L2(Rn−1)

)
≤ const .

Let ψ ∈ C∞
0 (B

(n−1)
2 ), ψ = 1 on B

(n−1)
1 . It is clear that (vmψ)|Rn−1 = φm

and T (vmψ) ≤ const. The sequence {vmψ/(T (vmψ))1/2}∞m=1 is the required
counter-example. The theorem is proved. �

11 Sharp Hardy-Leray inequality for axisym-

metric divergence-free fields

Let u denote a C∞
0 (Rn) vector field in Rn. The following n-dimensional

generalization of the one-dimensional Hardy inequality,∫
Rn

|u|2

|x|2
dx ≤ 4

(n− 2)2

∫
Rn

|∇u|2dx (93)

appears for n = 3 in the pioneering Leray’s paper on the Navier-Stokes
equations [Le]. The constant factor on the right-hand side is sharp. Since
one frequently deals with divergence-free fields in hydrodynamics, it is natural
to ask whether this restriction can improve the constant in (93).

It is shown in the paper [CM] that this is the case indeed if n > 2 and the
vector field u is axisymmetric by proving that the aforementioned constant
can be replaced by the (smaller) optimal value

4

(n− 2)2

(
1 − 8

(n+ 2)2

)
(94)

which, in particular, evaluates to 68/25 in three dimensions. This result is a
special case of a more general one concerning a divergence-free improvement
of the multi-dimensional sharp Hardy inequality∫

Rn

|x|2γ−2|u|2dx ≤ 4

(2γ + n− 2)2

∫
Rn

|x|2γ|∇u|2dx . (95)

Let ϕ be a point on the (n−2)-dimensional unit sphere Sn−2 with spher-
ical coordinates {θj}j=1,...,n−3 and ϕ, where θj ∈ (0, π) and φ ∈ [0, 2π). A
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point x ∈ Rn is represented as a triple (ρ, θ,ϕ), where ρ > 0 and θ ∈ [0, π].
Correspondingly, we write u = (uρ, uθ,uϕ) with uϕ = (uθn−3 , ..., uθ1 , uϕ).

The condition of axial symmetry means that u depends only on ρ and θ.

For higher dimensions, our result is as follows.

Theorem 11.1 Let γ ̸= 1 − n/2, n > 2, and let u be an axisymmetric
divergence-free vector field in C∞

0 (Rn). We assume that u(0) = 0 for γ <
1 − n/2. Then ∫

Rn

|x|2γ−2|u|2dx ≤ Cn,γ

∫
Rn

|x|2γ|∇u|2dx (96)

with the best value of Cn,γ given by

Cn,γ =
4

(2γ + n− 2)2

(
1 − 2

n+ 1 + (γ − n/2)2

)
(97)

for γ ≤ 1, and by

C−1
n,γ =

(n
2

+ γ − 1
)2

+min
{
n− 1, 2 + min

x≥0

(
x+

4(n− 1)(γ − 1)

x+ n− 1 + (γ − n/2)2

)}
for γ > 1.

The two minima in the last equality can be calculated in closed form, but
their expressions for arbitrary dimensions turn out to be unwieldy, and we
omit them.

However, the formula for C3,γ is simple.

Corollary 11.2 For n = 3 inequality (96) holds with the best constant

C3,γ =


4

(2γ + 1)2
· 2 + (γ − 3/2)2

4 + (γ − 3/2)2
, for γ ≤ 1

4

8 + (1 + 2γ)2
, for γ > 1.

(98)

For n = 2, we obtain the sharp constant in (96) without axial symmetry of
the vector field.

Theorem 11.3 Let γ ̸= 0, n = 2, and let u be a divergence-free vector field
in C∞

0 (R2). We assume that u(0) = 0 for γ < 0. Then inequality (96) holds
with the best constant

C2,γ =


γ−2 1 + (1 − γ)2

3 + (1 − γ)2
for γ ∈ [−

√
3 − 1,

√
3 − 1]

(γ2 + 1)−1 otherwise.

(99)
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12 An application of p-capacity to Poincaré’s

inequality

The p-capacity has other applications to the theory of Sobolev spaces, quite
different form those dealt with before. To give an example, I shall discuss
the usefulness of p-capacity in the study of the Poincaré type inequality for
functions defined on the cube {x ∈ Rn : |xi| < d/2, i = 1, . . . , n}∫

Qd

|u(x)|pdx ≤ C

∫
Qd

|∇u|pdx. (100)

We assume that the function u vanishes on a compact subset F of Qd.
Clearly, (100) fails if F is empty. For the one-dimensional case, one point

(F = {0}) is sufficient for the Poincaré inequality to hold:

u(x) = u(x) − u(0) =

∫ x

0

u′(t)dt,

and thus ∫ 1

0

|u(x)|pdx ≤
∫ 1

0

∣∣∣ ∫ x

0

u′(t)dt
∣∣∣pdx ≤

∫ 1

0

|u′|pdx.

By using Sobolev’s imbedding theorem one can prove that this is also suf-
ficient (and, of course, necessary) for (100) if p > n > 1. However, for
1 < p ≤ n a one-point set F is not sufficient for (100). Let us check this for
the more difficult case p = n.

Consider the function

uε(x) := η
(∣∣∣ log |x|

log ε

∣∣∣)
where η is a piecewise linear function on (0,∞) such that

η(t) = 1 for t < 1, η(t) = 0 for t > 2.

Clearly,

|∇uε(x)| ≤
max |η′|
|x|| log ε|

,

and hence ∫
Qd

|∇uε|ndx ≤ 1

| log ε|n

∫
ε>|x|>ε2

dx

|x|n

=
1

| log ε|n

∫ ε

ε2

dr

r
=

1

| log ε|n−1
→ 0,
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as ε→ 0, contradicting (100).
We will show that the positivity of p-capacity is necessary and sufficient

for inequality (100) with n > p ≥ 1. The case n = p is similar, but differs
slightly in details and therefore will not be discussed here. The complete
treatment including the non-trivial case of derivatives of higher order can be
found in Ch. 10 of [M4].

Let C0,1 be the space of functions subject to the uniform Lipschitz con-
dition in Rn. Also, let C0,1

0 be the subspace of C0,1 containing functions with
compact supports. For any subset E ⊂ Rn we denote by C0,1(E) the set of
all Lipschitz functions on E.

The following inequality is well-known

∥u− ū∥pLp(Qd) ≤ c dp
∫
Qd

|∇u|pdx, (101)

where {Qd} is the family of closed concentric cubes with edge length d > 0
and faces parallel to the coordinate planes, u ∈ C0,1(Qd) and ū = d−n

∫
Qd
udx

is the mean value of u.
Another classical inequality to be used in the sequel is Hardy’s inequality:∫

Rn

|u|p

|x|p
dx ≤ c

∫
Rn

|∇u|pdx, (102)

where p < n and u is an arbitrary function in C0,1
0 (Rn).

In this section, we deal with the p-capacity of compact sets in Rn, i.e. we
set Ω = Rn in Definition 6.1.

Theorem 12.1 (see [M3] and [M4], Ch. 10) If u ∈ C0,1(Qd) vanishes on a
compact set F ⊂ Qd, then∫

Qd

|u|pdx ≤ c0d
n

cappF

∫
Qd

|∇u|pdx, (103)

where n > p ≥ 1 and c0 depends only on n and p.

Proof. (The proof is the same for any Lipschitz domain.) We normalize |u|
by

∫
Qd

|u|pdx = dn i.e. |u|p = 1. By the Hölder inequality we obtain

|u| ≤ (|u|p)1/p = 1.

Clearly,
1 − |u| = d−n/p(∥u∥p − ∥|u|∥p) ≤ d−n/p∥u− u∥p,
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where ∥u∥p = (
∫
Qd

|u|pdx)1/p.

Hence and by (101)

∥u− u∥p ≤ c d∥∇u∥p

we obtain

1 − |u| ≤ cd1−n/p
( ∫

Qd

|∇u|pdx
)1/p

.

Denoting φ = 1−|u|, we have φ̄ ≥ 0 and we can rewrite the inequality above
as

φ̄p ≤ c dp−n
∫
Qd

|∇φ|pdx.

Then
∥φ∥p = ∥(φ− φ̄) + φ̄∥p ≤ ∥φ− φ̄∥p + ∥φ̄∥p

and
∥φ∥p ≤ c d∥∇φ∥p, (104)

Let us extend φ outside Qd by reflection in the faces of Qd, so that the
extension φ̃ satisfies∫

Q3d

|∇φ̃|pdx = 3n
∫
Qd

|∇φ|pdx,
∫
Q3d

|φ̃|pdx = 3n
∫
Qd

|φ|pdx.

Denote by η a piecewise linear function, equal to 1 on Qd and zero outside
Q2d, so that |∇η| ≤ cd−1. Then

cappF ≤
∫
Q2d

|∇(φ̃η)|pdx ≤ c
( ∫

Qd

|∇φ|pdx+ d−p
∫
Qd

φpdx
)
.

Taking into account that |∇φ| = |∇u| almost everywhere and using (104),
we obtain

cappF ≤ c0

∫
Qd

|∇u|pdx.

The last inequality is equivalent to the desired estimate.
The following assertion shows that the previous theorem is precise in a

certain sense.

Theorem 12.2 Let n > p ≥ 1 and let∫
Qd/2

|u|pdx ≤ C

∫
Qd

|∇u|pdx (105)
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for all u ∈ C0,1(Qd) vanishing on the compact set F ⊂ Qd. If

cappF ≤ γdn−p, (106)

where γ is a sufficiently small constant depending on n and p, then

C ≥ c dn

cappF
. (107)

Proof. Let ε > 0 and let φε be a function in C0,1
0 (Rn) such that φε = 1 on

F , 0 ≤ φε ≤ 1 and ∫
Rn

|∇φε|pdx ≤ cappF + ε.

Put u = 1 − φε in (105). Then

(d/2)n/p − ∥φε∥Lp(Qd/2) ≤ C1/p(cappF + ε)1/p. (108)

Using Hardy’s inequality (102), we obtain

∥φε∥Lp(Qd/2) ≤ c d
( ∫

Rn

φpε
dx

|x|p
)1/p

≤ c0 d∥∇φε∥Lp(Rn) ≤ c0 d(cappF + ε)1/p.

This estimate and (108) imply

(d/2)n/p ≤ (C1/p + c0d)(cappF )1/p. (109)

If the constant γ satisfies

γ1/p ≤ 2−1−n/pc−1
0

we obtain from (106) and (109) that

2−1(d/2)n/p ≤ C1/p(cappF )1/p.

The result follows.
Results of a similar nature, more general than Theorems 12.1 and 12.2

can be found in [M3] and [M4], Ch.10. I give some statements.

Let F be a compact subset of Ω and let

capl(F,Ω)=inf
{∫

|∇lu(x)|2dx : u = 1 in a neighbourhood of F, u ∈ C∞
0 (Ω)

}
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Theorem 12.3 (1) If F is a closed subset of Qd, then the inequality

∥u∥2
L2(Qd) ≤ c(l, n)

(
d2∥∇u∥L2(Qd) +

dn

capl(F,Q2d)
∥∇lu∥2

L2(Qd)

)
holds for all functions u ∈ C∞(Qd) that vanish on F .

(2) If

∥u∥2
L2(Qd) ≤ C

l∑
j=1

d2(j−l)∥∇ju∥2
L2(Qd)

for all u ∈ C∞(Qd) that vanish in a neighbourhood of F and if

capl(F,Q2d ≤ γ dn−2l

with a sufficiently small γ = γ(n, l), then

C ≥ c(l, n)
dn

capl(F,Q2d)
.

For the proof see [Hed], [M4], Ch.10, and [AH].

Noting that for 2l > n

c1d
n−2l ≤ capl(F,Q2d ≤ c2 d

n−2l

for all nonempty F , we have

Corollary 12.4 (1) Let u ∈ C∞(Qd) and let u vanish at some point of Qd.
Then

∥u∥2
L2(Qd) ≤ C

l∑
j=1

d2(j−l)∥∇ju∥2
L2(Qd) (110)

with
C ≤ c1(l, n) d2l.

(2) If (110) holds for all u ∈ C∞(Qd) vanishing at a point in Qd, then

C ≥ c1(l, n) d2l.
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