Exercises on Multiple-Conclusion Logics

ON DUALITY

Exploring symmetry:

- 1. What is the dual $\not\subset$ to the classical implication \supset ?
 - i) Define its rules and its matrices.
 - ii) Define it in terms of other classical connectives.
 - iii) Check that $\{\supset, \not\subset\}$ provide a functionally complete basis for classical logic.
- 2. Can you propose a general semantic method for dualization?
- 3. Check that NAND is dual to NOR.
- 4. What is the dual to the classical bi-implication?
- 5. Check that, in normal modal logics, \square is dual to \lozenge .
- 6. Check that, in first-order classical logic, \forall is dual to \exists .

Extending the intuitions:

7. Consider Łukasiewicz's logic L_3 , defined by the matrices:

\rightarrow	1	$\frac{1}{2}$	0
1	1	$\frac{1}{2}$	0
$\frac{1}{2}$	1	1	$\frac{1}{2}$
0	1	1	1

	Г
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

where $\mathcal{D} = \{1\}$. What is the logic dual to \mathcal{L}_3 ?

Hint: Find first an adequate bivaluation semantics for L_3 .

ON TARSKIAN INTERPRETATIONS. AND BEYOND

Limit and degenerate cases:

8. What happens if one chooses $S = \emptyset$? Which logics can be defined?

9. What if
$$\mathcal{D} \cup \mathcal{U} \neq \mathcal{V}$$
? (GAPS)

10. What if
$$\mathcal{D} \cap \mathcal{U} \neq \emptyset$$
? (GLUTS)

11. What if $Sem = \emptyset$?

Local × Global:

12. Can you exemplify logics having local and global rules such that $\Vdash_{\mathsf{Q}} \not\subseteq \Vdash_{\ell}$?

Indecency (with respect to the cardinalities of the sets of premisses and alternatives):

- 13. Why are there only FOUR indecent logics?
- 14. Show, for each indecent logic, the adequacy of each semantic characterization with respect to the corresponding abstract characterization.
- 15. Check the details of the Paradox of Ineffable Inconsistencies.
- 16. Which of the indecent logics have adequate matrix semantics?

Anything (quodcumque) \times whatever (qualiscumque):

17. What is the semantic difference between ex contradictione sequitur quodlibet $(\Gamma, \alpha, \neg \alpha \Vdash \beta, \Delta)$ and pseudo-scotus $(\Gamma, \alpha, \neg \alpha \Vdash \Delta)$? Give an example of a T-logic that respects the former principle but fails the latter.

Superlogics:

- 18. Given a family of logics $\mathcal{F} = \{\mathcal{L}_i\}_{i \in I} = \{\langle \mathcal{S}, \Vdash_i \rangle\}_{i \in I}$ and its superlogic given by $\mathcal{L}_{\mathcal{F}} = \langle \mathcal{S}, \cap_{i \in I} \Vdash_i \rangle$, check that:
 - i) Properties (C1), (C2), (C2n), (C3) and (CLS) are all preserved from ${\cal F}$ into ${\cal L}_{{\cal F}}.$
 - ii) Property (CC) is not preserved. Given an example of how it can fail.
- 19. Let $\mathcal{F} = \{\langle \mathcal{S}, \vDash_{\mathsf{Sem}[i]} \rangle\}_{i \in I}$ be a family of logics with tarskian interpretations. Then, check that:
 - i) Each logic from the family respects properties (C1), (C2), (C2n), (C3).
 - ii) In the superlogic of \mathcal{F} , we have $\vDash_{\mathcal{F}} = \vDash_{\bigcup_{i \in I} \mathsf{Sem}[i]}$.

ON ABSTRACT CONSEQUENCE RELATIONS

The single-conclusion environment:

- 20. A topological structure $\langle \mathcal{X}, \tau \rangle$ is a structure where τ is a collection of subsets of \mathcal{X} with the restrictions that \varnothing and \mathcal{X} are in τ , and τ is closed under arbitrary unions and under finitely many intersections. The elements of τ are called *open sets* of the topology, and their complements are called *closed sets*. Recall now the axioms characterizing a Kuratowski topological closure.
 - i) Check that dilution [(C3)] is indeed derivable from inclusion [(C1)] and premise-apartness [(CK1)].
 - ii) Check that axioms (C1), (C2), (CK1) and (CK2) adequately characterize the 'semantics of closed sets'.
 - iii) What is the 'logic of open sets' and interior operators?
- 21. Recall the definitions of naive cut [(C2n)] and of full cut [(C2)].
 - i) Check that: $(C1) + (C2) + (C3) \Rightarrow (C2n)$.
 - ii) Check that: $(C1) + (C2n) + (C3) \not\Rightarrow (C2)$. *Hint:* (Béziau 1995)

Consider the logic $\mathcal{L}_{\mathbb{R}}=\langle\mathbb{R},\Vdash\rangle$ such that \mathbb{R} is the set of real numbers, and \Vdash is defined as follows:

$$\begin{array}{ll} \Gamma \Vdash x & \text{ iff } & x \in \Gamma \text{, or} \\ & x = \frac{1}{n} \text{, for some } n \in \mathbb{N} \setminus \{0\} \text{, or} \\ & \text{ there is a sequence } (x_n : n \geq 0) \text{ in } \Gamma \text{ that converges to } x. \end{array}$$

Have a look then at the sequence $(\frac{1}{n}: n \ge 0)$.

iii) Check that compactness $[(CC)] + (C1) + (C2n) + (C3) \Rightarrow (C2)$.

Lindenbaum-Asser Extension Lemma:

- 22. Recall the definition of excessive, closed, and maximal theories. Check that:
 - i) If Γ is excessive, then Γ is closed.
 - ii) In classical logic, excessive \Rightarrow maximal.
- 23. The 'constructive' extension. Check the details of the following alternative version of the Extension Lemma for compact \mathbf{T} -logics. Suppose that \mathcal{S} is a denumerable set $\{\varphi_n\}_{n\in\mathbb{N}}$. Consider a theory Γ such that $\Gamma\not\models\beta$, Let's extend this set into a β -excessive theory Γ_{exc} . Build the chain $\{\Gamma_n\}_{n\in\mathbb{N}}$ by defining:

$$\begin{array}{rcl} \Gamma_0 & = & \Gamma \\ \Gamma_{n+1} & = & \Gamma_n \cup \{\varphi_n\} \text{ if } \Gamma_n, \varphi_n \not \Vdash \beta \\ & \Gamma_n, \text{ otherwise} \end{array}$$

Define $\Gamma_{\rm exc} = \bigcup_{n \in \mathbb{N}} (\Gamma_n)$. Check that $\Gamma_{\rm exc}$ is indeed a β -excessive theory. (For the case of a non-denumerable \mathcal{S} , use transfinite induction.)

The multiple-conclusion environment:

24. Recall the many guises of cut. Check their announced inter-relations:

$$\begin{array}{lll} (\text{C2}) \Leftrightarrow (\text{C2S}) \ \{(\text{C3})\} & (\text{C2Lc}) \ \text{or} \ (\text{C2Rc}) \Rightarrow (\text{C2for}) \\ (\text{C2fin}) \Leftrightarrow (\text{C2for}) \ \{(\text{C3})\} & (\text{C2Lc}) \ \text{or} \ (\text{C2Rc}) \not \rightleftharpoons (\text{C2for}) \\ (\text{C2Lc}) \not \Leftrightarrow (\text{C2Rc}) \not \Leftrightarrow (\text{C2LR}) & (\text{C2}) \not \Rightarrow (\text{C2LR}) \\ (\text{C2Lc}) \ \text{and} \ (\text{C2Rc}) \Leftrightarrow (\text{C2LR}) \ \{(\text{C3})\} & (\text{C2}) \not \rightleftharpoons (\text{C2LR}) \\ & (\text{C2for}) \Rightarrow (\text{C2}) \ \{(\text{CC})\} \end{aligned}$$

Hint: (Shoesmith & Smiley 1978)

To check the framed clauses consider the following logics, over an infinite S:

- i) \mathcal{L}_1 is such that $\Gamma \Vdash \Delta$ iff $|\Gamma| \geq \aleph_0$ or $\Delta \neq \varnothing$
- ii) \mathcal{L}_2 is such that $\Gamma \Vdash \Delta$ iff $\Gamma \neq \emptyset$ or $|\Delta| \geq \aleph_0$
- iii) \mathcal{L}_3 is such that $\Gamma \Vdash \Delta$ iff either $|\Gamma| \geq \aleph_0$ or $|\Delta| \geq \aleph_0$ or $\Gamma \cap \Delta \neq \emptyset$

Completeness and categoricity:

- 25. Check the details of the 2-valued S-Reduction, that is, given a κ -valued semantics $\operatorname{Sem}(\kappa) = \{\S_j : \mathcal{S} \to \mathcal{D}_j \cup \mathcal{U}_j\}_{j \in J}$, define a set of bivaluations $\operatorname{Sem}(2) = \{b_j : \mathcal{S} \to \{T, F\}\}_{j \in J}$ by setting $b_j(\varphi) = T$ iff $\S_j(\varphi) \in \mathcal{D}_j$, and check that $\Sigma \vDash_{\operatorname{Sem}(2)} \Pi$ iff $\Sigma \vDash_{\operatorname{Sem}(\kappa)} \Pi$.
- 26. Fix a compact \mathbf{T} -logic \mathcal{L} and a non-trivial theory Γ of this logic. Check that the semantics given by $\mathsf{Biv}(\mathcal{H})$ is complete for \mathcal{L} , given any collection of theories $\mathcal{H} \supseteq \mathsf{Exc}(\Gamma, \beta, \mathcal{L})$. *Hint:* Use the Extension Lemma.
- 27. Let \mathcal{L} be a multiple-conclusion logic characterized by a bivaluation semantics.
 - i) Check the Lemma on the 'Uniqueness of 2-valued counter-examples': $\Sigma \not\models_b \Pi$ and $\Sigma \not\models_c \Pi \Rightarrow b = c$, for any quasi-partition $\langle \Sigma, \Delta \rangle$ of $\mathcal S$ and any pair of bivaluations b and c.
 - ii) Given a set of quasi-partitions \mathcal{P} , check that $\mathsf{Biv}(\mathcal{P})$ is adequate for \mathcal{L} iff $\mathcal{P} = \mathsf{CQPart}(\mathcal{S}, \mathcal{L})$.
- 28. Fixed some \mathcal{S} , let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T} -logics over \mathcal{S} , and let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S} . Consider a mapping $\mathbf{B}\mathbf{A}$ that to each bivaluation associates the consequence relation determined by it, and a mapping $\mathbf{A}\mathbf{B}$ that to each abstract consequence relation associates the set of bivaluations that respect it. Check that:
 - $\begin{array}{ll} \text{i)} & \langle \mathbf{B}\mathbf{A}, \mathbf{A}\mathbf{B} \rangle \text{ is a Galois connection between } \langle \mathcal{T}^{\mathcal{A}}, \supseteq \rangle \text{ and } \langle \mathcal{T}^{\mathcal{B}}, \subseteq \rangle, \text{ i.e.:} \\ \text{1. (a)} & \mathbf{B}\mathbf{A}(\mathbf{A}\mathbf{B}(\Vdash)) \supseteq \Vdash & \text{for every } \Vdash \in \mathcal{T}^{\mathcal{A}} \\ \text{(b)} & \text{Biv} \subseteq \mathbf{A}\mathbf{B}(\mathbf{B}\mathbf{A}(\mathsf{Biv})) & \text{for every } \mathsf{Biv} \in \mathcal{T}^{\mathcal{B}} \\ \end{array}$
 - 2. both BA and AB are monotonic
 - ii) On either single- or multiple-conclusion T-logics, the converse of I(a) amounts to completeness (as given by S-Reduction + W-Reduction).
 - iii) On single-conclusion \mathbf{T} -logics, the converse of $\mathbf{1}(b)$ cannot be obtained. On multiple-conclusion \mathbf{T} -logics it does obtain and it amounts to categoricity.