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COURSE B:

”Weighted Problems for Operators
of Harmonic Analysis

in some Banach Function Spaces”

In Section 1 the reader can find an enlarged version of Abstracts of the course.
Section 2 contains an introductory material for listeners of the course.

1 Contents of lectures 1-3

1.1 Lectures 1-2 : Singular Integrals and Potentials in Weighted
Grand Lebesgue Spaces

Abstracts

In the first two lectures we will discuss the weighted boundedness problems for
various integral operators in generalized grand Lebesgue spaces L

p),θ
w . Namely, the

complete description of weight functions governing one-weight inequalities for the Riesz
transform and the Cauchy singular integral will be done. As a corollary of one of the
mentioned results we obtain that the Cauchy singular integral on a rectifiable curve Γ
is bounded in generalized grand Lebesgue space Lp),θ, 1 < p < ∞, θ > 0, if and only if
Γ is a Carleson curve.

Exploring mapping properties of fractional integrals defined on a bounded domain
it is proved that for the Riesz potential Iα on a finite interval and pair of spaces
(Lp),θ, Lq),θ) 1 < p < q < ∞, θ > 0 with the same positive parameter θ the well-known
Sobolev’s embedding is fails. Nevertheless, for given θ it is possible to characterize those
θ1 for which the mapping Lp),θ → Lq),θ1 is saved. Moreover, the complete description
of the weight functions w for which the operator f → Iα(fwα) is bounded from L

p),θ
w

to L
q),θ1
w is obtained. The similar results for one-sided potentials are also valid.

Finally, we introduce so called grand Morrey space and explore mapping properties
of maximal functions, Calderon-Zygmund singular integrals and potentials given on
the bounded set of quasi-metric measure space.
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1.2 Lecture 3 : Two-weighted Norm Inequalities in

Variable Exponent Lebesgue Spaces

Abstract

The goal of this lecture is to discuss two-weight problems in variable exponent
Lebesgue spaces for double Hardy transform and strong maximal functions of variable
order. For similar problems in classical Lebesgue spaces we refer the reader to the
following books and paper:

[Saw] E. Sawyer, Weighted inequalities for two-dimensional Hardy operator, Studia
Math. 82 (1985), No.1, 1-16.

[Kok-Me-Pe] V. Kokilashvili, A. Meskhi and L. E. Persson. Weighted norm inequal-
ities for integral transforms with product kernels. Math. Research Dev. Ser. Nova,
2009.

[We] A. Wedestig. Weighted inequalities of Hardy, type and their limiting inequal-
ities, PhD Thesis, Department of Mathematics, Luleȧ University of Technology, 2003.

[We] A. Wedestig. Weighted inequalities for the Sawyer two-dimensional Hardy
operator and its limiting geometric mean operator. J. Inequal. Appl., 4(2005), 387-
394.

[Me] A. Meskhi. A note on two-weight inequalities of multiple Hardy-type operators.
J. Funct. Spaces Appl., 3(2005), 223-237.

[Ush] E. Ushakova. Norm inequalities of Hardy and Pólya-Knopp types. PhD,
Department of Mathematicas, Luleȧ University of Technology, 2003.

[Kok-Me] V. Kokilashvili and A. Meskhi. Two-weight estimates for strong frac-
tional maximal functions and potentials with multiple kernels. J. Korean Math. Soc.,
46(2009), N03, 523-550.

Our interest to the above mentioned problems is stipulated by two circumstances:
by needs in various applications to boundary problems in PDE and by the fact that the
strong maximal function, unlike of the Hardy-Littlewood maximal function is bounded
in Lp(·) space if and only if p(x) ≡ const (see [T. Kopaliani. A note on strong maximal
operator in Lp(·)(Rn) spaces. Proc. A. Razmadze Math. Inst. 145 (2007), 4346.]). A
similar phenomenon occurs for the strong fractional maximal function.

Some historical remarks

The celebrated classical Hardy inequality states:
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Theorem A. Let 1 < p < ∞ and let f be a measurable, nonnegative function in
(0,∞). Then

(∫ ∞

0

(
1

x

∫ x

0

f(y)dy

) 1
p
)
≤ p

p− 1

( ∫ ∞

0

fp(x)dx

) 1
p

.

Note at once that weighted Hardy transform in variable exponent Lebesgue spaces was
explored in papers [1]-[14].

Two-weighted boundedness criteria for the Hardy transform

(H1f)(x) =

x∫

0

f(y)dy, f ≥ 0

reads as
Theorem B. Let 1 < p ≤ q < ∞, and let u and v be weight functions on R+. Then

each of the following conditions are necessary and sufficient for the inequality




∞∫

0




x∫

0

f(t)dt




q

v(x)dx




1
q

≤ C




∞∫

0

fp(x)w(x)dx




1
p

(1.1)

to hold for all positive and measurable functions on R+.
a) The Muckenhoupt condition,

AM := sup
x>0




∞∫

x

v(t)dt




1
q



x∫

0

w(t)1−p′dt




1
p′

< ∞. (1.2)

Moreover, the best constant C in (1) can be estimated as follows:

AM ≤ C ≤
(

1 +
q

p′

) 1
q
(

1 +
p′

q

) 1
p′

AM .

b) The condition of L. E Persson and V. D. Stepanov,

APS := sup
x>0

W (x)−
1
p




x∫

0

v(t)W (t)qdt




1
q

< ∞, W (x) :=

x∫

0

w(t)1−p′dt.

Moreover, the best constant C in (1) satisfies the following estimates:

APS ≤ C ≤ p′APS.

E. T. Sawyer found a characterization of two-weight inequality in terms of four
condition for double Hardy transform

(H2f)(x, y) =

x∫

0

y∫

0

f(t, τ)dtdτ
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from Lp
w to Lq

v, 1 < p ≤ q < ∞.
The following statements gives two-weight criteria in terms of just one condition

when the weight on the right-hand side is a product of two weights of single variables.
Theorem C. let 1 < p ≤ q < ∞ and let w(x, y) = w1(x)w2(y). Then the operator

H2 is bounded from Lp
w to Lq

v (1 < p ≤ q < ∞) if and only if the Muckenhoupt’s type
condition

sup
y1,y2>0




∞∫

y1

∞∫

y2

v(x1, x2)dx1dx2




1
q



y1∫

0

y2∫

0

w(x1, x2)
1−p′dx1dx2




1
p′

:= A1 < ∞

is fulfilled.
One of our goals is to establish two-weight estimates condition for double Hardy

transform in variable exponent Lebesgue spaces when the weight on one hand-side is
a product of weights of single variables.

From this result as a corollary we deduce a trace inequality criteria for double Hardy
transform when the exponent of the initial Lebesgue space is a constant. The other
remarkable corollary is that there exists a variable exponent p(x) for which the double
average operator is bounded in Lp(·).

Recall that the strong Hardy-Littlewood maximal function is bounded in Lp(·) if
and only if p(x) ≡ const.

Further we focus on two-weighted problem for fractional maximal function of vari-
able order. In particular, we establish a trace inequality criteria for this operator in
variable exponent Lebesgue spaces.

In the paper [Kok-Me] [V. Kokilashvili and A. Meskhi. Two-weight estimates for
strong fractional maximal functions and potentials with multiple kernels. J. Korean
Math. Soc., 46(2009), N03, 523-550], for constant exponent there was established the
trace inequality criteria.

Let

(Mα,βf)(x, y) := sup
I×J3(x,y)

1

|I|1−α|J |1−β

∫

I

∫

J

|f(t, τ)|dtdτ.

Theorem D. Let 1 < p < q < ∞ and let 0 < α, β < 1/p. Then the following
statements are equivalent:

(i) Mα,β is bounded from Lp(R2) to Lq
v(R2);

(ii)

B5 := sup
I,J

( ∫∫

I×J

v(x, y)dxdy

)
|I|q(α−1/p)|J |q(β−1/p) < ∞,

where I and J are arbitrary bounded intervals in R.
Exploring two-weight problem for the fractional maximal function of variable order,

we prove, in particular, an analogue of Theorem D when the exponent of the initial
Lebesgue space is constant.
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2 Introductory material to COURSE B : Integral

Operators In Some Banach Function Spaces

The proposed introductory material is intended for listeners at Summer School HART2010.
It consists of two parts. In the first part we recall some definitions and known facts
from the Theory of Banach Function Spaces. The main topic of our lectures is Grand
Lebesgue Spaces from the standpoint of the boundedness of integral operators in these
spaces. We give definitions of these spaces and prove their properties. We further give
the proofs of the well known results on the mapping properties of the Hardy transform
and Hardy-Littlewood maximal functions in non-weighted Grand Lebesgue spaces.

In the second part we discuss quasi-metric measure spaces and maximal functions
defined on these spaces. In particular, spaces of homogeneous type (SHT) are defined
and many examples of these spaces are given. Since covering lemmas play an important
role in the investigation of metric properties of maximal functions, we give here quite
a number of covering lemmas. It should be said that the classical covering lemma of
Besikovich, generally speaking, does not hold in SHT.

In conclusion, we give the definition of the Morrey function space on SHT and show
the boundedness of maximal functions on these spaces.

We hope that this brief introductory information will help the listeners to get a
grasp of the problems we are going to discuss at the first two lectures.

3 Banach Function Spaces

In the sequel, Ω denotes an open subset Ω in Rn. Let M0 be the set of all measurable
function whose values lie in [−∞,∞] and are finite a.e. in Ω. Also, let M+

0 be the class
of functions in M0 whose values lie in (0,∞).

Definition 3.1. A mapping ρ : M+
0 → [0,∞] is called a Banach function norm if

for all f , g, fn (n = 1, 2, . . .) in M+
0 , for all constants a ≥ 0 and all measurable subsets

E ⊂ Ω, the following properties hold:

ρ(f) = 0 ⇐⇒ f = 0 a.e. in Ω

ρ(af) = aρ(f)

ρ(f + g) ≤ ρ(f) + ρ(g)

0 ≤ g ≤ f a.e. in Ω =⇒ ρ(g) ≤ ρ(f)

0 ≤ fn ↑ f a.e. in Ω =⇒ ρ(fn) ↑ ρ(f)

|E| < +∞ =⇒ ρ(χ
E
) < +∞

|E| < +∞ =⇒
∫

E

fdx ≤ CEρ(f)

for some constant CE, 0 < CE < ∞, depending on E and ρ but independent of f .
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Definition 3.2. If ρ is a Banach function norm, the Banach space

X = {f ∈ M0 : ρ(|f |) < +∞} (3.3)

is called a Banach Function Space.
For each f ∈ X define

‖f‖X = ρ(|f |). (3.4)

Definition 3.3. If ρ is a function norm, its associative ρ′ is defined on M+
0 by

ρ′(g) = sup

{∫

Ω

fgdx : f ∈ M+
0 , ρ(f) ≤ 1

}
. (3.5)

Definition 3.4. Let ρ be a function norm and let X = X(ρ) be the Banach
Function Space determined by ρ. Let ρ′ be the associate norm of ρ. The Banach
Function Space X ′ = X ′(ρ′) determined by ρ′ is called the associate space of X.

A standard example is that one of Orlicz spaces: the associate space of Lφ is given

by Lφ̃, where φ̃ denotes the complementary function of φ, defined by

φ̃(t) = max{st− φ(s) : s ≥ 0}.

In particular from the definied of ‖f‖X it follows that the norm of a function g in
the associate space X ′ is given by

‖g‖X′ = sup

{ ∫
fgdx : f ∈ M+, ‖f‖X ≤ 1

}
.

Proposition 3.5. Every Banach Function Space X coincides with its second as-
sociate space X ′′.

Proposition 3.6. If X and Y are Banach Function Spaces and X ⊂ Y (continuous
embedding), then Y ′ ⊂ X ′.

Definition 3.7. A function f in a Banach Function Space X is said to have
absolutely continuous norm on X if

lim
n→∞

‖fχ
En
‖ = 0

for every sequence {En}∞n=1 satisfying En ↓ ∅.
The subspace of functions in X with absolutely continuous norm is denoted by Xa.
If X = Xa, then the space X itself is said to have absolutely continuous norm.

Definition 3.8. Let X be a Banach Function Space. The closure in X of the set
of bounded functions is denoted by Xb.

Proposition 3.9. Let X be a Banach Function Space.
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Then
Xa ⊆ Xb ⊆ X.

Corollary. If Xa = X, then Xb = X.

Proposition 3.10. The dual Banach Space X∗ of a Banach Function Space X is
canonically isometric to the associate space X ′ if and only if X has absolutely contin-
uous norm.

Proposition 3.11. A Banach function space is reflexive if and only if both X and
its associate space X ′ have absolutely continuous norm.

Let m denote the Lebesgue measure.

Definition 3.12. The distribution function mf of a function f in M+
0 is given by

mf (λ) = m{x ∈ Ω : |f(x)| > λ} (λ ≥ 0).

Two functions are said to be equimeasurable if they have the same distribution
functions.

Definition 3.13. Let ρ be a function norm. Then ρ is said to be rearrangement-
invariant if ρ(f) = ρ(g) for every pair of equimeasurable functions f and g.

The decreasing rearrangement f ∗ of f is certainly equimeasurable with f and in
some sense f ∗ may be regarded as the canonical choice of a function equimeasurable
with f .

The examples of rearrangement invariant Banach Function Spaces are Lebesgue
spaces, Orlicz space, Lorentz spaces etc.

4 Grand and Small Lebesgue Spaces

Let Ω be a bounded set in Rn.
The grand Lebesgue space is the set of measurable functions for which

‖f‖p) := sup
( ε

|Ω|
∫

Ω

|f(x)|p−εdx
) 1

p−ε
< ∞.

This space is denoted by Lp)(Ω). Lp) is a rearrangement invariant Banach function
space.

Let us prove that Lp)(0, 1) is complete. Let (fn)n be a Cauchy sequence Lp), i.e.

lim
m→∞
n→∞

sup
0<ε<p−1

(
ε

∫ 1

0

|fm(x)− fn(x)|p−εdx

) 1
p−ε

= 0.
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Hence for an arbitrary η > 0 there exists N ∈ N such that

(
ε

∫ 1

0

|fm(x)− fn(x)|p−εdx

) 1
p−ε

<
η

3

for an arbitrary ε, 0 < ε < p− 1, when m > N , n > N .
Consequently (fn)n is a Cauchy sequence in Lp−ε for an arbitrary ε, 0 < ε < p− 1

and let f be its limit in Lp−ε.
Let n > N . According to the definition of the supremum there exists an ε0 (de-

pending, generally speaking, on n), 0 < ε0(n) < p− 1, such that

‖f − fn‖p) = sup
0<ε<p−1

(
ε

∫ 1

0

|f(x)− fn(x)|p−εdx

) 1
p−ε

≤

≤
(

ε0(n)

∫ 1

0

|f(x)− fn(x)|p−ε0(n)dx

) 1
p−ε0(n)

+
η

3
.

Furthermore, there exists N1 ∈ N such that for m > N1

(
ε0(n)

∫ 1

0

|fm(x)− f(x)|p−ε0(n)dx

) 1
p−ε0(n)

<
η

3
.

Therefore

‖f − fn‖p) ≤
(

ε0(n)

∫ 1

0

|fn(x)− fm(x)|p−ε0(n)dx

) 1
p−ε0(n)

+

+

(
ε0(n)

∫ 1

0

|fm(x)− f(x)|p−ε0(n)dx

) 1
p−ε0(n)

+
η

3
≤

≤ η

3
+

η

3
+

η

3
= η.

when n > N and m > N1.
Thus

‖f − fn‖p) < η

for an arbitrary n > N .

Example. ϕ(x) = x−
1
p , 1 < p < ∞ is an example of a function such that ϕ ∈

Lp)/Lp.
The following continuous embeddings

Lp ⊂ Lp) ⊂ Lp−ε, 0 < ε ≤ p− 1

hold. In the framework of Orlicz spaces we have

Lp log−1 L ⊂ Lp) ⊂ ∩
α<−1

Lp logα L.
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To find an explicit expression of the ”best” functional Np′ , usually called the asso-
ciate norm of ‖ · ‖p), such that the following Hölder inequality holds

1

|Ω|
∫

Ω

fgdx ≤ ‖f‖p)Np′(g),

we introduce the auxiliary Banach space L(p′ .
Let 1 < p < ∞, p′ = p

p−1
. By L(p′ we denote the set of all functions g ∈ M0 defined

on Ω which can be represented in the form g(x) =
∞∑

k=1

gk(x) (convergence a.e.) and

such that the following norm

‖g‖(p′ = inf

{ n∑

k=1

inf
0<ε<p−1

ε−
1

p−ε

(
1

|Ω|
∫

Ω

|gk|(p−ε)′dx

) 1
(p−ε)′

}
,

is finite, where the final inf is taken with respect to all representations g(x) =
∞∑

k=1

gk(x).

Note that the following Hölder type inequality

1

Ω

∫

Ω

fgdx ≤ ‖f‖p), ‖g‖(p′

holds.
After the above definition, the small Lebesgue space is defined by

Lp)′(Ω) := {g ∈ M0 : ‖g‖p)′ < +∞}

where
‖g‖p)′ = sup

0<ψ≤|g|
ψ∈L(p′ (Ω)

‖ψ‖(p′ .

It turns out that Lp)′(Ω) is a Banach function space whose norm satisfies the Fatou
property i.e.

0 ≤ gn ↑ g a.e. in Ω =⇒ ‖gn‖p)′ ↑ ‖g‖p)′ .

Proposition 4.14. Let 1 < p < +∞ and Ω ⊂ Rn, |Ω| < +∞.
The following Hölder inequality holds

1

|Ω|
∫

Ω

fgdx ≤ ‖f‖p)‖g‖p)′ , ∀f ∈ Lp), g ∈ Lp)′ .

Proposition 4.15. The spaces Lp) and Lp)′ are are not reflexive. For the space
Lp) the non-reflexivity follows from the fact that there exists a function F , for which
the norm ‖F‖p) is not absolute continuous.

Indeed such a function F is

F (x) = x−
1
p , x ∈ (0, 1),
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for which

lim
a→0

sup
ε>0

(
ε

a∫

0

x−
p−ε

p dx

) 1
p−ε

6= 0.

Proposition 4.16. The set C∞
0 is not dense in Lp). Its closure [Lp]p) consists of

functions f ∈ Lp) such that

lim
ε→0

ε

∫

Ω

|f |p−εdx = 0. (4.1)

Proof. First we show that if f ∈ [Lp]p), then (1) holds for f . Indeed, since f ∈
[Lp]p), we have that there is a sequence of functions fn ∈ Lp such that ‖f −fn‖Lp) → 0.

Let us take δ > 0. Choose n0 such that ‖f−fn0‖Lp) < δ
2

and fn0 ∈ Lp. Now observe
that for fn0 we have (by Hölder’s inequality)


 ε

|Ω|
∫

Ω

|fn0|p−ε




1
p−ε

≤ ε
1

p−ε


 1

|Ω|
∫

Ω

|fn0|p



1
p

→ 0 as ε → 0.

Hence there is ε0 > 0 such that when ε < ε0, then

 ε

|Ω|
∫

Ω

|fn0|p−ε




1
p−ε

<
δ

2
.

Finally, 
 ε

|Ω|
∫

Ω

|f |p−ε




1
p−ε

≤

 ε

|Ω|
∫

Ω

|f − fn0|p−ε




1
p−ε

+


 ε

|Ω|
∫

Ω

|fn0|p−ε




1
p−ε

≤ ‖f − fn0‖Lp)(Ω) +
δ

2

≤ δ

2
+

δ

2
= δ

when ε < ε0.

Let us now see that there is f ∈ Lp)\ [Lp]p). Indeed, let f(t) = t−
1
p . Then f ∈

Lp)(0, 1), but

ε

1∫

0

|f(t)|p−εdt




1
p−ε

=


ε

1∫

0

t−
p−ε

p dt




1
p−ε

= p
1

p−ε 9 0

as ε → 0. 2

We give the following known characterization of the grand and small Lebesgue
spaces (in the case µΩ = 1, for simplicity):

‖f‖p) ≈ sup
0<t<1

(1− ln t)−
1
p

( ∫ 1

t

|f ∗(s)|pds

) 1
p
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and

‖f‖(p ≈
∫ 1

0

(1− ln t)−
1
p

( ∫ t

0

|f ∗(s)|pds

) 1
p dt

t
,

where f ∗ is a decreasing rearrangement of f defined as

f ∗(t) = sup
|E|=t

inf
E

f, t ∈ (0, 1).

5 Hardy’s Inequality and Maximal Theorem

in Grand Lebesgue Spaces

The classical, celebrated Hardy inequality is stated in the following theorem.
Theorem A. Let 1 < p < ∞ and let f be a measurable, nonnegative function in

(0, 1). Then ( ∫ 1

0

(
1

x

∫ x

0

f(y)dy

) 1
p
)
≤ p

p− 1

( ∫ 1

0

fp(x)dx

) 1
p

.

Here we discuss the Hardy inequality in grand and small Lebesgue spaces introduced
in Section 2.

Theorem 3.1. [A. Fiorenza, B. Gupta and P. Jain] Let 1 < p < ∞. There exists
a contact C(p) > 1 such that

∥∥∥∥
1

x

∫ x

0

f(y)dy

∥∥∥∥
p)

≤ C(p)‖f‖p) (5.1)

for nonnegative measurable functions f on [0,1].

Proof. Let 0 < σ < p− 1. we have

∥∥∥∥
1

x

∫ x

0

f(y)dy

∥∥∥∥
p)

= max

{
sup

0<ε<σ

(
ε

∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p−ε

dx

) 1
p−ε

,

sup
0<ε<p−1

(
ε

∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p−ε

dx

) 1
p−ε

}
≤

≤ max

{
sup

0<ε<σ

(
ε

∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p−ε

dx

) 1
p−ε

,

( sup
σ≤ε<p−1

ε
1

p−ε )σ−
1

p−σ σ
1

p−σ

( ∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p−σ

dx

) 1
p−σ

}
≤

≤ (p− 1)σ−
1

p−σ

{
sup

0<ε≤σ

(
ε

∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p−ε

dx

) 1
p−ε

.
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Now take 0 < ε ≤ σ, so that p − ε > 1. Applying the Hardy inequality with the

exponent p replaced by p− ε, and multiplying both sides by ε
1

p−ε , we get

(
ε

∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p−ε

dx

) 1
p−ε

≤ p− ε

p− ε− 1

(
ε

∫ 1

0

fp−ε(g)dx

) 1
p−ε

.

If we take the sup over 0 < ε ≤ σ on both sides, the previous inequality becomes

sup
0<ε≤σ

(
ε

∫ 1

0

(
1

x

∫ x

0

f(y)dy

) 1
p−ε

dx

) 1
p−ε

≤ p− σ

p− σ − 1
sup

0<ε<σ

(
ε

∫ 1

0

f p−ε(x)dx

) 1
p−ε

.

and therefore

∥∥∥∥
1

x

∫ x

0

f(y)dy

∥∥∥∥
p)

≤ (p− 1)σ−
1

p−σ
p− σ

p− σ − 1
sup

0<ε<p−1

(
ε

∫ 1

0

fp−ε(y)dy

) 1
p−ε

.

Letting

C(p) := inf
0<σ<p−1

(p− 1)σ−
1

p−σ
p− σ

p− σ − 1
> 1,

we get the desired inequality (1). 2

Theorem 3.2. [Fi-Ju-I] Let 1 < p < ∞. There exists a constant C(p) > 1 such
that ∥∥∥∥

1

x

∫ x

0

f(y)dy

∥∥∥∥
(p

≤ C(p)‖f‖(p (5.2)

for all nonnegative measurable functions f on [0, 1].

Proof. The inequality (2) can be easily deduced from the expression of norm (see
Section 2), using the rearrangement-invariance and standard Hardy inequality

∥∥∥∥
1

x

∫ x

0

f(y)dy

∥∥∥∥
(p

≤ C(p)

∫ 1

0

(1− log t)−
1
p

( ∫ t

0

(
1

x

∫ x

0

f(y)dy

)p

dx

) 1
p dt

t
≤

≤ C(p)p

p− 1
‖f‖(p.

To give the proof of boundedness of Hardy-Littlewood maximal function we use an
important relation between rearrangements and maximal operator

Mf(x) = sup
(0,1)⊃I3x

1

|I|
∫

I(x∈(0,1))

f(y)dy

given by the well-known Herz theorem (see. e.g. [Ben-Sha], Theorem 3. (10, p.125))
through the notion of decreasing rearrangement f ∗ of f .

Let

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds, t ∈ [0, 1].

13



2

Theorem [He]. There are absolute constants c and c′ such that for all f ∈ L1(0, 1),

c(Mf)∗(t) ≤ f ∗∗(t) ≤ c′(Mf)∗(t), t ∈ (0, 1). (5.3)

Corollary 5.17. Let 1 < p < ∞. There exists a constant C(p) > 1 such that

‖Mf‖p) ≤ C(p)‖f‖p)

for all f ∈ L1(0, 1).

Proof. Since
‖f‖p = ‖f ∗‖p,

from (3) and Theorem 3.2 applied to f ∗ we get

‖Mf‖p) = ‖(Mf)∗‖p) ≤ C‖f ∗∗‖p) = C‖f‖p)

from which the assertion follows. 2

We remark that the general result by Lorentz and Shimogaki on the characteri-
zation of the rearrangement-invariant spaces on which the Hardy-Littlewood maximal
operator is bounded (see e.g. [Ben-Sha]) cannot be appliced, due to the fact that the
underlying measure space is finite.

6 Generalized Grand and Small Lebesgue Spaces

In this section we deal with a generalization of the grand and small Lebesgue spaces,
namely the spaces Lp),θ(Ω), θ > 0, defined by

‖f‖p),θ = sup
0<ε<p−1

(
εθ

|Ω|
∫

Ω

|f |p−εdx

) 1
p−ε

and the spaces L(p′,θ(Ω), θ > 0, defined by

‖g‖(p′,θ = inf
g=

∞∑
k=1

gk

{ ∞∑

k=1

inf
0<ε<p−1

ε−
θ

p−ε

(
1

|Ω|
∫

Ω

|gk|(p−ε)′dx

)} 1
(p−ε)′

.

For θ = 0 we have ‖f‖p),0 = ‖f‖p (this follows from the classical Hölder’s inequality
and Theorem 194 p. 142 of [Hardy, Littlewood and Polya], while ‖f‖(p′,0 = ‖f‖p′ (this
follows from the classical Hölder’s and Minkowski’s inequalities). For θ = 1 such spaces
reduce obviously to the spaces Lp)(Ω) and L(p(Ω), respectively.

For each g ∈ M0 we set

‖g‖p)′,θ = sup
0≤ψ≤|g|

‖ψ‖(p′,θ.

14



Proposition 6.18. The space defined by

Lp)′,θ(Ω) = {g ∈ M0 : ‖g‖p),′θ < +∞}
is a Banach Function Spaces, and is associate space of Lp),θ(Ω).

Proposition 6.19. Let (fm) be a monotone decreasing sequence (i.e. fm ≤ fm+1,
m ∈ N) such that sup

m
‖fm‖(p′,θ = M < ∞. Then the function f = sup

m
fm is such that

f ∈ L(p′,θ(Ω), fm ↗ f a.e. and fm → f in L(p′,θ(Ω).

Proposition 6.20. The space L(p′,θ(Ω) is a Banach Function Space and

Lp)′,θ(Ω) ≡ L(p′,θ(Ω)

and therefore

‖g‖p)′,θ = inf
g=

∑
gk

{ ∞∑

k=1

inf
0<ε<p−1

ε−
θ

p−ε

(
1

|Ω|
∫

Ω

|gk|(p−ε)′dx

) 1
(p−ε)′

}
.

Proof. Let us observe that since ‖g‖(p′,θ is an order preserving norm, then

‖ψ‖(p′,θ ≤ ‖f‖(p′,θ ∀ψ ∈ L(p′,θ(Ω), ψ ≤ |f |
hence

‖f‖p)′,θ ≤ ‖f‖(p′,θ

Let us prove the opposite inequality. To this aim, let f be such that ‖f‖p)′,θ < ∞
otherwise there is nothing to prove. Let

fn = min{|f |, n}.
The sequence (fn) verifies the hypothesis of Proposition 4.2, so for |f | = supn fn we

have |f | ∈ L(p′,θ(Ω) and replacing ψ by |f | in the definition of ‖f‖p)′,θ, we obtain

‖f‖p)′,θ ≥ ‖ |f | ‖(p′,θ = ‖f‖(p′,θ

The proof is over. 2

As a consequence of Propositions 4.1 and 4.3, we get

Corollary 6.21. The following Hölder inequality holds

1

|Ω|
∫

Ω

fgdx ≤ ‖f‖p),θ‖g‖(p′,θ

and ‖ · ‖(p′,θ is the smallest norm for which the last inequality holds.

Lemma 6.22. Let Fn ⊂ Ω, n ∈ N, be such that χFn ↓ 0 a.e. in Ω and let g be any
function in L(p′,θ(Ω). Then

‖gχFn‖(p′,θ → 0.
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Corollary 6.23. The Banach Function Space L(p′,θ has absolutely continuous norm
and therefore the set of bounded functions is dense in L(p′,θ)(Ω).

Proposition 6.24. The dual of L(p′,θ(Ω) is canonically isometric to the associate
space of L(p′,θ(Ω) and the following relation holds

(L(p′,θ(Ω))∗ = (L(p′,θ(Ω))∗ = Lp),θ(Ω).

Proposition 6.25. The subspace C∞
0 (Ω, Rn) is not dense in f ∈ Lp),θ(Ω). Its

closure consists of functions f ∈ Lp),θ(Ω) such that

lim
ε→0

ε
θ
p‖f‖p−ε = 0.

The proof is based on the same arguments as the proof of Proposition 2.3.

7 Spaces of Homogeneous Type

Definition 7.26. A space of homogeneous type (SHT in the following) (X, d, µ)
is a topological space endowed with a measure µ such that the space of compactly
supported continuous functions is dense in L1(X, µ) and there exists a non-negative
real-valued function d : X ×X → R1 satisfying

(i) d(x, x) = 0 for all x ∈ X.

(ii) d(x, y) > 0 for all x 6= y, x, y ∈ X.

(iii) There is a constant a0 > 0 such that d(x, y) ≤ a0d(y, x) for all x, y ∈ X.

(iv) There is a constant a1 > 0 such that d(x, y) ≤ a1(d(x, z) + d(z, y))

for all x, y, z ∈ X.

(v) For every neighbourhood V of x in X there is r > 0 such that the ball

B(x, r) = {y ∈ X; d(x, y) < r} is contained in V.

(vi) Balls B(x, r) are measurable for every x ∈ X and every r > 0.

(vii) There is a constant b > 0 such that µB(x, 2r) ≤ bµB(x, r) < ∞
for every x ∈ X and every 0 < r < ∞.

Let us observe that a standard definition of an SHT requires that X is a metric
space. However, a space X with the above properties is always metrizable (see later in
this chapter).

A classical example of an SHT is of course the space Rn with the Euclidean distance
and the Lebesgue measure. Some of the familiar facts, valid in Rn, do not remain
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valid when passing to a general SHT. This causes technical difficulties, for instance,
considering problems with weights.

Several examples of spaces of homogeneous type follow:
(1) Let X = Rn, and let d be the Euclidean distance. Put dµ(x) = |x|αdx, α ≥ 0.
We see that several Borel measures can be associated to a quasidistance in order

to get an SHT.

(2) Let X = Rn, d(x, y) =
n∑

j=1

|xj − yj|αj with positive α1, . . . , αn, and let µ be

the Lebesgue measure. Generally, with αj’s not all equal, the last formula defines an
anisotropic distance. This shows that several quasidistances can be associated to a
Borel measure µ, getting an SHT.

(3) X = (0, 1), d(x, y) being the length of a smallest dyadic interval containing x
and y.

(4) X = [−1, 1], d the usual distance, and dµ(x) = (1 − x)α(1 + x)βdx, where
α, β > −1.

(5) X = [0,∞), d(x, y) = |xr − yr|, the measure dµ = xdx.
(6) Let Γ ⊂ C be a connected rectifiable curve and ν be an arclength measure on

Γ. By definition, Γ is regular if

ν(Γ ∩B(z, r)) ≤ cr

for every z ∈ C and r > 0.
For r smaller than half the diameter of Γ, the reverse inequality

ν(Γ ∩B(z, r)) ≥ r

holds for all z ∈ Γ. Equipped with ν and the Euclidean metric, the regular curve Γ
becomes an SHT.

(7) A piecewise smooth Lipschitz manifold X ⊂ Rn with an induced metric and a
Hausdorff measure of an appropriate dimension.

(8) The boundary of a Lipschitz bounded domain in Rn with the corresponding
harmonic measure is an SHT.

(9) It is known (see [Volberg and Konyagin., Dokl. Akad. Nauk SSSR 278, 3(1984),
783-786. English transl.: Soviet Math. Dokl. 30(1984), 453-456]; and [Volberg and
Konyagin, On measures with the doubling condition. Izv. Akad. Nauk SSSR, Ser.
Mat. 51(1987), N 3, 666-675. English transl.: Math. USSR Izv. 30(1988), N 3, 629-
638]) that on an arbitrary closed subset of Rn there exists a measure satisfying property
(vii) from the definition of an SHT (the doubling condition). Hence, any closed subset
of Rn with the Euclidean metric and such a measure is an example of an SHT.

(10) Every compact Riemann manifold with the usual metric and measure is an
SHT.

(11) The boundary of a strictly pseudoconvex domain in Cn with Lebesgue measure
and anisotropic distance associated with the complex structure. For instance, take the

unit sphere
n∑

j=1

|zj|2 = 1, d(z, w) = |1− zw|1/2 =

∣∣∣∣1−
n∑

j=1

zjwj

∣∣∣∣
1/2

.

(12) X = [0,∞) with the measure rn−1dr and the usual Euclidean distance.
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(13) X =
∑

n−1 = {x ∈ Rn; |x| = 1}, and µ the (unique) rotation invariant measure

on
∑

n−1 such that µ
∑

n−1 = 1, and d(x, y) = |1− xy|α, α > 0, x · y =
n∑

j=1

xjyj.

In the following we shall need several facts about the geometry of SHTs. The first
of them is the following principle (see e. g. the introductory Lemma 1 in Strömberg
and Torchinsky. Weights, sharp maximal functions and Hardy spaces. Bull. Amer.
Math. Soc. 3(1980), 1053-1056.):

Proposition 7.27. Given c > 0, there is an a2 such that if B(x, r) ∩ B(y, r′) 6= ∅
and r ≤ r′, then B(x, r) ⊂ B(y, a2r

′). Moreover, a2 = a1(1 + ca1(1 + a0)).

Proof. Let z ∈ B(x, r), z1 ∈ B(x, r) ∩B(y, r′). Then we have

d(y, z) ≤ a1(d(y, z1) + d(z1, z)) ≤ a1(d(y, z1) + a1(d(z1, x) + d(x, z)))

≤ a1(r
′ + a1(a0r + r)) ≤ a1(r

′ + ca1(a0 + 1)r′)

= a1(1 + ca1(a0 + 1))r′.

2

Proposition 7.28. Let (X, d, µ) be an SHT. Then there is a constant h = h(b, a1)
such that every ball B(x, r) cannot contain more than hn points {xj} for which
d(xi, xj) > r2−n for i 6= j.

The proof of this proposition can be found in R.Coifmann and G.Weiss ”Analyse
harmonique non-commutative sur certains espaces homogénes” (see p. 68), Lecture
Notes in Math., Vol. 242, Springer-Verlag, Berlin, 1971.

8 Homogeneous Groups

We shall describe the particularly important examples of an SHT having a group
structure. A. homogeneous group is a simply connected nilpotent Lie group G on a Lie
algebra g with a one-parameter group of transformations dt = exp(A log t), t > 0, where
A is a diagonalized linear operator on g with positive eigenvalues. In a homogeneous
group the mappings exp ◦δt ◦ exp−1, t > 0, are automorphisms in G, which will be
again denoted by δt. The number Q = trA is the dimension of G. The symbol e will
stand for the neutral element in G.

It turns out that it is possible to equip G with a homogeneous norm r : G → [0,∞),
continuous in G and smooth in G\{e} and satisfying

(i) r(x) = r(x−1) for every x ∈ G;

(ii) r(δtx) = tr(x) for every x ∈ G and t > 0;

(iii) r(x) = 0 iff x = e;
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(iv) there exist c0 > 0 such that

r(xy) ≤ c0(r(x) + r(y)), x, y ∈ G.

A ball in G, centered at x and with radius ρ, is defined as

B(x, ρ) = {y ∈ G; r(xy−1) < ρ}.

Observe that δρB(e, 1) = B(e, ρ).
Let us fix a Haar measure | · | in G such that |B(0, 1)| = 1. Then |δtE| = tQ|E|,

in particular, |B(x, r)| = rQ, x ∈ G, r > 0. (For details see Folland and Stein. Hardy
spaces on homogeneous groups. Math. Notes, Vol. 28, Princeton University Press;
University of Tokyo Press XII, Princeton, New Jersey 1982, p.5)

We shall present several typical examples.
1. The Euclidean n-dimensional space Rn with the operation of addition becomes

a Lie group. Fix a diagonal matrix A = (αij), i, j = 1, . . . , n, and consider the one-
parameter group of transformations δt = exp(A log t) : Rn → Rn. In this way we obtain
a homogeneous group. If A = E, the unit matrix, then the group of transformations
coincides with the group of Euclidean homothetic transformations. In this case we
obtain a homogeneous norm and Q = n.

2. The Heisenberg group is the set of matrices of the form

[x] =




1 x1 x2 · · · xn τ
0 1 0 · · · 0 xn+1
...

...
...

. . .
...

...
0 0 0 · · · 1 x2n

0 0 0 · · · 0 1




, (8.1)

where
τ = x0 + 2−1x′x′′, x′ = (x1, . . . , xn), x′′ = (xn+1, . . . , x2n),

x′x′′ =
n∑

i=1

xixn+i,

equipped with the operation of matrix multiplication. We shall denote this group by
Heis. The dimension of the group is 2n+1 and due to its special form one can describe
it as a manifold with an atlas consisting of a single map. Indeed, let us consider R2n+1

with elements denoted by x = (x0, x
′, x′′), where x0 = τ − 2−1x′x′′. When passing

to this pointwise interpretation the original group multiplication transforms into an
operation ⊗ defined as follows. If x = (x0, x

′, x′′) and y = (y0, y
′, y′′), then

z = (z0, z
′, z′′) = x⊗ y = (x0 + y0 + 2−1(x′y′′ − x′′y′), x′ + y′, x′′ + y′′). (8.2)

Let us denote R2n+1 with the operation ⊗ by Hn and, for brevity, x ⊗ y simply by
xy. In this way an isomorphism is constructed between the Heisenberg group Heis and
Hn, thus Hn and Heis can be identified. Observe that the neutral element [e] of Heis,
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that is, the unit matrix, corresponds to the point e = (0, . . . , 0)︸ ︷︷ ︸
(2n+1)−times

and the inverse of

x = (x0, x
′, x′′) ∈ Hn is −x = (−x0,−x′,−x′′) ∈ Hn. The operator of dilatation

δtx = δt(x0, x
′, x′′) = (t2x0, tx

′, tx′′)

is an automorphism in Hn. The matrix At corresponding to δt has the form

At =




2 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1




The automorphism δt is a certain analogue of a homothety in Euclidean space.
The space Hn can be equipped with a homogeneous norm

|x|Hn =


x2

0 +

(
2n∑

j=1

x2
j

)2



1/4

;

it is easy to show that
|δtx|Hn = t|x|Hn

and that
|x + y|Hn ≤ |x|Hn + |y|Hn , x, y ∈ Hn.

Now one can introduce an H-metric ρ, putting

ρ(x, y) = |y−1x|Hn = (|x0 − y0 − 2−1(x′y′′ − x′′y′)|2 + |x′′′ − y′′′|4)1/4,

where x′′′ = (x′, x′′), y′′′ = (y′, y′′). Observe that ρ is invariant with respect to the
group operation, that is,

ρ(ux, uy) = ρ(x, y), u, x, y ∈ Hn.

9 Some Covering Lemmas

As is well known, and SHT does not generally satisfy the Besicovitch property.
A covering lemma of this type typically fails if the family of balls in question be-
come eccentric as they shrink and tilt as their centers move (see Sawyer and Whee-
den. Weighted inequalities for fractional integrals on Euclidean and homogeneous type
spaces. Amer. J. Math. 114(1992), p.863).
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Below we shall use the following covering lemma, whose proof is taken from Strömberg
and Torchinsky. Weighted Hardy spaces. Lecture Notes in Math., Vol. 1381, Springer-
Verlag, Berlin 1989, p.2.

Lemma 9.29. Let F = {Bα}α∈A be a family of balls which covers a set E.
(1) If sup{radBα; α ∈ A} < ∞, then there is a countable subfamily of pairwise

disjoint balls {BJ} such that E ⊂ ∪NBj, where N = a1(1 + 2a1(1 + a0)) and if
Bj = B(xj, rj), then NBj denotes the ball B(xj, Nrj). Moreover, each ball B in F is
contained in one of the balls NBj and radB ≤ 2radBj.

(2) If sup{radBα; α ∈ A} = ∞ and µE < ∞, then E is contained in some Bα0.

Proof. First let us prove (1). Let M = sup{radBα; α ∈ A}. For each k = 0, 1, 2, . . .
we construct recursively a family {B(xi,k, ri,k)} of balls with the following property:

{B(xi,k, ri,k)} ∈ F , 2−k−1M < ri,k ≤ 2−kM,

and the balls {B(xi,n, ri,n)} are pairwise disjoint for 0 ≤ n ≤ k. We also suppose that
for each k the family is maximal with respect to this property.

If now B = B(x, r) ∈ F , then 2−k−1M < r ≤ 2−kM for some k and B(x, r)
intersects with one of the balls B(xi,n, ri,n) with n ≤ k. In this case we have r < 2ri,n

and by Proposition 1.1.4, B(x, r) ⊂ B(xi,n, Nri,n). Consequently, E ⊂ ∪NBJ .
For (2) let us note that E is bounded. Therefore there is a ball B0 such that E ⊂ B0

and as sup{radBα; α ∈ A} = ∞, then there exists a ball Bα0 such that Bα0 ∩ B0 is
not empty and radBα0 > radB0

2
. Then by Proposition 1.1.4, E ⊂ B0 ⊂ NBα0 . 2

Lemma 1.3′. Suppose E is a bounded set (i.e. contained in a ball) in X such that
for each x ∈ X there is given a ball B(x, r(x)). Then there is a (finite or infinite)
sequence of points xj ∈ E such that {B(xj, r(xj))} is a disjoint family of balls and
{B(xj, a1(1 + 2a0)r(xj))} is a covering of E.

Proof. As the set E is bounded, we may assume that sup{r(x); x ∈ E} < ∞,
otherwise there is a point x ∈ E such that E ⊂ B(x, r(x)) and we are done. Now let
us choose a point x1 ∈ E such that

r(x1) >
1

2
sup{r(x); x ∈ E}.

Suppose that we have chosen x1, x2, . . . , xn−1 and take xn which belongs to

En = E\
n−1⋃
j=1

B(xj, a1(1 + 2a0)r(xj))

and such that

r(xn) >
1

2
sup{r(x); x ∈ En}.

Then we have that

B(xn, r(xn)) ∩B(xj, r(xj)) = ∅, j < n,
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otherwise there is a point y ∈ B(xn, r(xn)) ∩B(xj, r(xj)) and

d(xj, xn) ≤ a1(d(xj, y) + d(y, xn)) ≤ a1(d(xj, y) + a0d(xn, y))

< a1(r(xj) + a0r(xn)) < a1(r(xj) + 2a0r(xj))

= a1(1 + 2a0)r(xj)

but by our assumption xn does not belong to

B(xj, a1(a1 + 2a0)r(xj))

when j < n.
There are two possible cases:
a) If En+1 = ∅ for some n, then the family {B(xj, a1(a1 +2a0)r(xj))}, j ≤ n, covers

E and there is nothing to prove.
b) If this process continues ad infinitum, then r(xn) tend to zero. If this is not the

case, then there exists a positive number ε such that r(xn) > ε. Since the points xn,
n ≥ 1, belong to E and the balls B(xn, r(xn)) are disjoint, then there are infinitely
many points xn in a ball B containing E and

d(xi, xj) > min(r(xi, r(xj)) > ε > 0,

which contradicts Proposition 1.1.5.
Suppose now that there exists a point x in E\⋃∞

n=1 B(xn, a1(a1 + 2a0)r(xn)); then
there is an integer n0 such that r(x) > 2r(xn0 , but we have

r(x) ≤ sup{r(x); x ∈ En0} < 2r(xn0 ,

which proves the lemma. 2

By analogy with the classical situation, lemmas of this type can be used for the
proof of a weak type estimate of maximal function in an SHT.

Given a function f : X → R1, locally integrable with respect to the measure µ, we
define the maximal function

Mf(x) = sup
B3x

1

µB

∫

B

|f(y)|dµ,

where the supremum is taken over all balls B containing x.

Proposition 9.30. There is a constant c > 0 such that

µ{x ∈ X; Mf(x) > λ} ≤ c

λ

∫

{|f(x)|<λ/2}

|f(y)|dµ.

We omit the proof as its principle is well known (cf. e. g. Strömberg and Torchinsky,
Weighted Hardy spaces, Lecture Notes in Math., Vol. 1381, Springer-Verlag, Berlin
1989, p.3 and Coifman and Weiss. Analyse harmonique non-commutative sur certains
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espaces homogénes, Lecture Notes in Math., Vol. 242, Springer-Verlag, Berlin 1971,
p.71).

Since the set of compactly supported continuous functions is dense in L1(X,µ) one
can prove the Lebesgue Differentiation Theorem in a standard way, namely: Given
f ∈ L1(X, µ), then

lim
r→0

(µ(B(x, r)))−1

∫

B(x,r)

f(y)dµ = f(x)

µ-almost everywhere in X.

Proposition 9.31. Let 1 < p < ∞. Then there is a positive constant c0 non-
depending on p such that

‖Mf‖Lp(X,µ) ≤ c0

[
p

p− 1

] 1
p

‖f‖Lp(X,µ) (9.1)

Proof. It is obvious that operator M is of strong type (∞,∞). By Proposition
3.1 this operator is of weak type (1.1). The proof Proposition 3.2 follows directly from
the Marcinkiewicz interpolation theorem. The constant c0 arises from the appropriate
covering Lemma 3.1. 2

Let us denote by Lp,λ(X, µ) the classical Morrey space, where 1 < p < ∞ and
0 ≤ λ < 1, which is the class of all µ-measurable functions f for which the norm

‖f‖Lp,λ(X,µ) = sup
x∈X

0≤r<d


 1

(µB(x, r))λ

∫

B(x,r)

|f(y)|pdµ(y)




1
p

is finite. If λ = 0, then Lp,λ(X, µ) = Lp(X, µ).

Proposition 9.32. Let 1 < p < ∞ and let 0 ≤ λ < 1. Then

‖Mf‖Lp,λ(X,µ) ≤
(

bλ/pc0

(
p

p− 1

) 1
p

+ 1

)
‖f‖Lp,λ(X,µ)

holds, where the positive constant b arises in the doubling condition for µ and c0 is the
constant from (1).

Proof. Let r be a small positive number and let us represent f as follows:

f = f1 + f2,

where f1 = f · χB(x,ar), f2 = f − f1 and a is the positive constant given by a =
a1(a1(a0 +1)+1) (here a0 and a1 are constants arisen in the triangle inequality for the
quasimetric ρ).
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We have that


 1

(µB(x, r))λ

∫

B(x,r)

(Mf)p(a)dµ(a)




1
p

≤


 1

(µB(x, r))λ

∫

B(x,r)

(Mf1)
p(y)dµ(y)




1
p

+


 1

(µB(x, r))λ

∫

B(x,r)

(Mf2)
p(y)dµ(y)




1/p

=: J1(x, r) + J2(x, r)

By applying Proposition 3.2 we have that

J1(x, r) ≤ 1

(µB(x, r))λ/p




∫

X

(Mf1(y))pdµ(a)




1/p

≤ c0(p
′)

1
p (µB(x, r))−λ/p




∫

B(x,ar)

|f(y)|pdµ(y)




1/p

≤ c0b
λ
p (p′)

1
p‖f‖Lp,λ(X,µ),

where p′ = p/(p − 1), c0 is the constant from (1) and b arises from the doubling
condition:

µB(x, ar) ≤ bµB(x, r).

Further, observe that (see also [Kokilashvili-Meskhi, Armen. J. Math. 1 (2008), No.
1, 18-28]) B(x, r) ⊂ B(x, a1(a0 + 1)r) ⊂ B(x, a, r). Hence, if y ∈ B(x, r), then

Mf2(y) ≤ sup
B(x,r)⊂B

1

µB

∫

B

|f |.

Consequently,

J2(x, r) ≤ 1

(µB(x, r))λ/p
(µB(x, r))

1
p sup

B(x,r)⊂B


 1

µB

∫

B

|f |



= µ(B(x, r))
1−λ

p sup
B(x,r)⊂B


 1

µB

∫

B

|f |p



1/p

≤ sup
B

(µB)−λ/p




∫

B

|f |p



1/p

= ‖f‖Lp,λ(X,µ).
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Taking into account the estimates for J1(x, r) and J2(x, r) we conclude that


 1

B(x, r)λ

∫

B(x,r)

(Mf(y))pdµ(y)




1/p

≤ (
c0b

λ/p(p′)1/p + 1
) ‖f‖Lp,λ(X,µ).
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