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An updated architecture of mathematics

Bourbaki 1950:

• Algebraic structure: 〈U ,Op〉

• Order structure: 〈O,≪〉

• Topological structure: 〈X , τ〉

• Multiple structures. . .

Logical structure?? 〈 S ,  〉

S: a set of sentences : a notion of consequence

A case for a new mother-structure?
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• good notion of ‘derivation’ of a conclusion from a set of premises

• usual characterization of proof-from-premises

• usual characterization of truth-preservation

Disadvantages:

• why not having a look at single-premise arguments as well?

• truth is still privileged over falsity

• difficulty to characterize some logical constants

• distinguishing logics: a difficulty that lingers
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Some popular frameworks for seeing logics:

(3) as (multiple-conclusion) CRs: m ⊆ Pow(S) × Pow(S)

Advantages:
• implements a natural notion of ‘rejection’

• allows talking about the ‘absence’ of a property

• requires much less from the languages of the logics

• neat characterization of the most usual logical constants

• geometrical view on proofs

• reconciliation of logics and their models

• restores perfect symmetry

• generalizes the previous cases

Disadvantage:

• difficult interpretation of what’s going on?
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Closure Systems and single-conclusion CRs

Closure Operator:

(C1) Γ ⊆ Γ overlap

(C2) (Γ) ⊆ Γ full cut

(C3) Γ ⊆ Λ ⇒ Γ ⊆ Λ dilution

Glossary:

• cut translates Gentzen’s ‘Schnitt’

• dilution translates Gentzen’s ‘Verdünnung’
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Closure Systems and single-conclusion CRs

Kuratowski (topological) closure:

(C1) Γ ⊆ Γ overlap

(C2) (Γ) ⊆ Γ full cut

(C3) Γ ⊆ Λ ⇒ Γ ⊆ Λ [derivable] dilution

(CK1) (Γ ∪ Σ) = Γ ∪ Σ premise-apartness

(CK2) ∅
 = ∅ no primitive theses
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Closure Systems and single-conclusion CRs

Tarski 1930 closure:

(C1) Γ ⊆ Γ overlap

(C2) (Γ) ⊆ Γ full cut

(C3) Γ ⊆ Λ ⇒ Γ ⊆ Λ [derivable] dilution

(CT1) Γ = ∪{(ΓΦ) : ΓΦ ∈ Fin(Γ)} finitariness

(CT2) |S| ≤ ℵ0 denumerable language

(CT3) ⊥ = S, for some ⊥ ∈ S ex falso

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}
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Closure Systems and single-conclusion CRs

Back to Closure Operator:
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(C1) Γ ⊆ Γ overlap

(C2) (Γ) ⊆ Γ full cut
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Closure and single-conclusion consequence relation:

Γ  α ⇔ α ∈ Γ
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(iii) γ1, . . . , γm  δ1, . . . , δn.

Using classical rules for ∧ and ∨, either:

(i)  δ1 ∨ . . . ∨ δn, or

(ii) γ1 ∧ . . . ∧ γm , or

(iii) γ1 ∧ . . . ∧ γm  δ1 ∨ . . . ∨ δn.

Using classical rules for ∼ and ⊃:

(ii)  ∼(γ1 ∧ . . . ∧ γm),

(iii)  (γ1 ∧ . . . ∧ γm) ⊃ (δ1 ∨ . . . ∨ δn).

Multiple-Conclusion Logics – p.6/17



Our Ancestors

Some early exponents:

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

≫ William Kneale 1956

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

≫ William Kneale 1956 ≫ Ian Hacking 1979

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

≫ William Kneale 1956 ≫ Ian Hacking 1979

Dana Scott 1971 & 1974

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

≫ William Kneale 1956 ≫ Ian Hacking 1979

Dana Scott 1971 & 1974

D. J. Shoesmith and Timothy J. Smiley 1978

Multiple-Conclusion Logics – p.7/17



Our Ancestors

Some early exponents:

Gerhard Gentzen 1934-35: Natural Deduction, Sequents

Rudolf Carnap 1943, Karl Popper 1947ff

≫ William Kneale 1956 ≫ Ian Hacking 1979

Dana Scott 1971 & 1974

D. J. Shoesmith and Timothy J. Smiley 1978

But what is multiple-conclusion good for?
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Reading rules from truth-tables: ∧ and ∨

∧ T F

T T F

F F F

∨ T F

T T T

F T F
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∧ T F

T T F

F F F

∨ T F

T T T

F T F

α ∧ β s α α s α ∨ β

α ∧ β s β β s α ∨ β

α, β s α ∧ β α ∨ β s ??

but

α ∨ β m α, β
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T T F

F T T

Γ, α k β,∆ ⇒ Γ k α ⊃ β,∆

Multiple-Conclusion Logics – p.10/17



Reading rules from truth-tables: ⊃

⊃ T F

T T F

F T T

Γ, α k β,∆ ⇒ Γ k α ⊃ β,∆

Γ k α,∆ and Γ′, β k ∆′ ⇒ Γ′,Γ, α ⊃ β k ∆,∆′

Multiple-Conclusion Logics – p.10/17



Reading rules from truth-tables: ⊃

⊃ T F

T T F

F T T

Γ, α k β,∆ ⇒ Γ k α ⊃ β,∆

Γ k α,∆ and Γ′, β k ∆′ ⇒ Γ′,Γ, α ⊃ β k ∆,∆′

If k = s, then ∆ = ∅ and ∆′ is a singleton.
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⊃ T F

T T F

F T T

Γ, α k β,∆ ⇒ Γ k α ⊃ β,∆

Γ k α,∆ and Γ′, β k ∆′ ⇒ Γ′,Γ, α ⊃ β k ∆,∆′

If k = s, then ∆ = ∅ and ∆′ is a singleton. But then

the above rules characterize only intuitionistic implication!

Alternatively, for the classical implication, one could take:

Γ, α, α ⊃ β m β,∆

Γ, β m α ⊃ β,∆

Γ m α, α ⊃ β,∆
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be such that:

(Γ ◮ ∆) iff (∆ ⊲ Γ).
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Interlude: Duality and multiple-conclusion

For any given logic L⊲ = 〈S,⊲〉

let the dual logic L◮ = 〈S,◮〉

be such that:

(Γ ◮ ∆) iff (∆ ⊲ Γ).

Similarly,

given rules for some ⊼: we can consider their duals for ⊻:

α, β ⊲ α ⊼ β α ⊻ β ◮ β, α

α ⊼ β ⊲ α α ◮ α ⊻ β

α ⊼ β ⊲ β β ◮ α ⊻ β

given rules for some ∼: we can consider their duals for ∼:

α,∼α ⊲ ◮ α,∼α

⊲ ∼α, α α,∼α ◮

And so on. . .
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Underdetermined models for classical logic

∧ T F2 F1 F

T T F2 F1 F

F2 F2 F2 F F

F1 F1 F F1 F

F F F F F

∨ T F2 F1 F

T T T T T

F2 T F2 T F2

F1 T T F1 F1

F T F2 F1 F

∼

T F

F2 F1

F1 F2

F T
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Underdetermined models for classical logic

∧ T F2 F1 F

T T F2 F1 F

F2 F2 F2 F F

F1 F1 F F1 F

F F F F F

∨ T F2 F1 F

T T T T T

F2 T F2 T F2

F1 T T F1 F1

F T F2 F1 F

∼

T F

F2 F1

F1 F2

F T

(Notice that there is no single redundant value!)

It is easy to check that s
CL = �s,

and m
CL ⊇ �m,

but m
CL 6⊆ �m ! In particular, 6�m ∼α, α.

(though �m ∼α ∨ α)
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A canonical notion of interpretation

Given some S, here are the elements of a

(tarskian) interpretation over it:
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• designated and undesignated values:

D and U , where D ∩ U = ∅

• valuations, or models: total functions § : S → V

• semantics: any set Sem of valuations

• (canonical) notions of entailment �k
§

locally associated to a valuation § ∈ Sem:

Γ �s
§ ϕ iff §(Γ) 6⊆ D or §({ϕ}) 6⊆ U (LEs)

Γ �m
§ ∆ iff §(Γ) 6⊆ D or §(∆) 6⊆ U (LEm)
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Γ �s
Sem ϕ iff (∀§ ∈ Sem) Γ �s
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Local × Global

For the usual notions of global entailment:

Γ �s
Sem ϕ iff (∀§ ∈ Sem) Γ �s

§ ϕ (GEs)
(Tarski 1936)

Γ �m
Sem ∆ iff (∀§ ∈ Sem) Γ �m

§ ∆ (GEm)

A logic L = 〈S,〉 is said to have an adequate tarskian

interpretation whenever there is some �k
Sem, as above,

such that  = �k
Sem.
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Interlude: The ‘Dark’ Side of the Moon

Veritas? Quid est veritas?

—Pontius Pilate (Joannes 18:38).
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Interlude: The ‘Dark’ Side of the Moon

Veritas? Quid est veritas?

—Pontius Pilate (Joannes 18:38).

On discernment

What if everything is true?

Very bad, but. . .

What if everything is false?

Equally bad!!

Why all the bias towards truth?

In 1869, Jules Verne published Autour de la Lune.

In 1959, Luna 3 photographed the far side of the Moon.
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Indecent Logics

When the nature of inference does not really matter:
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Single-conclusion abstract characterizations:

(∀βΓ) (∀αβΓ) (∀αβΓ) (∀βΓ)

Γ s
i

β Γ, α s
ii

β Γ, α s
iii

β Γ s
iv

β

Multiple-conclusion abstract characterizations:

(∀βΓ∆) (∀αΓ∆) (∀αβΓ∆) (∀Γ∆)

Γ m
i

β, ∆ Γ, α m
ii

∆ Γ, α m
iii

β, ∆ Γ m
iv

∆
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Ineffable Inconsistencies

Call a logic L = 〈S,�〉 consistent in case:

(1) L is non-dadaistic (i.e., SemL 6⊆ Dada)

(2) S is L-trivializing (i.e., (∀∆ ⊆ S) S �m ∆)
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Call a logic L = 〈S,�〉 consistent in case:

(1) L is non-dadaistic (i.e., SemL 6⊆ Dada)

(2) S is L-trivializing (i.e., (∀∆ ⊆ S) S �m ∆)

Here is the Paradox of Ineffable Inconsistencies:

Given any consistent tarskian logic L, one can

always find an inconsistent logic IL such that:

Γ �
m
IL β,∆ iff Γ �
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L β,∆

yet: S 6�m
IL .

HOW?
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Ineffable Inconsistencies

Call a logic L = 〈S,�〉 consistent in case:

(1) L is non-dadaistic (i.e., SemL 6⊆ Dada)

(2) S is L-trivializing (i.e., (∀∆ ⊆ S) S �m ∆)

Here is the Paradox of Ineffable Inconsistencies:

Given any consistent tarskian logic L, one can

always find an inconsistent logic IL such that:

Γ �
m
IL β,∆ iff Γ �

m
L β,∆

yet: S 6�m
IL .

HOW? Just add to SemL an arbitrary dadaistic valuation!
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