Multiple-Conclusion Logics PART 1: "Remarkable Phenomena"

João Marcos http://geocities.com/jm_logica/

Uni-Log 2005

Montreux, CH

Introductory (and Motivational) Course

Bourbaki 1950:

• Algebraic structure: $\langle \mathcal{U}, \mathsf{Op} \rangle$

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \ll \rangle$

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$
- Multiple structures...

Bourbaki 1950:

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$
- Multiple structures...

Logical structure??

Bourbaki 1950:

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$
- Multiple structures...

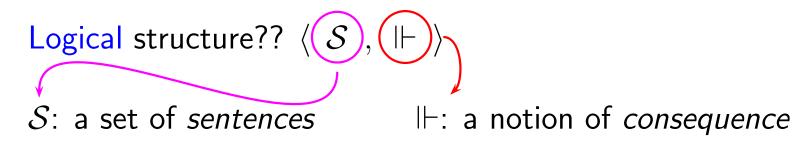
Logical structure?? $\langle \mathcal{S} , \Vdash \rangle$

Bourbaki 1950:

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$
- Multiple structures...

Logical structure?? $\langle S, \Vdash \rangle$ S: a set of *sentences*

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$
- Multiple structures...



Bourbaki 1950:

- Algebraic structure: $\langle \mathcal{U}, Op \rangle$
- Order structure: $\langle \mathcal{O}, \lll \rangle$
- Topological structure: $\langle \mathcal{X}, \tau \rangle$
- Multiple structures...

Logical structure?? $\langle S, | \vdash \rangle$ S: a set of *sentences* $| \vdash :$ a notion of *consequence*

A case for a new **mother-structure**?

On what concerns \Vdash , one has to decide:

• Is it a consequence operator or a consequence relation?

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

On what concerns \Vdash , one has to decide:

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples: $\Gamma^{\Vdash} = \Delta$

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples:
$$\Gamma^{\Vdash} = \Delta \qquad \qquad \Vdash \beta$$

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples:
$$\Gamma^{\Vdash} = \Delta \qquad \Vdash \beta \qquad \alpha \Vdash$$

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples:
$$\Gamma^{\Vdash} = \Delta \qquad \Vdash \beta \qquad \alpha \Vdash$$

 $\alpha \Vdash \beta$

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples:
$$\Gamma^{\Vdash} = \Delta$$
 $\Vdash \beta$ $\alpha \Vdash$ $\alpha \Vdash \beta$ $\Gamma \Vdash \beta$

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples:
$$\Gamma^{\Vdash} = \Delta$$
 $\Vdash \beta$ $\alpha \Vdash$ $\alpha \Vdash \beta$ $\Gamma \Vdash \beta$ $\alpha \Vdash \Delta$

- Is it a consequence operator or a consequence relation?
- A unary or a binary relation?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives?
- The collections involved come in sets, bags or sequences?

Examples:

$$\Gamma^{\Vdash} = \Delta$$
 $\Vdash \beta$
 $\alpha \Vdash$
 $\alpha \Vdash \beta$
 $\Gamma \Vdash \beta$
 $\alpha \Vdash \Delta$
 $\Gamma \Vdash \Delta$
 $\Gamma \Vdash \Delta$

- Is it a consequence operator or a (consequence relation)?
- A unary or a binary relation ?
- Involves a single premise or many?
- Involves a single conclusion or (multiple alternatives)?
- The collections involved come in sets, bags or sequences?

Examples:

$$\Gamma^{\Vdash} = \Delta$$
 $\Vdash \beta$
 $\alpha \Vdash$
 $\alpha \Vdash \beta$
 $\Gamma \Vdash \beta$
 $\alpha \Vdash \Delta$
 $\Gamma \Vdash \Delta$
 $\Gamma \Vdash \Delta$

- Is it a consequence operator or a (consequence relation)?
- A unary or a binary relation ?
- Involves a single premise or many?
- Involves a single conclusion or multiple alternatives ?
- The collections involved come in sets, bags or sequences?

Examples:

$$\Gamma^{\Vdash} = \Delta$$
 $\Vdash \beta$
 $\alpha \Vdash$
 $\alpha \Vdash \beta$
 $\Gamma \Vdash \beta$
 $\alpha \Vdash \Delta$
 $\Gamma \Vdash \Delta$
 $\Gamma \Vdash \Delta$

Some popular frameworks for seeing logics:

Some popular frameworks for seeing logics:

```
(1) as collections of theses: \Vdash^t \subseteq S
```

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$ Advantages:

• implements a notion of 'assertion'

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$

Advantages:

- implements a notion of 'assertion'
- ??

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$

Advantages:

- implements a notion of 'assertion'
- ??

Disadvantages:

• there are 'conclusions', but no premises

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$

Advantages:

- implements a notion of 'assertion'
- ??

- there are 'conclusions', but no premises
- no built-in notion of what-follows-from-what

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$

Advantages:

- implements a notion of 'assertion'
- ??

- there are 'conclusions', but no premises
- no built-in notion of what-follows-from-what
- no intuitive 'logical' interpretation

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$

Advantages:

- implements a notion of 'assertion'
- ??

- there are 'conclusions', but no premises
- no built-in notion of what-follows-from-what
- no intuitive 'logical' interpretation
- why not having a look at antitheses as well?

Some popular frameworks for seeing logics:

(1) as collections of theses: $\Vdash^t \subseteq S$

Advantages:

- implements a notion of 'assertion'
- ??

- there are 'conclusions', but no premises
- no built-in notion of what-follows-from-what
- no intuitive 'logical' interpretation
- why not having a look at antitheses as well?
- difficulty to distinguish logics

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$ Advantages:

• good notion of 'derivation' of a conclusion from a set of premises

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Advantages:

- good notion of 'derivation' of a conclusion from a set of premises
- usual characterization of proof-from-premises

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Advantages:

- good notion of 'derivation' of a conclusion from a set of premises
- usual characterization of proof-from-premises
- usual characterization of truth-preservation

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Advantages:

- good notion of 'derivation' of a conclusion from a set of premises
- usual characterization of proof-from-premises
- usual characterization of truth-preservation

Disadvantages:

• why not having a look at single-premise arguments as well?

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Advantages:

- good notion of 'derivation' of a conclusion from a set of premises
- usual characterization of proof-from-premises
- usual characterization of truth-preservation

Disadvantages:

- why not having a look at single-premise arguments as well?
- truth is still privileged over falsity

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Advantages:

- good notion of 'derivation' of a conclusion from a set of premises
- usual characterization of proof-from-premises
- usual characterization of truth-preservation

Disadvantages:

- why not having a look at single-premise arguments as well?
- truth is still privileged over falsity
- difficulty to characterize some logical constants

Some popular frameworks for seeing logics:

(2) as (single-conclusion) CRs: $\Vdash^{s} \subseteq Pow(\mathcal{S}) \times \mathcal{S}$

Advantages:

- good notion of 'derivation' of a conclusion from a set of premises
- usual characterization of proof-from-premises
- usual characterization of truth-preservation

Disadvantages:

- why not having a look at single-premise arguments as well?
- truth is still privileged over falsity
- difficulty to characterize some logical constants
- distinguishing logics: a difficulty that lingers

Some popular frameworks for seeing logics:

Some popular frameworks for seeing logics:

(3) as (multiple-conclusion) CRs: $\Vdash^m \subseteq Pow(\mathcal{S}) \times Pow(\mathcal{S})$ Advantages:

implements a natural notion of 'rejection'

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics
- neat characterization of the most usual logical constants

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics
- neat characterization of the most usual logical constants
- geometrical view on proofs

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics
- neat characterization of the most usual logical constants
- geometrical view on proofs
- reconciliation of logics and their models

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics
- neat characterization of the most usual logical constants
- geometrical view on proofs
- reconciliation of logics and their models
- restores perfect symmetry

Some popular frameworks for seeing logics:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics
- neat characterization of the most usual logical constants
- geometrical view on proofs
- reconciliation of logics and their models
- restores perfect symmetry
- generalizes the previous cases

Some popular frameworks for seeing logics:

(3) as (multiple-conclusion) CRs: $\Vdash^m \subseteq Pow(\mathcal{S}) \times Pow(\mathcal{S})$ Advantages:

- implements a natural notion of 'rejection'
- allows talking about the 'absence' of a property
- requires much less from the languages of the logics
- neat characterization of the most usual logical constants
- geometrical view on proofs
- reconciliation of logics and their models
- restores perfect symmetry
- generalizes the previous cases

Disadvantage:

• difficult interpretation of what's going on?

How to read or treat the inference Γ , $[\alpha_i]_{i \in I} \Vdash^m [\beta_j]_{j \in J}, \Delta$?

 'conclusions' on the r.h.s. as limits of a development of the premises on the l.h.s.
 (Kneale 1956)

- 'conclusions' on the r.h.s. as limits of a development of the premises on the l.h.s.
 (Kneale 1956)
- proof graphs going from l.h.s. to r.h.s. (Shoesmith & Smiley 1978)

- 'conclusions' on the r.h.s. as limits of a development of the premises on the l.h.s.
 (Kneale 1956)
- proof graphs going from I.h.s. to r.h.s. (Shoesmith & Smiley 1978)
- multiple-conclusion natural deduction systems (Ungar 1992) (Parigot 1992: λ - μ -calculus)

- 'conclusions' on the r.h.s. as limits of a development of the premises on the l.h.s.
 (Kneale 1956)
- proof graphs going from l.h.s. to r.h.s. (Shoesmith & Smiley 1978)
- multiple-conclusion natural deduction systems (Ungar 1992) (Parigot 1992: λ - μ -calculus)
- r.h.s. as a set of alternatives following from the set of premises on the l.h.s.; any Λ ⊆ S is read as a theory of L, and Γ, Δ are read as the contexts of Γ, [α_i]_{i∈I} ⊩^m [β_j]_{j∈J}, Δ

How to read or treat the inference Γ , $[\alpha_i]_{i \in I} \Vdash^{\mathsf{m}} [\beta_j]_{j \in J}, \Delta$?

- 'conclusions' on the r.h.s. as limits of a development of the premises on the l.h.s.
 (Kneale 1956)
- proof graphs going from l.h.s. to r.h.s. (Shoesmith & Smiley 1978)
- multiple-conclusion natural deduction systems (Ungar 1992) (Parigot 1992: λ - μ -calculus)
- r.h.s. as a set of alternatives following from the set of premises on the l.h.s.; any Λ ⊆ S is read as a theory of L, and Γ, Δ are read as the contexts of Γ, [α_i]_{i∈I} ⊩^m [β_j]_{j∈J}, Δ

Say that $\Lambda \subseteq S$ is \mathcal{L} -trivializing in case $(\forall \Upsilon \subseteq S) \Lambda \Vdash^{\mathsf{m}} \Upsilon$. In case $\Lambda = \{\lambda\}$, the sentence λ is said to be *refuted* by \mathcal{L} .

How to read or treat the inference Γ , $[\alpha_i]_{i \in I} \Vdash^m [\beta_j]_{j \in J}, \Delta$?

- 'conclusions' on the r.h.s. as limits of a development of the premises on the l.h.s.
 (Kneale 1956)
- proof graphs going from I.h.s. to r.h.s. (Shoesmith & Smiley 1978)
- multiple-conclusion natural deduction systems (Ungar 1992) (Parigot 1992: λ - μ -calculus)
- r.h.s. as a set of alternatives following from the set of premises on the l.h.s.; any Λ ⊆ S is read as a theory of L, and Γ, Δ are read as the contexts of Γ, [α_i]_{i∈I} ⊩^m [β_j]_{j∈J}, Δ

Say that $\Lambda \subseteq S$ is \mathcal{L} -trivializing in case $(\forall \Upsilon \subseteq S) \Lambda \Vdash^{\mathsf{m}} \Upsilon$. In case $\Lambda = \{\lambda\}$, the sentence λ is said to be *refuted* by \mathcal{L} . Say that $\Lambda \subseteq S$ is an \mathcal{L} -alternative in case $(\forall \Upsilon \subseteq S) \Upsilon \Vdash^{\mathsf{m}} \Lambda$. In case $\Lambda = \{\lambda\}$, the sentence λ is said to be *asserted* by \mathcal{L} .

Moore closure:

Moore closure:

(C1) $\Gamma \subseteq \Gamma^{\Vdash}$

overlap

Multiple-Conclusion Logics - p.5/17

Moore closure:

 $\begin{array}{ll} (\mathsf{C1}) & \Gamma \subseteq \Gamma^{\Vdash} \\ (\mathsf{C2}) & (\Gamma^{\vdash})^{\Vdash} \subseteq \Gamma^{\vdash} \end{array}$

overlap

full cut

Closure Operator:overlap(C1) $\Gamma \subseteq \Gamma^{||}$ overlap(C2) $(\Gamma^{||})^{||} \subseteq \Gamma^{||}$ full cut(C3) $\Gamma \subseteq \Lambda \Rightarrow \Gamma^{||} \subseteq \Lambda^{||}$ dilution

Glossary:

- cut translates Gentzen's 'Schnitt'
- dilution translates Gentzen's 'Verdünnung'

Kuratowski (topological) closure: $(C1) \ \Gamma \subseteq \Gamma^{||}$ overlap $(C2) \ (\Gamma^{||})^{||} \subseteq \Gamma^{||}$ full cut $(C3) \ \Gamma \subseteq \Lambda \Rightarrow \Gamma^{||} \subseteq \Lambda^{||}$ [derivable] $(CK1) \ (\Gamma \cup \Sigma)^{||} = \Gamma^{||} \cup \Sigma^{||}$ premise-apartness $(CK2) \ \varnothing^{||} = \varnothing$ no primitive theses

Tarski 1930 closure: (C1) $\Gamma \subset \Gamma^{\Vdash}$ overlap (C2) $(\Gamma^{||})^{||} \subseteq \Gamma^{||}$ full cut (C3) $\Gamma \subseteq \Lambda \implies \Gamma^{||} \subseteq \Lambda^{||}$ [derivable] dilution (CT1) $\Gamma^{\Vdash} = \bigcup \{ (\Gamma_{\Phi})^{\Vdash} : \Gamma_{\Phi} \in \mathsf{Fin}(\Gamma) \}$ finitariness (CT2) $|\mathcal{S}| \leq \aleph_0$ denumerable language (CT3) $\perp^{\Vdash} = S$, for some $\perp \in S$ ex falso where $Fin(\Gamma) = \{\Gamma_{\Phi} : \Gamma_{\Phi} \text{ is a finite subset of } \Gamma\}$

Back to Closure Operator:(C1) $\Gamma \subseteq \Gamma^{||}$ (C2) $(\Gamma^{||})^{||} \subseteq \Gamma^{||}$ (C3) $\Gamma \subseteq \Lambda \Rightarrow \Gamma^{||} \subseteq \Lambda^{||}$ dilution

Back to Closure Operator:overlap(C1) $\Gamma \subseteq \Gamma^{|\vdash}$ overlap(C2) $(\Gamma^{|\vdash})^{|\vdash} \subseteq \Gamma^{|\vdash}$ full cut(C3) $\Gamma \subseteq \Lambda \Rightarrow \Gamma^{|\vdash} \subseteq \Lambda^{|\vdash}$ dilution

Closure and single-conclusion consequence relation:

 $\Gamma \Vdash \alpha \iff \alpha \in \Gamma^{\Vdash}$

So, for a SC-CR based on a Closure Operator:(C1) $\Gamma \subseteq \Gamma^{||}$ overlap(C2) $(\Gamma^{||})^{||} \subseteq \Gamma^{||}$ full cut(C3) $\Gamma \subseteq \Lambda \Rightarrow \Gamma^{||} \subseteq \Lambda^{||}$ dilution

Closure and single-conclusion consequence relation:

 $\Gamma \Vdash \alpha \iff \alpha \in \Gamma^{\Vdash}$

Multiple-Conclusion Logics -p.5/17

So, for a SC-CR based on a Closure Operator: (C1) $\Gamma, \beta \Vdash \beta$ overlap (C2) $(\Gamma^{\Vdash})^{\Vdash} \subseteq \Gamma^{\Vdash}$ full cut (C3) $\Gamma \subseteq \Lambda \Rightarrow \Gamma^{\Vdash} \subseteq \Lambda^{\Vdash}$ dilution Closure and single-conclusion consequence relation:

$\Gamma \Vdash \alpha \iff \alpha \in \Gamma^{\Vdash} -$

So, for a **SC-CR** based on a Closure Operator: (C1) $\Gamma, \beta \Vdash \beta$ overlap (C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \implies \Gamma \Vdash \beta$ full cut (C3) $\Gamma \subseteq \Lambda \Rightarrow \Gamma^{\Vdash} \subseteq \Lambda^{\Vdash}$ dilution Closure and single-conclusion consequence relation:

$$\Gamma \Vdash \alpha \iff \alpha \in \Gamma^{\Vdash} - -$$

Closure Systems and single-conclusion CRs

So, for a SC-CR based on a Closure Operator: (C1) $\Gamma, \beta \Vdash \beta$ overlap (C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta$ full cut (C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$ [derivable] dilution

Closure and single-conclusion consequence relation:

$$\Gamma \Vdash \alpha \iff \alpha \in \Gamma^{\Vdash}$$

Suppose $\Gamma \Vdash \Delta$.

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is,

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is, either (i) $\Vdash \delta_1, \ldots, \delta_n$, or (ii) $\gamma_1, \ldots, \gamma_m \Vdash$, or (iii) $\gamma_1, \ldots, \gamma_m \Vdash \delta_1, \ldots, \delta_n$.

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is, either (i) $\Vdash \delta_1, \ldots, \delta_n$, or (ii) $\gamma_1, \ldots, \gamma_m \Vdash$, or (iii) $\gamma_1, \ldots, \gamma_m \Vdash \delta_1, \ldots, \delta_n$.

Using classical rules for \land and \lor , either:

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is, either (i) $\Vdash \delta_1, \ldots, \delta_n$, or (ii) $\gamma_1, \ldots, \gamma_m \Vdash$, or (iii) $\gamma_1, \ldots, \gamma_m \Vdash \delta_1, \ldots, \delta_n$.

Using classical rules for \land and \lor , either:

(i)
$$\Vdash \delta_1 \lor \ldots \lor \delta_n$$
, or
(ii) $\gamma_1 \land \ldots \land \gamma_m \Vdash$, or
(iii) $\gamma_1 \land \ldots \land \gamma_m \Vdash \delta_1 \lor \ldots \lor \delta_n$.

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is, either (i) $\Vdash \delta_1, \ldots, \delta_n$, or (ii) $\gamma_1, \ldots, \gamma_m \Vdash$, or (iii) $\gamma_1, \ldots, \gamma_m \Vdash \delta_1, \ldots, \delta_n$.

Using classical rules for \land and \lor , either:

(i)
$$\Vdash \delta_1 \lor \ldots \lor \delta_n$$
, or
(ii) $\gamma_1 \land \ldots \land \gamma_m \Vdash$, or
(iii) $\gamma_1 \land \ldots \land \gamma_m \Vdash \delta_1 \lor \ldots \lor \delta_n$.

Using classical rules for \sim and \supset :

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is, either (i) $\Vdash \delta_1, \ldots, \delta_n$, or (ii) $\gamma_1, \ldots, \gamma_m \Vdash$, or (iii) $\gamma_1, \ldots, \gamma_m \Vdash \delta_1, \ldots, \delta_n$.

Using classical rules for \land and \lor , either:

(i)
$$\Vdash \delta_1 \lor \ldots \lor \delta_n$$
, or
(ii) $\gamma_1 \land \ldots \land \gamma_m \Vdash$, or
(iii) $\gamma_1 \land \ldots \land \gamma_m \Vdash \delta_1 \lor \ldots \lor \delta_n$.

Using classical rules for \sim and \supset : (ii) $\Vdash \sim (\gamma_1 \land \ldots \land \gamma_m)$,

Suppose $\Gamma \Vdash \Delta$. By compactness, $\Gamma_{\Phi} \Vdash \Delta_{\Phi}$, that is, either (i) $\Vdash \delta_1, \ldots, \delta_n$, or (ii) $\gamma_1, \ldots, \gamma_m \Vdash$, or (iii) $\gamma_1, \ldots, \gamma_m \Vdash \delta_1, \ldots, \delta_n$.

Using classical rules for \land and \lor , either:

(i)
$$\Vdash \delta_1 \lor \ldots \lor \delta_n$$
, or
(ii) $\gamma_1 \land \ldots \land \gamma_m \Vdash$, or
(iii) $\gamma_1 \land \ldots \land \gamma_m \Vdash \delta_1 \lor \ldots \lor \delta_n$.

Using classical rules for \sim and \supset :

(ii)
$$\Vdash \sim (\gamma_1 \land \ldots \land \gamma_m)$$
,
(iii) $\Vdash (\gamma_1 \land \ldots \land \gamma_m) \supset (\delta_1 \lor \ldots \lor \delta_n)$.

Some early exponents:

Some early exponents:

Gerhard Gentzen 1934-35

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

≫ William Kneale 1956

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

 \gg William Kneale 1956 \gg Ian Hacking 1979

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents Rudolf Carnap 1943, Karl Popper 1947ff >>> William Kneale 1956 >>> Ian Hacking 1979 Dana Scott 1971 & 1974

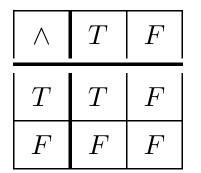
Some early exponents:

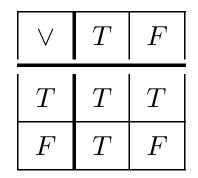
Gerhard Gentzen 1934-35: Natural Deduction, Sequents
Rudolf Carnap 1943, Karl Popper 1947ff
>>> William Kneale 1956 >>> Ian Hacking 1979
Dana Scott 1971 & 1974
D. J. Shoesmith and Timothy J. Smiley 1978

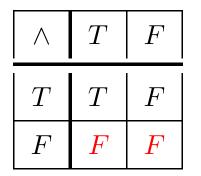
Some early exponents:

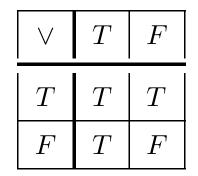
Gerhard Gentzen 1934-35: Natural Deduction, Sequents
Rudolf Carnap 1943, Karl Popper 1947ff
>>> William Kneale 1956 >>> Ian Hacking 1979
Dana Scott 1971 & 1974
D. J. Shoesmith and Timothy J. Smiley 1978

But what is **multiple-conclusion** good for?

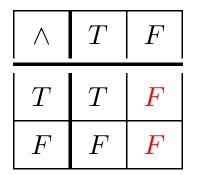


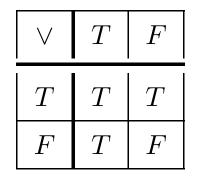




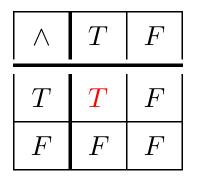


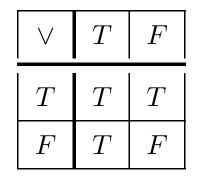
 $\alpha \wedge \beta \Vdash^{\mathsf{s}} \alpha$





 $\alpha \land \beta \Vdash^{\mathsf{s}} \alpha$ $\alpha \land \beta \Vdash^{\mathsf{s}} \beta$

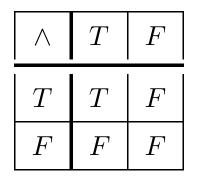


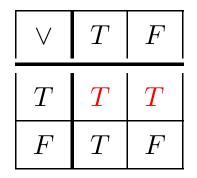


 $\alpha \land \beta \Vdash^{\mathsf{s}} \alpha$ $\alpha \land \beta \Vdash^{\mathsf{s}} \beta$

 $\alpha,\beta \Vdash^{\mathsf{s}} \alpha \wedge \beta$

Multiple-Conclusion Logics -p.8/17

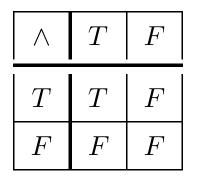


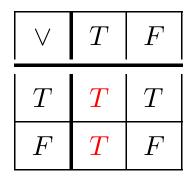


 $\alpha \land \beta \Vdash^{\mathsf{s}} \alpha$ $\alpha \land \beta \Vdash^{\mathsf{s}} \beta$

 $\alpha \Vdash^{\mathsf{s}} \alpha \vee \beta$

 $\alpha,\beta\Vdash^{\mathbf{s}}\alpha\wedge\beta$



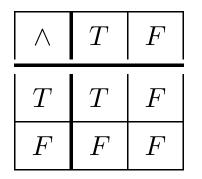


 $\alpha \land \beta \Vdash^{\mathsf{s}} \alpha$ $\alpha \land \beta \Vdash^{\mathsf{s}} \beta$

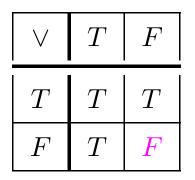
 $\alpha \Vdash^{\mathsf{s}} \alpha \lor \beta$ $\beta \Vdash^{\mathsf{s}} \alpha \lor \beta$

 $\alpha,\beta \Vdash^{\mathsf{s}} \alpha \wedge \beta$

Multiple-Conclusion Logics -p.8/17



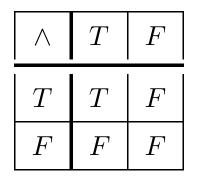
 $\alpha \land \beta \Vdash^{\mathsf{s}} \alpha$ $\alpha \land \beta \Vdash^{\mathsf{s}} \beta$



 $\alpha \Vdash^{\mathsf{s}} \alpha \lor \beta$ $\beta \Vdash^{\mathsf{s}} \alpha \lor \beta$

 $\alpha,\beta\Vdash^{\mathsf{s}}\alpha\wedge\beta$

 $\alpha \lor \beta \Vdash^{s} ??$



 $\alpha \land \beta \Vdash^{\mathsf{s}} \alpha$ $\alpha \land \beta \Vdash^{\mathsf{s}} \beta$

 $\alpha,\beta\Vdash^{\mathsf{s}}\alpha\wedge\beta$

 $\begin{array}{|c|c|c|c|} & & T & T & F \\ \hline T & T & T & T \\ \hline F & T & F \\ \hline \end{array}$

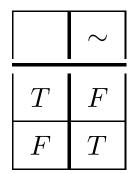
 $\alpha \Vdash^{\mathsf{s}} \alpha \lor \beta$ $\beta \Vdash^{\mathsf{s}} \alpha \lor \beta$

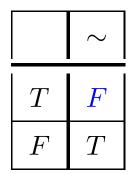
 $\alpha \lor \beta \Vdash^{\mathsf{s}} ??$

but

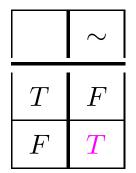
 $\alpha \lor \beta \Vdash^{\mathsf{m}} \alpha, \beta$

Multiple-Conclusion Logics – p.8/17



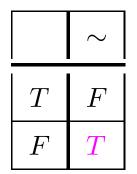


 $\alpha, \sim \alpha \Vdash^{\mathsf{s}} \beta$



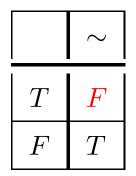
$$\alpha, \sim \alpha \Vdash^{\mathsf{s}} \beta$$

$$\alpha \Vdash^{\mathsf{s}} \sim \alpha \implies \Vdash^{\mathsf{s}} \sim \alpha$$
, or



$$\alpha, \sim \alpha \Vdash^{\mathsf{s}} \beta$$

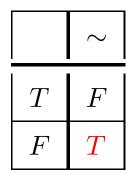
$$\alpha \Vdash^{\mathsf{s}} \sim \alpha \quad \Rightarrow \ \Vdash^{\mathsf{s}} \sim \alpha, \text{ or}$$
$$\Vdash^{\mathsf{s}} \alpha \lor \sim \alpha$$

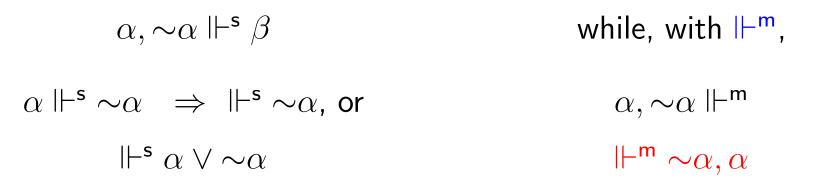


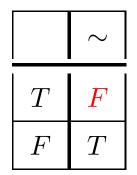
$$\alpha, \sim \alpha \Vdash^{\mathsf{s}} \beta \qquad \text{while, with } \Vdash^{\mathsf{m}},$$

$$\alpha \Vdash^{\mathsf{s}} \sim \alpha \quad \Rightarrow \Vdash^{\mathsf{s}} \sim \alpha, \text{ or } \qquad \alpha, \sim \alpha \Vdash^{\mathsf{m}}$$

$$\Vdash^{\mathsf{s}} \alpha \lor \sim \alpha$$



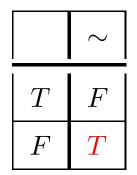




$$\begin{array}{ll} \alpha, \sim \alpha \Vdash^{\mathsf{s}} \beta & \text{while, with } \Vdash^{\mathsf{m}}, \\ \alpha \Vdash^{\mathsf{s}} \sim \alpha & \Rightarrow \Vdash^{\mathsf{s}} \sim \alpha, \text{ or } & \alpha, \sim \alpha \Vdash^{\mathsf{m}} \\ \Vdash^{\mathsf{s}} \alpha \lor \sim \alpha & \Vdash^{\mathsf{m}} \sim \alpha, \alpha \end{array}$$

or, more simply,

 $\Vdash^{\mathsf{m}} \alpha \quad \Rightarrow \quad \sim \alpha \Vdash^{\mathsf{m}}$



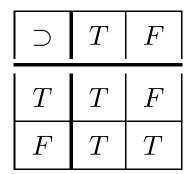
$$\alpha, \sim \alpha \Vdash^{\mathsf{s}} \beta \qquad \qquad \text{while, with } \Vdash^{\mathsf{m}},$$

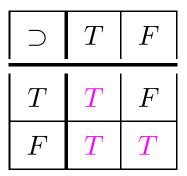
$$\alpha \Vdash^{\mathsf{s}} \sim \alpha \quad \Rightarrow \ \Vdash^{\mathsf{s}} \sim \alpha, \text{ or}$$
$$\Vdash^{\mathsf{s}} \alpha \lor \sim \alpha$$

 $\begin{array}{l} \alpha,\sim\!\!\alpha\Vdash^{\mathsf{m}}\\ \Vdash^{\mathsf{m}}\sim\!\!\alpha,\alpha\end{array}$

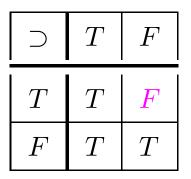
or, more simply,

$$\Vdash^{\mathsf{m}} \alpha \implies \sim \alpha \Vdash^{\mathsf{m}} \alpha \\ \alpha \Vdash^{\mathsf{m}} \implies \Vdash^{\mathsf{m}} \sim \alpha$$

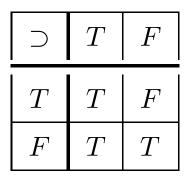




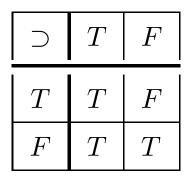
$\Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta \quad \Rightarrow \quad \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta$



$\begin{array}{rcl} \Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta & \Rightarrow & \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta \\ \Gamma \Vdash^{\mathsf{k}} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{\mathsf{k}} \Delta' & \Rightarrow & \Gamma', \Gamma, \alpha \supset \beta \Vdash^{\mathsf{k}} \Delta, \Delta' \end{array}$

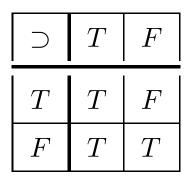


$$\begin{split} & \Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta \quad \Rightarrow \quad \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta \\ & \Gamma \Vdash^{\mathsf{k}} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{\mathsf{k}} \Delta' \quad \Rightarrow \quad \Gamma', \Gamma, \alpha \supset \beta \Vdash^{\mathsf{k}} \Delta, \Delta' \\ & \text{If } \mathsf{k} = \mathsf{s} \text{, then } \Delta = \varnothing \text{ and } \Delta' \text{ is a singleton.} \end{split}$$



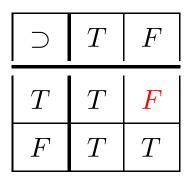
 $\begin{array}{cccc} \Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta & \Rightarrow & \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta \\ \Gamma \Vdash^{\mathsf{k}} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{\mathsf{k}} \Delta' & \Rightarrow & \Gamma', \Gamma, \alpha \supset \beta \Vdash^{\mathsf{k}} \Delta, \Delta' \end{array}$

If k = s, then $\Delta = \emptyset$ and Δ' is a singleton. But then the above rules characterize only intuitionistic implication!

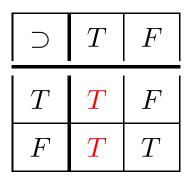


 $\Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta \quad \Rightarrow \quad \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta$ $\Gamma \Vdash^{\mathsf{k}} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{\mathsf{k}} \Delta' \quad \Rightarrow \quad \Gamma', \Gamma, \alpha \supset \beta \Vdash^{\mathsf{k}} \Delta, \Delta'$

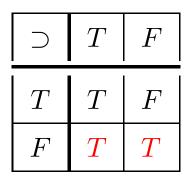
If $\mathbf{k} = \mathbf{s}$, then $\Delta = \emptyset$ and Δ' is a singleton. But then the above rules characterize only intuitionistic implication! Alternatively, for the classical implication, one could take:



 $\Gamma, \alpha \Vdash^{k} \beta, \Delta \implies \Gamma \Vdash^{k} \alpha \supset \beta, \Delta$ $\Gamma \Vdash^{k} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{k} \Delta' \implies \Gamma', \Gamma, \alpha \supset \beta \Vdash^{k} \Delta, \Delta'$ If k = s, then $\Delta = \emptyset$ and Δ' is a singleton. But then the above rules characterize only intuitionistic implication! Alternatively, for the classical implication, one could take: $\Gamma, \alpha, \alpha \supset \beta \Vdash^{m} \beta, \Delta$



 $\begin{array}{rcl} \Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta & \Rightarrow & \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta \\ \Gamma \Vdash^{\mathsf{k}} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{\mathsf{k}} \Delta' & \Rightarrow & \Gamma', \Gamma, \alpha \supset \beta \Vdash^{\mathsf{k}} \Delta, \Delta' \\ \text{If } \mathsf{k} = \mathsf{s}, \text{ then } \Delta = \varnothing \text{ and } \Delta' \text{ is a singleton. But then} \\ \text{the above rules characterize only intuitionistic implication!} \\ \text{Alternatively, for the classical implication, one could take:} \\ \Gamma, \alpha, \alpha \supset \beta \Vdash^{\mathsf{m}} \beta, \Delta \\ \Gamma, \beta \Vdash^{\mathsf{m}} \alpha \supset \beta, \Delta \end{array}$



 $\begin{array}{rcl} \Gamma, \alpha \Vdash^{\mathsf{k}} \beta, \Delta & \Rightarrow & \Gamma \Vdash^{\mathsf{k}} \alpha \supset \beta, \Delta \\ \Gamma \Vdash^{\mathsf{k}} \alpha, \Delta \text{ and } \Gamma', \beta \Vdash^{\mathsf{k}} \Delta' & \Rightarrow & \Gamma', \Gamma, \alpha \supset \beta \Vdash^{\mathsf{k}} \Delta, \Delta' \end{array}$

If $\mathbf{k} = \mathbf{s}$, then $\Delta = \emptyset$ and Δ' is a singleton. But then the above rules characterize only intuitionistic implication! Alternatively, for the classical implication, one could take: $\Gamma, \alpha, \alpha \supset \beta \Vdash^{\mathsf{m}} \beta, \Delta$ $\Gamma, \beta \Vdash^{\mathsf{m}} \alpha \supset \beta, \Delta$ $\Gamma \Vdash^{\mathsf{m}} \alpha, \alpha \supset \beta, \Delta$

For any given logic $\mathcal{L}_{\triangleright} = \langle \mathcal{S}, \triangleright \rangle$

For any given logic $\mathcal{L}_{\triangleright} = \langle \mathcal{S}, \triangleright \rangle$ let the dual logic $\mathcal{L}_{\blacktriangleright} = \langle \mathcal{S}, \triangleright \rangle$ be such that:

 $(\Gamma \blacktriangleright \Delta)$ iff $(\Delta \rhd \Gamma)$.

For any given logic $\mathcal{L}_{\triangleright} = \langle S, \triangleright \rangle$ let the dual logic $\mathcal{L}_{\blacktriangleright} = \langle S, \triangleright \rangle$ be such that:

 $(\Gamma \blacktriangleright \Delta)$ iff $(\Delta \triangleright \Gamma)$.

Similarly,

given rules for some $\overline{\wedge}$: $\alpha, \beta \triangleright \alpha \overline{\wedge} \beta$ $\alpha \overline{\wedge} \beta \triangleright \alpha$ $\alpha \overline{\wedge} \beta \triangleright \beta$

For any given logic $\mathcal{L}_{\triangleright} = \langle \mathcal{S}, \triangleright \rangle$ let the dual logic $\mathcal{L}_{\blacktriangleright} = \langle \mathcal{S}, \triangleright \rangle$ be such that:

$$(\Gamma \blacktriangleright \Delta)$$
 iff $(\Delta \triangleright \Gamma)$.

Similarly,

given rules for some $\overline{\wedge}$: $\alpha, \beta \rhd \alpha \overline{\wedge} \beta$ $\alpha \overline{\wedge} \beta \rhd \alpha$ $\alpha \overline{\wedge} \beta \rhd \beta$ we can consider their duals for \forall : $\alpha \lor \beta \triangleright \beta, \alpha$ $\alpha \triangleright \alpha \lor \beta$ $\beta \triangleright \alpha \lor \beta$

For any given logic $\mathcal{L}_{\triangleright} = \langle \mathcal{S}, \triangleright \rangle$ let the dual logic $\mathcal{L}_{\blacktriangleright} = \langle \mathcal{S}, \blacktriangleright \rangle$ be such that:

$$(\Gamma \blacktriangleright \Delta)$$
 iff $(\Delta \triangleright \Gamma)$.

Similarly,

given rules for some $\overline{\wedge}$: $\alpha, \beta \triangleright \alpha \overline{\wedge} \beta$ $\alpha \overline{\wedge} \beta \triangleright \alpha$ $\alpha \overline{\wedge} \beta \triangleright \beta$ given rules for some $\overline{\sim}$: $\alpha, \overline{\sim} \alpha \triangleright$

 $\triangleright \overline{\sim} \alpha, \alpha$

we can consider their duals for \forall : $\alpha \leq \beta \triangleright \beta, \alpha$ $\alpha \triangleright \alpha \leq \beta$ $\beta \triangleright \alpha \leq \beta$

For any given logic $\mathcal{L}_{\triangleright} = \langle \mathcal{S}, \triangleright \rangle$ let the dual logic $\mathcal{L}_{\blacktriangleright} = \langle \mathcal{S}, \triangleright \rangle$ be such that:

$$(\Gamma \blacktriangleright \Delta)$$
 iff $(\Delta \triangleright \Gamma)$.

Similarly,

given rules for some $\overline{\wedge}$: $\alpha, \beta \triangleright \alpha \overline{\wedge} \beta$ $\alpha \overline{\wedge} \beta \triangleright \alpha$ $\alpha \overline{\wedge} \beta \triangleright \beta$ given rules for some $\overline{\sim}$: $\alpha, \overline{\sim} \alpha \triangleright$

 $\triangleright \overline{\sim} \alpha, \alpha$

we can consider their duals for \leq :

 $\alpha \trianglelefteq \beta \blacktriangleright \beta, \alpha$

$$\alpha \blacktriangleright \alpha \stackrel{\vee}{=} \beta$$

$$\beta \blacktriangleright \alpha \lor \beta$$

we can consider their duals for \sim :

- $\blacktriangleright \alpha, \underline{\sim} \alpha$
- $\alpha, \underline{\sim} \alpha \blacktriangleright$

For any given logic $\mathcal{L}_{\triangleright} = \langle \mathcal{S}, \triangleright \rangle$ let the dual logic $\mathcal{L}_{\blacktriangleright} = \langle \mathcal{S}, \blacktriangleright \rangle$ be such that:

$$(\Gamma \blacktriangleright \Delta)$$
 iff $(\Delta \triangleright \Gamma)$.

Similarly,

given rules for some $\overline{\wedge}$: $\alpha, \beta \triangleright \alpha \overline{\wedge} \beta$ $\alpha \overline{\wedge} \beta \triangleright \alpha$ $\alpha \overline{\wedge} \beta \triangleright \beta$ given rules for some $\overline{\sim}$: $\alpha, \overline{\sim} \alpha \triangleright$

 $\triangleright \overline{\sim} \alpha, \alpha$

And so on...

we can consider their duals for \leq :

 $\alpha \lor \beta \blacktriangleright \beta, \alpha$

$$\alpha \blacktriangleright \alpha \stackrel{\vee}{\scriptstyle{\scriptstyle{\frown}}} \beta$$

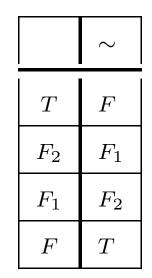
$$\beta \blacktriangleright \alpha \lor \beta$$

we can consider their duals for \sim :

- $\blacktriangleright \alpha, \underline{\sim} \alpha$
- $\alpha,\underline{\sim}\alpha\blacktriangleright$

\wedge	T	F_2	F_1	F	
T	T	F_2	F_1	F	
F_2	F_2	F_2	F	F	
F_1	F_1	F	F_1	F	
F	F	F	F	F	

\vee	$T \mid F_2$		F_1	F
Т	T	T	T	T
F_2	T F_2		Т	F_2
F_1	T	T	F_1	F_1
F	T	F_2	F_1	F



∧	Т	F_2	F_1	F	\vee	Т	F_2	F_1	F		\sim
	T	F_2	F_1	F	T	T	T	T	T	T	F
F_2	F_2	F_2	F	F	F_2	T	F_2	Т	F_2	F_2	F_1
F_1	F_1	F	F_1	F	F_1	T	T	F_1	F_1	F_1	F_2
F	F	F	F	F	F	T	F_2	F_1	F	F	T

(Notice that there is no *single* redundant value!)

\wedge	T	F_2	F_1	F	\vee	Т	F_2	F_1	F		\sim
T	T	F_2	F_1	F	T	T	T	T	T	T	F
F_2	F_2	F_2	F	F	F_2	T	F_2	Т	F_2	F_2	F_1
F_1	F_1	F	F_1	F	F_1	T	T	F_1	F_1	F_1	F_2
F	F	F	F	F	F	T	F_2	F_1	F	F	T

(Notice that there is no *single* redundant value!)

It is easy to check that $\Vdash_{CL}^{s} = \models^{s}$,

\wedge	T	F_2	F_1	F		\vee	Т	F_2	F_1	F		\sim
T	T	F_2	F_1	F		T	T	T	T	T	T	F
F_2	F_2	F_2	F	F		F_2	T	F_2	Т	F_2	F_2	F_1
F_1	F_1	F	F_1	F		F_1	T	T	F_1	F_1	F_1	F_2
F	F	F	F	F	ſ	F	T	F_2	F_1	F	F	T

(Notice that there is no *single* redundant value!)

It is easy to check that $\Vdash_{CL}^{s} = \models^{s}$, and $\Vdash_{CL}^{m} \supseteq \models^{m}$,

From Shoesmith & Smiley 1978

\wedge	T	F_2	F_1	F	\vee	Т	F_2	F_1	F		\sim
T	T	F_2	F_1	F	T	T	T	T	T	T	F
F_2	F_2	F_2	F	F	F_2	T	F_2	Т	F_2	F_2	F_1
F_1	F_1	F	F_1	F	F_1	T	T	F_1	F_1	F_1	F_2
F	F	F	F	F	F	T	F_2	F_1	F	F	T

(Notice that there is no *single* redundant value!)

It is easy to check that $\Vdash_{CL}^{s} = \models^{s}$, and $\Vdash_{CL}^{m} \supseteq \models^{m}$, but $\Vdash_{CL}^{m} \nsubseteq \models^{m} !$

\land	Т	F_2	F_1	F		\vee	T	F_2	F_1	F		\sim
T	T	F_2	F_1	F		T	T	T	T	T	T	F
F_2	F_2	F_2	F	F		F_2	T	F_2	T	F_2	F_2	F_1
F_1	F_1	F	F_1	F		F_1	T	T	F_1	F_1	F_1	F_2
F	F	F	F	F	ſ	F	T	F_2	F_1	F	F	T

(Notice that there is no *single* redundant value!)

It is easy to check that $\Vdash_{CL}^{s} = \models^{s}$, and $\Vdash_{CL}^{m} \supseteq \models^{m}$, but $\Vdash_{CL}^{m} \not\subseteq \models^{m}$! In particular, $\not\not=^{m} \sim \alpha, \alpha$. (though $\models^{m} \sim \alpha \lor \alpha$)

Given some S, here are the elements of a **(tarskian) interpretation** over it:

• *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$

- *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$
- designated and undesignated values: \mathcal{D} and \mathcal{U} , where $\mathcal{D} \cap \mathcal{U} = \emptyset$

- *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$
- designated and undesignated values: \mathcal{D} and \mathcal{U} , where $\mathcal{D} \cap \mathcal{U} = \emptyset$
- *valuations*, or *models*: total functions $\S : S \to V$

- *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$
- designated and undesignated values: \mathcal{D} and \mathcal{U} , where $\mathcal{D} \cap \mathcal{U} = \emptyset$
- *valuations*, or *models*: total functions $\S : S \to V$
- *semantics:* any set Sem of valuations

- *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$
- designated and undesignated values: \mathcal{D} and \mathcal{U} , where $\mathcal{D} \cap \mathcal{U} = \emptyset$
- *valuations*, or *models*: total functions $\S : S \to V$
- *semantics:* any set Sem of valuations
- (canonical) notions of entailment ⊨^k_§
 locally associated to a valuation § ∈ Sem:

Given some S, here are the elements of a **(tarskian) interpretation** over it:

- *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$
- designated and undesignated values: \mathcal{D} and \mathcal{U} , where $\mathcal{D} \cap \mathcal{U} = \emptyset$
- *valuations*, or *models*: total functions $\S : S \to V$
- *semantics:* any set Sem of valuations
- (canonical) notions of entailment ⊨^k_§ locally associated to a valuation § ∈ Sem:

 $\Gamma \vDash_{\S}^{\mathsf{s}} \varphi \quad \text{iff} \quad \S(\Gamma) \not\subseteq \mathcal{D} \text{ or } \S(\{\varphi\}) \not\subseteq \mathcal{U} \qquad (\mathsf{LE}^{\mathsf{s}})$

$${
m Multiple-Conclusion} \ {
m Logics} - {
m p.13}/17$$

- *truth-values*: $\mathcal{V} (= \mathcal{D} \cup \mathcal{U})$
- designated and undesignated values: \mathcal{D} and \mathcal{U} , where $\mathcal{D} \cap \mathcal{U} = \emptyset$
- *valuations*, or *models*: total functions $\S : S \to V$
- *semantics:* any set Sem of valuations
- (canonical) notions of entailment ⊨^k_§
 locally associated to a valuation § ∈ Sem:

$$\Gamma \vDash_{\S}^{\mathsf{s}} \varphi \quad \text{iff} \quad \S(\Gamma) \not\subseteq \mathcal{D} \text{ or } \S(\{\varphi\}) \not\subseteq \mathcal{U} \qquad (\mathsf{LE}^{\mathsf{s}})$$
$$\Gamma \vDash_{\S}^{\mathsf{m}} \Delta \quad \text{iff} \quad \S(\Gamma) \not\subseteq \mathcal{D} \text{ or } \S(\Delta) \not\subseteq \mathcal{U} \qquad (\mathsf{LE}^{\mathsf{m}})$$

For the usual notions of *global entailment*:

For the usual notions of *global entailment*:

$$\Gamma \vDash^{\mathsf{s}}_{\mathsf{Sem}} \varphi \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash^{\mathsf{s}}_{\S} \varphi \qquad \qquad (\mathsf{GE}^{\mathsf{s}})$$
(Tarski 1936)

Multiple-Conclusion Logics -p.14/17

For the usual notions of *global entailment*:

$$\begin{split} \Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi & \text{iff } (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi & (\mathsf{GE}^{\mathsf{s}}) \\ & (\mathsf{Tarski 1936}) \\ \Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta & \text{iff } (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta & (\mathsf{GE}^{\mathsf{m}}) \end{split}$$

For the usual notions of *global entailment*:

$$\begin{split} \Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi & \text{iff } (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi & (\mathsf{GE}^{\mathsf{s}}) \\ & (\mathsf{Tarski 1936}) \\ \Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta & \text{iff } (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta & (\mathsf{GE}^{\mathsf{m}}) \end{split}$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

For the usual notions of *global entailment*:

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi \qquad (\mathsf{GE}^{\mathsf{s}})$$

$$(\mathsf{Tarski 1936})$$

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta \qquad (\mathsf{GE}^{\mathsf{m}})$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

Abstracting the relation Local $(\Vdash_{\ell}) \times \text{Global} (\Vdash_{g})$ rules:

For the usual notions of *global entailment*:

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi \qquad (\mathsf{GE}^{\mathsf{s}})$$

$$(\mathsf{Tarski 1936})$$

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta \qquad (\mathsf{GE}^{\mathsf{m}})$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

Abstracting the relation Local $(\Vdash_{\ell}) \times \text{Global} (\Vdash_{g})$ rules: $\Vdash_{\ell}^{s} \subseteq \Vdash_{g}^{s}$

For the usual notions of *global entailment*:

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi \qquad \qquad (\mathsf{GE}^{\mathsf{s}})$$

$$(\mathsf{Tarski 1936})$$

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta \qquad \qquad (\mathsf{GE}^{\mathsf{m}})$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

Abstracting the relation Local $(\Vdash_{\ell}) \times \text{Global} (\Vdash_{g})$ rules:

$$\begin{split} \Vdash^{\mathsf{s}}_{\ell} \ \subseteq \ \Vdash^{\mathsf{s}}_{g} \\ \Vdash^{\mathsf{s}}_{\ell} \ \beta \ \text{ iff } \ \Vdash^{\mathsf{s}}_{g} \ \beta \end{split}$$

For the usual notions of *global entailment*:

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi \qquad (\mathsf{GE}^{\mathsf{s}})$$

$$(\mathsf{Tarski 1936})$$

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta \qquad (\mathsf{GE}^{\mathsf{m}})$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

Abstracting the relation Local $(\Vdash_{\ell}) \times \text{Global} (\Vdash_{g})$ rules:

$$\mathbb{H}^{\mathbf{s}}_{\ell} \subseteq \mathbb{H}^{\mathbf{s}}_{g} \qquad \qquad \mathbb{H}^{\mathbf{m}}_{\ell} \subseteq \mathbb{H}^{\mathbf{m}}_{g}$$

$$\mathbb{I}^{\mathbf{s}}_{\ell} \beta \quad \text{iff} \quad \mathbb{H}^{\mathbf{s}}_{g} \beta$$

For the usual notions of *global entailment*:

$$\begin{split} \Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi & \text{iff } (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi & (\mathsf{GE}^{\mathsf{s}}) \\ & (\mathsf{Tarski 1936}) \\ \Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta & \text{iff } (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta & (\mathsf{GE}^{\mathsf{m}}) \end{split}$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

Abstracting the relation Local $(\Vdash_{\ell}) \times \text{Global} (\Vdash_{g})$ rules:

$$\begin{split} \Vdash^{\mathsf{s}}_{\ell} &\subseteq \Vdash^{\mathsf{s}}_{g} \\ \Vdash^{\mathsf{s}}_{\ell} \beta \quad \text{iff} \ \Vdash^{\mathsf{s}}_{g} \beta \qquad \Gamma \Vdash^{\mathsf{m}}_{\ell} \Delta \quad \text{iff} \ \Gamma \Vdash^{\mathsf{m}}_{g} \Delta, \text{ given } \Gamma = \emptyset \text{ or } \Delta = \emptyset \end{split}$$

For the usual notions of *global entailment*:

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{s}} \varphi \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{s}} \varphi \qquad \qquad (\mathsf{GE}^{\mathsf{s}})$$

$$(\mathsf{Tarski 1936})$$

$$\Gamma \vDash_{\mathsf{Sem}}^{\mathsf{m}} \Delta \quad \text{iff} \quad (\forall \S \in \mathsf{Sem}) \ \Gamma \vDash_{\S}^{\mathsf{m}} \Delta \qquad \qquad (\mathsf{GE}^{\mathsf{m}})$$

A logic $\mathcal{L} = \langle \mathcal{S}, \Vdash \rangle$ is said to have an **adequate** tarskian interpretation whenever there is some \vDash_{Sem}^{k} , as above, such that $\Vdash = \vDash_{\text{Sem}}^{k}$.

Abstracting the relation Local $(\Vdash_{\ell}) \times \text{Global} (\Vdash_{g})$ rules:

$$\begin{split} \Vdash^{\mathsf{s}}_{\ell} &\subseteq \Vdash^{\mathsf{s}}_{g} \\ \Vdash^{\mathsf{s}}_{\ell} \beta \text{ iff } \Vdash^{\mathsf{s}}_{g} \beta \\ & \Gamma \Vdash^{\mathsf{m}}_{\ell} \Delta \text{ iff } \Gamma \Vdash^{\mathsf{m}}_{g} \Delta, \text{ given } \Gamma = \emptyset \text{ or } \Delta = \emptyset \\ \text{(antitheses of } \Vdash^{\mathsf{s}} ??) \end{split}$$

Veritas? Quid est veritas? —Pontius Pilate (Joannes 18:38).

On discernment

Veritas? Quid est veritas? —Pontius Pilate (Joannes 18:38).

On discernment

What if everything is true?

Veritas? Quid est veritas? —Pontius Pilate (Joannes 18:38).

On discernment

What if everything is true?

Very bad, but... What if everything is false?

Veritas? Quid est veritas? —Pontius Pilate (Joannes 18:38).

On discernment

What if everything is true?

Very bad, but... What if everything is false?

Equally bad!!

On discernment

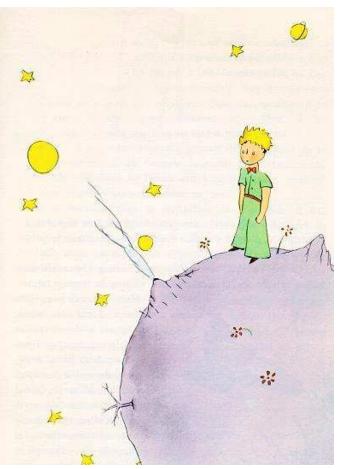
What if everything is true?

Very bad, but... What if everything is false?

Equally bad!!

Why all the **bias towards truth**?

In 1869, Jules Verne published *Autour de la Lune*. In 1959, *Luna* 3 photographed the far side of the Moon.



Veritas? Quid est veritas? —Pontius Pilate (Joannes 18:38).



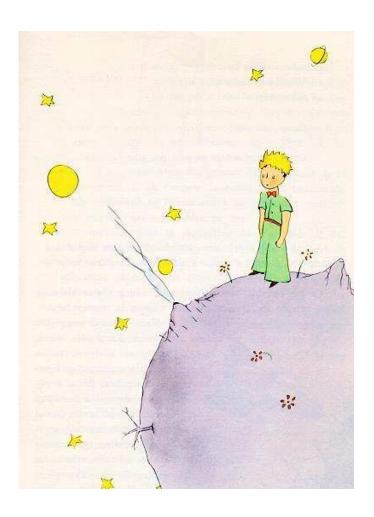
 $\begin{aligned} \text{Call } \S \in \text{Sem dadaistic} \\ \text{ in case } \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}. \end{aligned}$

Veritas? Quid est veritas? —Pontius Pilate (Joannes 18:38).

 $\begin{aligned} \text{Call } \S \in \text{Sem dadaistic} \\ \text{ in case } \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}. \\ \text{Let Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}. \end{aligned}$

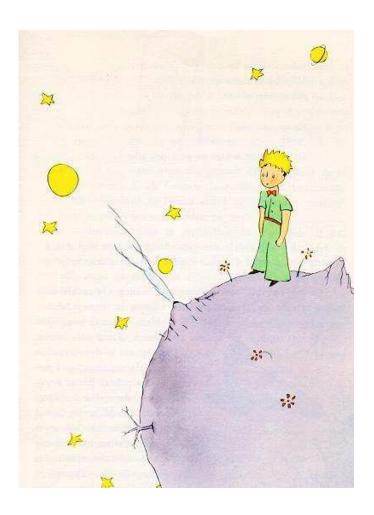
Call $\S \in \mathsf{Sem} \mathsf{ dadaistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

Call $\S \in$ Sem nihilistic in case $\S(S) \subseteq U_{\S}$.



Call $\S \in \mathsf{Sem}$ dadaistic in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

Call $\S \in \mathsf{Sem nihilistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{U}_{\S}$. Let Nihil = $\{\S : \S(\mathcal{S}) \subseteq \mathcal{U}_{\S}\}$.



Call $\S \in \mathsf{Sem}$ dadaistic in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

Call $\S \in \mathsf{Sem nihilistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{U}_{\S}$. Let Nihil = $\{\S : \S(\mathcal{S}) \subseteq \mathcal{U}_{\S}\}$.

Note:

Call $\S \in \mathsf{Sem}$ dadaistic in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

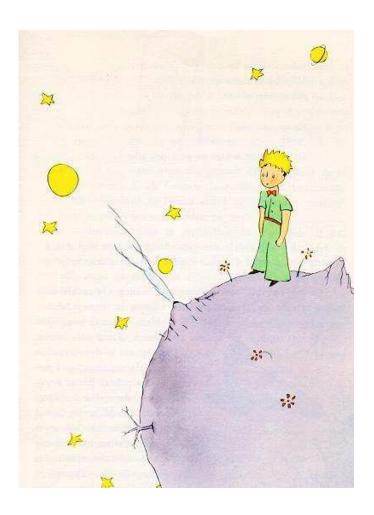
Call $\S \in \mathsf{Sem nihilistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{U}_{\S}$. Let Nihil = $\{\S : \S(\mathcal{S}) \subseteq \mathcal{U}_{\S}\}$.

Note: $\not\models_{\S} S$ iff

Call $\S \in \mathsf{Sem}$ dadaistic in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

Call $\S \in \mathsf{Sem nihilistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{U}_{\S}$. Let Nihil = $\{\S : \S(\mathcal{S}) \subseteq \mathcal{U}_{\S}\}$.

Note: $\not\models_{\S} S$ iff $\S \in Nihil$

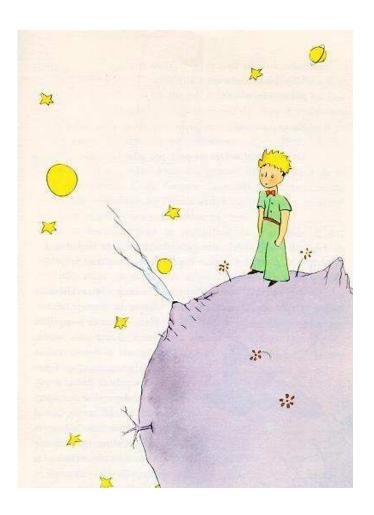


Call $\S \in \mathsf{Sem}$ dadaistic in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

Call $\S \in \mathsf{Sem nihilistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{U}_{\S}$. Let Nihil = $\{\S : \S(\mathcal{S}) \subseteq \mathcal{U}_{\S}\}$.

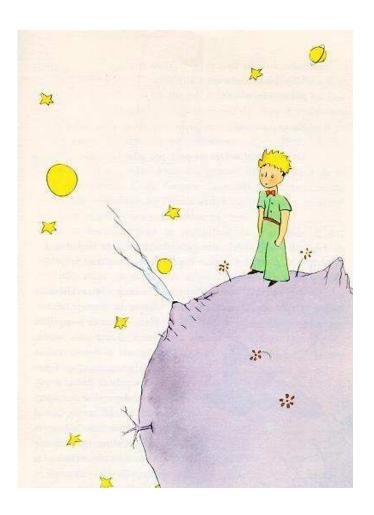
Note: $\begin{array}{ccc}

\not
end {s} & \mathcal{S} & \text{iff} & \S \in \text{Nihil} \\
\mathcal{S} \not \models_{\S} & \text{iff} &
\end{array}$



Call $\S \in \mathsf{Sem}$ dadaistic in case $\S(\mathcal{S}) \subseteq \mathcal{D}_{\S}$. Let $\mathsf{Dada} = \{\S : \S(\mathcal{S}) \subseteq \mathcal{D}_{\S}\}.$

Call $\S \in \mathsf{Sem nihilistic}$ in case $\S(\mathcal{S}) \subseteq \mathcal{U}_{\S}$. Let Nihil = $\{\S : \S(\mathcal{S}) \subseteq \mathcal{U}_{\S}\}$.



When the **nature** of inference does not really matter:

When the **nature** of inference does not really matter:

(i) dadaistic

When the **nature** of inference does not really matter:

(i) dadaistic

Semantical conditions:

When the **nature** of inference does not really matter:

(i) dadaistic

Semantical conditions:

 $\mathcal{D}_i \neq \varnothing$ $\mathsf{Sem}_i \subseteq \mathsf{Dada}$

When the **nature** of inference does not really matter:

(i) (ii) **dadaistic** nihilistic Semantical conditions: $\mathcal{D}_i \neq \varnothing$ Sem_i \subseteq Dada

When the **nature** of inference does not really matter:

 $\begin{array}{ll} ({\rm i}) & ({\rm ii}) \\ \textbf{dadaistic} & \textbf{nihilistic} \\ \hline \textbf{Semantical conditions:} \\ \mathcal{D}_{\rm i} \neq \varnothing & \mathcal{U}_{\rm ii} \neq \varnothing \\ \hline \textbf{Sem}_{\rm i} \subseteq \textsf{Dada} & \textsf{Sem}_{\rm ii} \subseteq \textsf{Nihil} \end{array}$

When the **nature** of inference does not really matter:

 $\begin{array}{ll} (i) & (ii) & (iii) \\ \textbf{dadaistic} & \textbf{nihilistic} & \textbf{semitrivial} \\ \hline \textbf{Semantical conditions:} \\ \mathcal{D}_i \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing \\ \hline \textbf{Sem}_i \subseteq \textsf{Dada} & \textsf{Sem}_{ii} \subseteq \textsf{Nihil} \end{array}$

When the **nature** of inference does not really matter:

 $\begin{array}{ll} (i) & (ii) & (iii) \\ \textbf{dadaistic} & \textbf{nihilistic} & \textbf{semitrivial} \\ \hline \textbf{Semantical conditions:} \\ \mathcal{D}_i \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \mathcal{D}_{iii} \neq \varnothing \text{ and } \mathcal{U}_{iii} \neq \varnothing \\ \hline \textbf{Sem}_i \subseteq \textsf{Dada} & \textsf{Sem}_{ii} \subseteq \textsf{Nihil} & \textsf{Sem}_{iii} \subseteq \textsf{Dada} \bigcup \textsf{Nihil} \\ \end{array}$

When the **nature** of inference does not really matter:

When the **nature** of inference does not really matter:

When the **nature** of inference does not really matter:

 $\begin{array}{lll} (i) & (ii) & (iii) & (iv) \\ \textbf{dadaistic} & \textbf{nihilistic} & \textbf{semitrivial} & \textbf{trivial} \\ \hline \\ \textbf{Semantical conditions:} \\ \mathcal{D}_{i} \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \mathcal{D}_{iii} \neq \varnothing & \text{and} & \mathcal{U}_{iii} \neq \varnothing & -- \\ \hline \\ \textbf{Sem}_{i} \subseteq \textbf{Dada} & \textbf{Sem}_{ii} \subseteq \textbf{Nihil} & \textbf{Sem}_{iii} \subseteq \textbf{Dada} \bigcup \textbf{Nihil} & \textbf{Sem}_{iv} \subseteq \textbf{Dada} \cap \textbf{Nihil}(=\varnothing) \\ \hline \\ \textbf{Single-conclusion abstract characterizations:} \end{array}$

When the **nature** of inference does not really matter:

(i) (ii) (iii) (iii) (iv) **dadaistic** nihilistic semitrivial trivial Semantical conditions: $\mathcal{D}_{i} \neq \emptyset$ $\mathcal{U}_{ii} \neq \emptyset$ $\mathcal{D}_{iii} \neq \emptyset$ and $\mathcal{U}_{iii} \neq \emptyset$ — Sem_i \subseteq Dada Sem_{ii} \subseteq Nihil Sem_{iii} \subseteq Dada \bigcup Nihil Sem_{iv} \subseteq Dada \cap Nihil(= \emptyset) Single-conclusion abstract characterizations: $(\forall \beta \Gamma)$

 $\Gamma \Vdash_{\mathbf{i}}^{\mathsf{s}} \beta$

When the **nature** of inference does not really matter:

(i) (ii) (iii) (iv) **dadaistic nihilistic semitrivial trivial Semantical** conditions: $\mathcal{D}_{i} \neq \emptyset$ $\mathcal{U}_{ii} \neq \emptyset$ $\mathcal{D}_{iii} \neq \emptyset$ and $\mathcal{U}_{iii} \neq \emptyset$ — Sem_i \subseteq Dada Sem_{ii} \subseteq Nihil Sem_{iii} \subseteq Dada \bigcup Nihil Sem_{iv} \subseteq Dada \cap Nihil(= \emptyset) **Single-conclusion** abstract characterizations: $(\forall \beta \Gamma)$ $(\forall \alpha \beta \Gamma)$

 $\Gamma \Vdash^{\mathsf{s}}_{\mathsf{i}} \beta \qquad \qquad \Gamma, \alpha \Vdash^{\mathsf{s}}_{\mathsf{ii}} \beta$

When the **nature** of inference does not really matter:

 $\Gamma \Vdash_{\mathbf{i}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathbf{s}} \beta$

When the **nature** of inference does not really matter:

 $\begin{array}{cccc} (i) & (ii) & (iii) & (iv) \\ \textbf{dadaistic} & \textbf{nihilistic} & \textbf{semitrivial} & \textbf{trivial} \\ \end{array} \\ \hline \textbf{dadaistic} & \textbf{nihilistic} & \textbf{semitrivial} & \textbf{trivial} \\ \hline \textbf{Semantical conditions:} \\ \mathcal{D}_{i} \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \textbf{and} & \mathcal{U}_{iii} \neq \varnothing & -- \\ \hline \textbf{Sem}_{i} \subseteq \textbf{Dada} & \textbf{Sem}_{ii} \subseteq \textbf{Nihil} & \textbf{Sem}_{iii} \subseteq \textbf{Dada} \bigcup \textbf{Nihil} & \textbf{Sem}_{iv} \subseteq \textbf{Dada} \cap \textbf{Nihil}(=\varnothing) \\ \hline \textbf{Single-conclusion abstract characterizations:} \\ (\forall \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \beta \Gamma) \\ \Gamma \Vdash_{i}^{s} \beta & \Gamma, \alpha \Vdash_{ii}^{s} \beta & \Gamma, \alpha \Vdash_{ii}^{s} \beta & \Gamma \Vdash_{iv}^{s} \beta \end{array}$

When the **nature** of inference does not really matter:

(i) (ii) (iii) (iv) **dadaistic** nihilistic semitrivial trivial Semantical conditions: $\mathcal{D}_{i} \neq \emptyset$ $\mathcal{U}_{ii} \neq \emptyset$ $\mathcal{D}_{iii} \neq \emptyset$ and $\mathcal{U}_{iii} \neq \emptyset$ — Sem_i \subseteq Dada Sem_{ii} \subseteq Nihil Sem_{iii} \subseteq Dada \bigcup Nihil Sem_{iv} \subseteq Dada \cap Nihil(= \emptyset) Single-conclusion abstract characterizations: ($\forall \beta \Gamma$) ($\forall \alpha \beta \Gamma$) ($\forall \alpha \beta \Gamma$) ($\forall \beta \Gamma$) $\Gamma \Vdash_{i}^{s} \beta$ $\Gamma, \alpha \Vdash_{i}^{s} \beta$ $\Gamma, \alpha \Vdash_{ii}^{s} \beta$ $\Gamma \upharpoonright_{iv}^{s} \beta$ Multicle on the interference of the sector is the

Multiple-conclusion abstract characterizations:

When the **nature** of inference does not really matter:

(iv)(i) (ii) (iii) dadaistic nihilistic semitrivial trivial Semantical conditions: $\mathcal{D}_{\mathsf{i}} \neq \varnothing \qquad \qquad \mathcal{U}_{\mathsf{i}\mathsf{i}} \neq \varnothing \qquad \mathcal{D}_{\mathsf{i}\mathsf{i}\mathsf{i}} \neq \varnothing \quad \mathsf{and} \ \mathcal{U}_{\mathsf{i}\mathsf{i}\mathsf{i}} \neq \varnothing$ $\mathsf{Sem}_{\mathsf{i}} \subseteq \mathsf{Dada} \quad \mathsf{Sem}_{\mathsf{ii}} \subseteq \mathsf{Nihil} \quad \mathsf{Sem}_{\mathsf{iii}} \subseteq \mathsf{Dada} \bigcup \mathsf{Nihil} \quad \mathsf{Sem}_{\mathsf{iv}} \subseteq \mathsf{Dada} \cap \mathsf{Nihil}(= \emptyset)$ *Single-conclusion* abstract characterizations: $(\forall \beta \Gamma) \qquad (\forall \alpha \beta \Gamma) \qquad (\forall \alpha \beta \Gamma)$ $(\forall \beta \Gamma)$ $\Gamma \Vdash^{\mathsf{s}}_{\mathsf{i}} \beta \qquad \Gamma, \alpha \Vdash^{\mathsf{s}}_{\mathsf{ii}} \beta \qquad \Gamma, \alpha \Vdash^{\mathsf{s}}_{\mathsf{iii}} \beta$ $\Gamma \Vdash_{iv}^{s} \beta$ *Multiple-conclusion* abstract characterizations: $(\forall \beta \Gamma \Delta)$ $\Gamma \Vdash_{\mathbf{i}}^{\mathsf{m}} \beta, \Delta$

When the **nature** of inference does not really matter:

(i)	(ii)	(iii)	(iv)
dadaistic	nihilistic	semitrivial	trivial
Semantical c	onditions:		
$\mathcal{D}_i \neq \varnothing$	$\mathcal{U}_{ii} eq arnothing$	$\mathcal{D}_{iii} eq arnothing$ and $\mathcal{U}_{iii} eq arnothing$	—
$Sem_{i} \subseteq Dada$	$Sem_{ii}\subseteqNihil$	$Sem_{iii} \subseteq Dada igcup Nihil$	$Sem_{iv} \subseteq Dada \cap Nihil(= \varnothing)$
Single-conclu	i <mark>sion</mark> abstract o	characterizations:	
$(orall eta \Gamma)$	$(\forall lpha eta \Gamma)$	$(orall lpha eta \Gamma)$	$(orall eta \Gamma)$
$\Gamma \Vdash^{\sf s}_{\sf i} \beta$	$\Gamma, \alpha \Vdash^{s}_{ii} \beta$	$\Gamma, \alpha \Vdash_{\operatorname{III}}^{s} \beta$	$\Gamma \Vdash_{iv}^{s} \beta$
Multiple-con	clusion abstrac	t characterizations:	
$(\forall \beta \Gamma \Delta)$	$(\forall \alpha \Gamma \Delta)$		
$\Gamma \Vdash^{m}_{i} \beta, \Delta$	$\Gamma, \alpha \Vdash_{ii}^m \Delta$		

When the **nature** of inference does not really matter:

(iv)(i) (ii) (iii) dadaistic nihilistic semitrivial trivial Semantical conditions: $\mathcal{D}_{\mathsf{i}} \neq \varnothing \qquad \qquad \mathcal{U}_{\mathsf{i}\mathsf{i}} \neq \varnothing \qquad \mathcal{D}_{\mathsf{i}\mathsf{i}\mathsf{i}} \neq \varnothing \quad \mathsf{and} \ \mathcal{U}_{\mathsf{i}\mathsf{i}\mathsf{i}} \neq \varnothing$ $\mathsf{Sem}_{\mathsf{i}} \subseteq \mathsf{Dada} \quad \mathsf{Sem}_{\mathsf{ii}} \subseteq \mathsf{Nihil} \quad \mathsf{Sem}_{\mathsf{iii}} \subseteq \mathsf{Dada} \bigcup \mathsf{Nihil} \quad \mathsf{Sem}_{\mathsf{iv}} \subseteq \mathsf{Dada} \cap \mathsf{Nihil}(= \emptyset)$ *Single-conclusion* abstract characterizations: $(\forall \beta \Gamma) \qquad (\forall \alpha \beta \Gamma) \qquad (\forall \alpha \beta \Gamma)$ $(\forall \beta \Gamma)$ $\Gamma \Vdash_{\mathbf{i}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathbf{s}} \beta$ $\Gamma \Vdash^{\mathsf{s}}_{\mathsf{iv}} \beta$ *Multiple-conclusion* abstract characterizations: $(\forall \beta \Gamma \Delta) \qquad (\forall \alpha \Gamma \Delta) \qquad (\forall \alpha \beta \Gamma \Delta)$ $\Gamma \Vdash_{\mathbf{i}}^{\mathsf{m}} \beta, \Delta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathsf{m}} \Delta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathsf{m}} \beta, \Delta$

When the **nature** of inference does not really matter:

(iv)(i) (ii) (iii) dadaistic nihilistic semitrivial trivial Semantical conditions: $\mathcal{D}_{\mathsf{i}} \neq \varnothing \qquad \qquad \mathcal{U}_{\mathsf{i}\mathsf{i}} \neq \varnothing \qquad \mathcal{D}_{\mathsf{i}\mathsf{i}\mathsf{i}} \neq \varnothing \quad \mathsf{and} \ \mathcal{U}_{\mathsf{i}\mathsf{i}\mathsf{i}} \neq \varnothing$ $\mathsf{Sem}_{\mathsf{i}} \subseteq \mathsf{Dada} \quad \mathsf{Sem}_{\mathsf{ii}} \subseteq \mathsf{Nihil} \quad \mathsf{Sem}_{\mathsf{iii}} \subseteq \mathsf{Dada} \bigcup \mathsf{Nihil} \quad \mathsf{Sem}_{\mathsf{iv}} \subseteq \mathsf{Dada} \cap \mathsf{Nihil}(= \emptyset)$ *Single-conclusion* abstract characterizations: $(\forall \beta \Gamma) \qquad (\forall \alpha \beta \Gamma) \qquad (\forall \alpha \beta \Gamma)$ $(\forall \beta \Gamma)$ $\Gamma \Vdash_{\mathbf{i}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathbf{s}} \beta$ $\Gamma \Vdash^{\mathsf{s}}_{\mathsf{iv}} \beta$ *Multiple-conclusion* abstract characterizations: $(\forall \beta \Gamma \Delta) \qquad (\forall \alpha \Gamma \Delta) \qquad (\forall \alpha \beta \Gamma \Delta)$ $(\forall \Gamma \Delta)$ $\Gamma \Vdash_{\mathbf{i}}^{\mathsf{m}} \beta, \Delta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathsf{m}} \Delta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathsf{m}} \beta, \Delta$ $\Gamma \Vdash_{iv}^{\mathsf{m}} \Delta$

Now, **compare**:

(i)	(ii)	(iii)	(iv)
dadaistic	nihilistic	semitrivial	trivial

Semantical conditions:

 $\begin{array}{lll} \mathcal{D}_{i} \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \text{and} & \mathcal{U}_{iii} \neq \varnothing & & - \\ \text{Sem}_{i} \subseteq \text{Dada} & \text{Sem}_{ii} \subseteq \text{Nihil} & \text{Sem}_{iii} \subseteq \text{Dada} \bigcup \text{Nihil} & \text{Sem}_{iv} \subseteq \text{Dada} \cap \text{Nihil}(= \varnothing) \\ \hline \textit{Single-conclusion abstract characterizations:} \end{array}$

$(\forall \beta \Gamma)$	$(\forall lpha eta \Gamma)$	$(orall lpha eta \Gamma)$	$(\forall eta \Gamma)$
$\Gamma \Vdash^{\sf s}_{\sf i} \beta$	$\Gamma, \alpha \Vdash^{s}_{ii} \beta$	$\Gamma, \alpha \Vdash^{s}_{iii} \beta$	$\Gamma \Vdash^{s}_{iv} \beta$

Multiple-conclusion abstract characterizations:

Now, **compare**:

(i)	(ii)	(iii)	(iv)
dadaistic	nihilistic	semitrivial	trivial

Semantical conditions:

 $\mathcal{D}_{i} \neq \emptyset \qquad \mathcal{U}_{ii} \neq \emptyset \qquad \mathcal{D}_{iii} \neq \emptyset \text{ and } \mathcal{U}_{iii} \neq \emptyset \qquad -$ Sem_i \subseteq Dada Sem_{ii} \subseteq Nihil Sem_{iii} \subseteq Dada \bigcup Nihil Sem_{iv} \subseteq Dada \bigcap Nihil(= \emptyset) Single-conclusion abstract characterizations:

$(\forall \beta \Gamma)$	$(\forall \alpha \beta \Gamma)$	$(\forall \alpha \beta \Gamma)$	$(\forall \beta \Gamma)$
$\Gamma \Vdash^{s}_{i} \beta$	$\Gamma, \alpha \Vdash^{s}_{ii} \beta$	$\Gamma, \alpha \Vdash^{s}_{iii} \beta$	$\Gamma \Vdash^{s}_{iv} eta$

Multiple-conclusion abstract characterizations:

Now, **compare**:

(i)	(ii)	(iii)	(iv)
dadaistic	nihilistic	semitrivial	trivial

Semantical conditions:

 $\begin{array}{lll} \mathcal{D}_{i} \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \mathcal{D}_{iii} \neq \varnothing & \text{and} & \mathcal{U}_{iii} \neq \varnothing & -\\ \text{Sem}_{i} \subseteq \text{Dada} & \text{Sem}_{ii} \subseteq \text{Nihil} & \text{Sem}_{iii} \subseteq \text{Dada} \bigcup \text{Nihil} & \text{Sem}_{iv} \subseteq \text{Dada} \cap \text{Nihil}(= \varnothing) \\ \hline \textit{Single-conclusion abstract characterizations:} \\ (\forall \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \beta \Gamma) \end{array}$

 $\Gamma \Vdash_{\mathbf{i}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathbf{s}} \beta \qquad \Gamma \Vdash_{\mathbf{iv}}^{\mathbf{s}} \beta$

Multiple-conclusion abstract characterizations:

Now, **compare**:

dadaistic	nihilistic	semitrivial	trivial
(i)	(ii)	(iii)	(iv)

Semantical conditions:

 $\begin{array}{lll} \mathcal{D}_{i} \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \text{and} & \mathcal{U}_{iii} \neq \varnothing & -- \\ \text{Sem}_{i} \subseteq \text{Dada} & \text{Sem}_{ii} \subseteq \text{Nihil} & \text{Sem}_{iii} \subseteq \text{Dada} \bigcup \text{Nihil} & \text{Sem}_{iv} \subseteq \text{Dada} \bigcap \text{Nihil}(= \varnothing) \\ \hline \textit{Single-conclusion abstract characterizations:} \\ (\forall \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \beta \Gamma) \end{array}$

 $\Gamma \Vdash_{\mathbf{i}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{ii}}^{\mathbf{s}} \beta \qquad \Gamma, \alpha \Vdash_{\mathbf{iii}}^{\mathbf{s}} \beta \qquad \Gamma \Vdash_{\mathbf{iv}}^{\mathbf{s}} \beta$

Multiple-conclusion abstract characterizations:

Now, **compare**:

dadaistic	nihilistic	semitrivial	trivial
(i)	(ii)	(iii)	(iv)

Semantical conditions:

 $\begin{array}{cccc} \mathcal{D}_{i} \neq \varnothing & \mathcal{U}_{ii} \neq \varnothing & \text{ } \mathcal{D}_{iii} \neq \varnothing & \text{ and } \mathcal{U}_{iii} \neq \varnothing & --\\ \text{Sem}_{i} \subseteq \text{Dada} & \text{Sem}_{ii} \subseteq \text{Nihil} & \text{Sem}_{iii} \subseteq \text{Dada} \bigcup \text{Nihil} & \text{Sem}_{iv} \subseteq \text{Dada} \cap \text{Nihil}(= \varnothing) \\ \hline \textbf{Single-conclusion abstract characterizations:} \\ (\forall \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \alpha \beta \Gamma) & (\forall \beta \Gamma) \\ \Gamma \Vdash_{i}^{s} \beta & \Gamma, \alpha \Vdash_{ii}^{s} \beta & \Gamma, \alpha \Vdash_{iii}^{s} \beta & \Gamma \parallel_{iv}^{s} \beta \end{array}$

Multiple-conclusion abstract characterizations:

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case:

- (1) \mathcal{L} is non-dadaistic (i.e., $Sem_{\mathcal{L}} \not\subseteq Dada$)
- (2) S is \mathcal{L} -trivializing

(i.e., $(\forall \Delta \subseteq S) \ S \vDash^{\mathsf{m}} \Delta$)

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case: (1) \mathcal{L} is non-dadaistic (i.e., $\operatorname{Sem}_{\mathcal{L}} \not\subseteq \operatorname{Dada}$) (2) \mathcal{S} is \mathcal{L} -trivializing (i.e., $(\forall \Delta \subseteq \mathcal{S}) \mathcal{S} \vDash \Delta$)

Here is the **Paradox of Ineffable Inconsistencies**:

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case: (1) \mathcal{L} is non-dadaistic (i.e., $\operatorname{Sem}_{\mathcal{L}} \not\subseteq \operatorname{Dada}$) (2) \mathcal{S} is \mathcal{L} -trivializing (i.e., $(\forall \Delta \subseteq \mathcal{S}) \mathcal{S} \vDash \Delta$)

Here is the **Paradox of Ineffable Inconsistencies**:

Given any consistent tarskian logic \mathcal{L} , one can always find an inconsistent logic \mathcal{IL} such that:

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case: (1) \mathcal{L} is non-dadaistic (i.e., $\operatorname{Sem}_{\mathcal{L}} \not\subseteq \operatorname{Dada}$) (2) \mathcal{S} is \mathcal{L} -trivializing (i.e., $(\forall \Delta \subseteq \mathcal{S}) \mathcal{S} \vDash \Delta$)

Here is the **Paradox of Ineffable Inconsistencies**:

Given any consistent tarskian logic \mathcal{L} , one can always find an inconsistent logic \mathcal{IL} such that: $\Gamma \vDash_{\mathcal{IL}}^{m} \beta, \Delta$ iff $\Gamma \vDash_{\mathcal{L}}^{m} \beta, \Delta$ yet:

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case: (1) \mathcal{L} is non-dadaistic (i.e., $\operatorname{Sem}_{\mathcal{L}} \not\subseteq \operatorname{Dada}$) (2) \mathcal{S} is \mathcal{L} -trivializing (i.e., $(\forall \Delta \subseteq \mathcal{S}) \mathcal{S} \vDash^{\mathsf{m}} \Delta$)

Here is the **Paradox of Ineffable Inconsistencies**:

Given any consistent tarskian logic \mathcal{L} , one can always find an inconsistent logic \mathcal{IL} such that: $\Gamma \models_{\mathcal{IL}}^{\mathsf{m}} \beta, \Delta$ iff $\Gamma \models_{\mathcal{L}}^{\mathsf{m}} \beta, \Delta$ yet: $\mathcal{S} \not\models_{\mathcal{IL}}^{\mathsf{m}}$.

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case: (1) \mathcal{L} is non-dadaistic (i.e., $\operatorname{Sem}_{\mathcal{L}} \not\subseteq \operatorname{Dada}$) (2) \mathcal{S} is \mathcal{L} -trivializing (i.e., $(\forall \Delta \subseteq \mathcal{S}) \mathcal{S} \vDash \Delta$)

Here is the **Paradox of Ineffable Inconsistencies**:

Given any consistent tarskian logic \mathcal{L} , one can always find an inconsistent logic \mathcal{IL} such that: $\Gamma \models_{\mathcal{IL}}^{\mathsf{m}} \beta, \Delta \quad \text{iff} \quad \Gamma \models_{\mathcal{L}}^{\mathsf{m}} \beta, \Delta$ yet: $\mathcal{S} \not\models_{\mathcal{IL}}^{\mathsf{m}}$.

HOW?

Call a logic $\mathcal{L} = \langle \mathcal{S}, \vDash \rangle$ consistent in case: (1) \mathcal{L} is non-dadaistic (i.e., $\operatorname{Sem}_{\mathcal{L}} \not\subseteq \operatorname{Dada}$) (2) \mathcal{S} is \mathcal{L} -trivializing (i.e., $(\forall \Delta \subseteq \mathcal{S}) \mathcal{S} \vDash^{\mathsf{m}} \Delta$)

Here is the **Paradox of Ineffable Inconsistencies**:

Given any consistent tarskian logic \mathcal{L} , one can always find an inconsistent logic \mathcal{IL} such that: $\Gamma \models_{\mathcal{IL}}^{\mathsf{m}} \beta, \Delta$ iff $\Gamma \models_{\mathcal{L}}^{\mathsf{m}} \beta, \Delta$ yet: $\mathcal{S} \not\models_{\mathcal{IL}}^{\mathsf{m}}$.

HOW? Just **add** to $Sem_{\mathcal{L}}$ an arbitrary dadaistic valuation!