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General Abstract Nonsense

Les idées générales et abstraites sont la source des

plus grandes erreurs des hommes.

—Jean-Jacques Rousseau, Profession de Foi du Vi-

caire Savoyard, in“Émile, ou de l’éducation”, 1762.
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Representation Theorems:

Consider logics L
 = 〈S,
〉 and L� = 〈S,�〉

over a fixed universe S.
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 in case 
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We say that L� is complete with respect to L
 in case 
 ⊇ �.
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General Abstract Nonsense

Les idées générales et abstraites sont la source des

plus grandes erreurs des hommes.

—Jean-Jacques Rousseau, Profession de Foi du Vi-

caire Savoyard, in“Émile, ou de l’éducation”, 1762.

Representation Theorems:

Consider logics L
 = 〈S,
〉 and L� = 〈S,�〉

over a fixed universe S.

We say that L� is sound with respect to L
 in case 
 ⊆ �.

We say that L� is complete with respect to L
 in case 
 ⊇ �.

Recall that: adequacy = soundness + completeness.
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General Abstract Nonsense

Les idées générales et abstraites sont la source des

plus grandes erreurs des hommes.

—Jean-Jacques Rousseau, Profession de Foi du Vi-

caire Savoyard, in“Émile, ou de l’éducation”, 1762.

Representation Theorems:

Consider logics L
 = 〈S,
〉 and L� = 〈S,�〉

over a fixed universe S.

We say that L� is sound with respect to L
 in case 
 ⊆ �.

We say that L� is complete with respect to L
 in case 
 ⊇ �.

Recall that: adequacy = soundness + completeness.

Idea: To provide abstract axiomatizations for
interesting semantical ideas, and vice-versa.
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An illustration from before
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An illustration from before

Recall Kuratowski (topological) closure:

(C1) Γ ⊆ Γ
 overlap

(C2) (Γ
)
 ⊆ Γ full cut

(C3) Γ ⊆ Λ ⇒ Γ
 ⊆ Λ
 dilution

(CK1) (Γ ∪ Σ)
 = Γ
 ∪ Σ
 premise-apartness

(CK2) ∅

 = ∅ no primitive theses
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(C1) Γ ⊆ Γ
 overlap

(C2) (Γ
)
 ⊆ Γ full cut

(C3) Γ ⊆ Λ ⇒ Γ
 ⊆ Λ
 dilution

(CK1) (Γ ∪ Σ)
 = Γ
 ∪ Σ
 premise-apartness

(CK2) ∅

 = ∅ no primitive theses

Which, in terms of consequence relations,

could be rewritten as . . .
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An illustration from before

Recall Kuratowski (topological) closure:

(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution

(CK1) Σ,Γ 
 α ⇔ Σ 
 α or Γ 
 α premise-apartness

(CK2) 6
 α no primitive theses

Which, in terms of consequence relations,

could be rewritten as . . .
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An illustration from before

Recall Kuratowski (topological) closure:

(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution

(CK1) Σ,Γ 
 α ⇔ Σ 
 α or Γ 
 α premise-apartness

(CK2) 6
 α no primitive theses

. . . providing a Representation Theorem for

the ‘semantics of closed sets’.
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An illustration from before

Now, go back to relations determined by Closure Operators:

(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution
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(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution

What kind of Representation Theorem can be proved

in the case of these T-logics?
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Now, go back to relations determined by Closure Operators:

(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution

What kind of Representation Theorem can be proved

in the case of these T-logics?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is a preliminary question:
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An illustration from before

Now, go back to relations determined by Closure Operators:

(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution

What kind of Representation Theorem can be proved

in the case of these T-logics?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is a preliminary question:
Can (C2) be substituted by

(C2n) Σ, λ 
 β and Γ 
 λ ⇒ Σ,Γ 
 β naive cut

???
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A pledge for naive cut, and a problem

Let 
 respect (C1), (C2n) and (C3).
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A pledge for naive cut, and a problem

Let 
 respect (C1), (C2n) and (C3).

Define ≍ (⊆ S × S) by setting α ≍ β iff (α 
 β and β 
 α).

Then ≍ defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]
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Define ≍ (⊆ S × S) by setting α ≍ β iff (α 
 β and β 
 α).

Then ≍ defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]

Suppose we now define ≎ (⊆ Pow(S) × Pow(S)) by setting

Γ ≎ ∆ iff ((∀δ ∈ ∆)Γ 
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Let 
 respect (C1), (C2n) and (C3).

Define ≍ (⊆ S × S) by setting α ≍ β iff (α 
 β and β 
 α).

Then ≍ defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]

Suppose we now define ≎ (⊆ Pow(S) × Pow(S)) by setting

Γ ≎ ∆ iff ((∀δ ∈ ∆)Γ 
 δ and (∀γ ∈ Γ)∆ 
 γ).

Then ≎ is not an equivalence relation over Pow(S)!

However:

E1: with (C2) in the place of (C2n), ≎ does define an equivalence
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A pledge for naive cut, and a problem

Let 
 respect (C1), (C2n) and (C3).

Define ≍ (⊆ S × S) by setting α ≍ β iff (α 
 β and β 
 α).

Then ≍ defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]

Suppose we now define ≎ (⊆ Pow(S) × Pow(S)) by setting

Γ ≎ ∆ iff ((∀δ ∈ ∆)Γ 
 δ and (∀γ ∈ Γ)∆ 
 γ).

Then ≎ is not an equivalence relation over Pow(S)!

However:

E1: with (C2) in the place of (C2n), ≎ does define an equivalence

E2: (C1) + (C2) + (C3) ⇒ (C2n)

E3: (C1) + (C2n) + (C3) 6⇒ (C2)
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Some refinements of T-logics

Other customary axioms. . .
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Some refinements of T-logics

Other customary axioms. . .

(CC) Γ 
 β ⇒ (∃ΓΦ ∈ Fin(Γ)) ΓΦ 
 β compactness

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}
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Some refinements of T-logics

Other customary axioms. . .

(CC) Γ 
 β ⇒ (∃ΓΦ ∈ Fin(Γ)) ΓΦ 
 β compactness

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}
Axiom of Choice!
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Some refinements of T-logics

Other customary axioms. . .

(CC) Γ 
 β ⇒ (∃ΓΦ ∈ Fin(Γ)) ΓΦ 
 β compactness

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that:

E4: (CC) + (C1) + (C2n) + (C3) ⇒ (C2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Some refinements of T-logics

Other customary axioms. . .

(CC) Γ 
 β ⇒ (∃ΓΦ ∈ Fin(Γ)) ΓΦ 
 β compactness

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}

Let’s now suppose S has an algebraic character, i.e.:

• atomic sentences: At (e.g. {p1, p2, p3, . . .})
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Some refinements of T-logics

Other customary axioms. . .

(CC) Γ 
 β ⇒ (∃ΓΦ ∈ Fin(Γ)) ΓΦ 
 β compactness

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}

Let’s now suppose S has an algebraic character, i.e.:

• atomic sentences: At (e.g. {p1, p2, p3, . . .})

• collections Cntn of n-ary connectives of a

propositional signature Cnt = {Cntn}n∈N

• an algebra of formulas freely generated by At over ∪Cnt.

Then, consider: [ Loś & Suszko 1958]

(CLS) Γ 
 β ⇒ Γε

 βε, for any endomorphism ε : S → S

substitutionality
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Some refinements of T-logics

Other customary axioms. . .

(CC) Γ 
 β ⇒ (∃ΓΦ ∈ Fin(Γ)) ΓΦ 
 β compactness

where Fin(Γ) = {ΓΦ : ΓΦ is a finite subset of Γ}

Let’s now suppose S has an algebraic character, i.e.:

• atomic sentences: At (e.g. {p1, p2, p3, . . .})

• collections Cntn of n-ary connectives of a

propositional signature Cnt = {Cntn}n∈N

• an algebra of formulas freely generated by At over ∪Cnt.

Then, consider: [ Loś & Suszko 1958]

(CLS) Γ 
 β ⇒ Γε

 βε, for any endomorphism ε : S → S

substitutionality notion of ‘logical form’!
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Logics in agreement

Consider a family of logics F = {Li}i∈I over some fixed S.
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Logics in agreement

Consider a family of logics F = {Li}i∈I over some fixed S.

Define the superlogic LF of this family

by taking
⋂

i∈I Li, that is, LF = 〈S,∩i∈I
i〉,

where each Li = 〈S,
i〉, for i ∈ I.
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by taking
⋂

i∈I Li, that is, LF = 〈S,∩i∈I
i〉,

where each Li = 〈S,
i〉, for i ∈ I.

Which properties of a CR are preserved from F into LF?
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Which properties of a CR are preserved from F into LF?

(C1), (C2), (C2n), (C3) are all preserved (Horn clauses. . . )
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Logics in agreement

Consider a family of logics F = {Li}i∈I over some fixed S.

Define the superlogic LF of this family

by taking
⋂

i∈I Li, that is, LF = 〈S,∩i∈I
i〉,

where each Li = 〈S,
i〉, for i ∈ I.

Which properties of a CR are preserved from F into LF?

(C1), (C2), (C2n), (C3) are all preserved (Horn clauses. . . )

(CLS) is preserved

(CC) is not preserved (ω-rules. . . )
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Recall ‘tarskian interpretations’

Fix some S and let Sem be a many-valued semantics over it.
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Recall ‘tarskian interpretations’

Fix some S and let Sem be a many-valued semantics over it.

Each § ∈ Sem has the following associated elements:

• truth-values V§, D§ and U§, such that

V§ = D§ ∪ U§ and D§ ∩ U§ = ∅
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Recall ‘tarskian interpretations’

Fix some S and let Sem be a many-valued semantics over it.

Each § ∈ Sem has the following associated elements:

• truth-values V§, D§ and U§, such that

V§ = D§ ∪ U§ and D§ ∩ U§ = ∅

• local entailment relation �§ such that

Γ �§ ∆ iff §(Γ) 6⊆ D§ or §(∆) 6⊆ U§

• global entailment relation �Sem such that

�Sem =
⋂

§∈Sem(�§)

Say that 〈S,�Sem〉 is a κ-valued logic if κ = Max§∈Sem(|V§|).
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Some fundamental semantic features
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.

Let {〈S,�Sem[i]〉}i∈I be a family of logics

with tarskian interpretations.
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.

Let {〈S,�Sem[i]〉}i∈I be a family of logics

with tarskian interpretations.

Notice that:

• Any such logic respects axioms (C1), (C2) and (C3)
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.

Let {〈S,�Sem[i]〉}i∈I be a family of logics

with tarskian interpretations.

Notice that:

• Any such logic respects axioms (C1), (C2) and (C3)

• Superlogics: ⋂

i∈I

�Sem(i) = �⋃
i∈I

Sem[i]
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:
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Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:

• Γ 6
 β
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:

• Γ 6
 β

• (∀α 6∈ Γ) Γ, α 
 β

Glossary:

• J.-Y. Béziau’s β-excessive translates Günter Asser’s ‘vollständig in Bezug auf β’
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:

• Γ 6
 β

• (∀α 6∈ Γ) Γ, α 
 β

Say that Γ is maximal in case it is β-excessive for every β 6∈ Γ.
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:

• Γ 6
 β

• (∀α 6∈ Γ) Γ, α 
 β

Say that Γ is maximal in case it is β-excessive for every β 6∈ Γ.

Say that Γ is (right-)closed in case Γ 
 δ ⇒ δ ∈ Γ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:

• Γ 6
 β

• (∀α 6∈ Γ) Γ, α 
 β

Say that Γ is maximal in case it is β-excessive for every β 6∈ Γ.

Say that Γ is (right-)closed in case Γ 
 δ ⇒ δ ∈ Γ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that:

• If Γ is excessive, then Γ is closed.
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that Γ ⊆ S is (β-)excessive (given β ∈ S)

in case it is such that:

• Γ 6
 β

• (∀α 6∈ Γ) Γ, α 
 β

Say that Γ is maximal in case it is β-excessive for every β 6∈ Γ.

Say that Γ is (right-)closed in case Γ 
 δ ⇒ δ ∈ Γ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that:

• If Γ is excessive, then Γ is closed.

• In classical logic, excessive ⇒ maximal.
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A fundamental lemma on abstract logics

Let Exc(Γ, β,L) be the collection of all β-excessive theories

extending Γ in L.
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A fundamental lemma on abstract logics

Let Exc(Γ, β,L) be the collection of all β-excessive theories extending Γ in L.

Zorn’s Lemma:

If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.
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A fundamental lemma on abstract logics

Let Exc(Γ, β,L) be the collection of all β-excessive theories extending Γ in L.

Zorn’s Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic L that respects (C3)
and (CC) can be extended to an excessive theory Γexc.
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A fundamental lemma on abstract logics

Let Exc(Γ, β,L) be the collection of all β-excessive theories extending Γ in L.

Zorn’s Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic L that respects (C3)
and (CC) can be extended to an excessive theory Γexc.

Proof. Suppose Γ 6
 β.
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A fundamental lemma on abstract logics

Let Exc(Γ, β,L) be the collection of all β-excessive theories extending Γ in L.

Zorn’s Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic L that respects (C3)
and (CC) can be extended to an excessive theory Γexc.

Proof. Suppose Γ 6
 β. Let Exc(Γ, β,L) be partially ordered by ⊆.
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A fundamental lemma on abstract logics

Let Exc(Γ, β,L) be the collection of all β-excessive theories extending Γ in L.

Zorn’s Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.
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Let Exc(Γ, β,L) be the collection of all β-excessive theories extending Γ in L.

Zorn’s Lemma: If every chain in a partially ordered set has an upper bound,
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 β. Let Exc(Γ, β,L) be partially ordered by ⊆.

Let C be a chain (a totally ordered set) in Exc(Γ, β,L).

We show that
⋃
C is an upper bound for C, i.e.,

(∀∆ ∈ C) ∆ ⊆
⋃
C (obvious) and

⋃
C ∈ Exc(Γ, β,L).

Suppose Φ ∈ Fin(
⋃
C). Then Φ ⊆ Σ ∈ C. But Σ 6
 β.

By dilution [(C3)], Φ 6
 β. By compactness [(CC)],
⋃
C 6
 β.

By Zorn’s Lemma, Exc(Γ, β,L) has a maximal element Γexc.

Q.E.D.
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Automatic soundness

Fix some logic L = 〈S,
〉 and some theory Γ in what follows.

Call Γ
 = {α : Γ 
 α} the right-closure of Γ.

Let Clo(L) be the collection of all right-closed theories of L.
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Any single-conclusion T-logic is many-valued

[Wójcicki’s Reduction]
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Any single-conclusion T-logic is many-valued

[Wójcicki’s Reduction]

Given some T-logic L, consider the superlogic LF of its

Lindenbaum Bundle F = {LΓ : Γ ⊆ S}. Soundness is obvious.

[Now, for completeness: ∆ �Sem(
⋂

F) β ⇒ ∆ 
 β.]

Suppose ∆ �Sem(
⋂

F) β.

Thus, ∆ �Γ β, for every Γ ⊆ S.

By the definition of �Γ, and the fact that L is a T-logic,

this means that (∀Γ ⊆ S) Γ,∆ 
 β.

In particular, for Γ = ∅, we have that ∆ 
 β. Q.E.D.

So:

Every single-conclusion T-logic is κ-valued, for κ = |S|.
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Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many

truths and falsehoods. [. . . ] Obviously any multiplica-

tion of logical values is a mad idea.

—Roman Suszko, 22nd Conference on the History of

Logic, Cracow, 1976.

[Suszko’s Reduction] ‘logical’ × ‘algebraic’ truth-values
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Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many

truths and falsehoods. [. . . ] Obviously any multiplica-

tion of logical values is a mad idea.

—Roman Suszko, 22nd Conference on the History of

Logic, Cracow, 1976.

[Suszko’s Reduction] ‘logical’ × ‘algebraic’ truth-values

For any many-valued valuation § : S → V§ for a T-logic L,

with semantics Sem(κ), consider its ‘binary print’:

Let V(2) = {T, F} and D(2) = T , and

define a bivaluation b§ : S → V(2) such that

b§(ϕ) = T iff §(ϕ) ∈ D.

Collect such b§’s into Sem(2). Note that:

∆ �Sem(2) β iff ∆ �Sem(κ) β. Q.E.D.
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On the theory of (bi)valuations

Any theory Γ ⊆ S determines a characteristic bivaluation:

bΓ(ϕ) = T iff ϕ ∈ Γ.

Recall Exc(Γ, β,L), the collection of all β-excessive theories extending Γ in L.

Let Max(Γ,L) be the collection of all maximal theories extending Γ in L.

Let Clo(Γ,L) be the collection of all closed theories extending Γ in L.
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Note that, given a compact T-logic L and a set of theories H:

⋆ If H 6⊆ Clo(Γ,L), soundness fails for Biv(H)

⋆ If H 6⊇ Exc(Γ, β,L), completeness fails for Biv(H) [Béziau 1999]
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On the theory of (bi)valuations

Any theory Γ ⊆ S determines a characteristic bivaluation:

bΓ(ϕ) = T iff ϕ ∈ Γ.

Fix some Γ ∪ {β} ⊆ S. Then:

Max(Γ,L) ⊆ Exc(Γ, β,L) ⊆ Clo(Γ,L).

Given a set of theories H, let Biv(H) be

its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T-logic L and a set of theories H:

⋆ If H 6⊆ Clo(Γ,L), soundness fails for Biv(H)

⋆ If H 6⊇ Exc(Γ, β,L), completeness fails for Biv(H) [Béziau 1999]

⋆ If Exc(Γ, β,L) ⊆ H ⊆ Clo(Γ,L), then Biv(H) is
an adequate semantics for L. [da Costa & Béziau 1994ff]
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model

(of a certain kind).
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(of a certain kind).

Say that a logic is categorical if it has only one

adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,

consider a T-logic L = 〈S,
〉 s.t.:
S = {x, y}, with x 6= y

x 
 y y 6
 x
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(of a certain kind).
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Categoricity can easily fail in SC-CRs. Indeed,

consider a T-logic L = 〈S,
〉 s.t.:
S = {x, y}, with x 6= y
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 y y 6
 x

Consider bivaluations b1 and b2 s.t.:
b1(x) = F b2(x) = T ,

bn(y) = T
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model

(of a certain kind).

Say that a logic is categorical if it has only one

adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,

consider a T-logic L = 〈S,
〉 s.t.:
S = {x, y}, with x 6= y

x 
 y y 6
 x

Consider bivaluations b1 and b2 s.t.:
b1(x) = F b2(x) = T ,

bn(y) = T

Then both {b1} and {b1, b2} are adequate for L.
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(of a certain kind).

Say that a logic is categorical if it has only one

adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model

(of a certain kind).

Say that a logic is categorical if it has only one

adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:

• CL with underdetermined 4-valued models

• CL with ineffable inconsistencies
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Multiple-Conclusion T-logics

Recall the abstract axioms of single-conclusion T-logics:

(C1) Γ, β 
 β overlap

(C2) Λ 
 β and (∀λ ∈ Λ)Γ 
 λ ⇒ Γ 
 β full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
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 β full cut
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 β dilution
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(C1) Γ, β 
 β,∆ overlap

¿(C2L)? Γ,Λ 
 ∆ and (∀λ ∈ Λ)Σ 
 λ,Π ⇒ Σ,Γ 
 ∆,Π left-cut

¿(C2R)? Γ 
 Λ,∆ and (∀λ ∈ Λ)Σ, λ 
 Π ⇒ Σ,Γ 
 ∆,Π right-cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(C1) Γ, β 
 β,∆ overlap

(C2) (∃Θ ⊆ S)(∀〈Σ,Π〉 ∈ QPart(Θ)) Σ,Γ 
 ∆,Π ⇒ Γ 
 ∆

full cut

(C3) Γ 
 β ⇒ Σ,Γ 
 β dilution

Call 〈Σ, Π〉 a quasi-partition of the set Θ ⊆ S in case Σ ∪ Π = Θ and Σ ∩ Π = ∅.

Let QPart(Θ) denote the collection of all quasi-partitions of a set Θ.
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(C1) Γ, β 
 β,∆ overlap

(C2) (∃Θ ⊆ S)(∀〈Σ,Π〉 ∈ QPart(Θ)) Σ,Γ 
 ∆,Π ⇒ Γ 
 ∆

full cut

(C3) Γ 
 ∆ ⇒ Σ,Γ 
 ∆,Π dilution

Note that:

• (C3L) + (C3R) ⇒ (C3)

• (C2L) + (C2R) 6⇒ (C2)
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (∃Θ ⊆ S)(∀〈Σ, Π〉 ∈ QPart(Θ)) Σ, Γ 
 ∆, Π ⇒ Γ 
 ∆ full cut
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(C2) (∃Θ ⊆ S)(∀〈Σ, Π〉 ∈ QPart(Θ)) Σ, Γ 
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Now, besides (C2L) and (C2R), one might also consider:

(C2S) Fix Θ = S in (C2)
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Lindenbaum Bundle, upgraded

Fix some logic L = 〈S,
〉 in what follows.

Call the quasi-partition 〈Γ,∆〉 ∈ QPart(S) closed

in case Γ 6
 ∆.
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Call the quasi-partition 〈Γ, ∆〉 ∈ QPart(S) closed in case Γ 6
 ∆.

Given a closed Ξ = 〈Γ,∆〉 ∈ QPart(S), consider a logic
LΞ = 〈S,�Ξ〉 defined by setting:

• S = V , D = Γ, U = ∆, Sem = {IdV}
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Fix some logic L = 〈S, 
〉 in what follows.

Call the quasi-partition 〈Γ, ∆〉 ∈ QPart(S) closed in case Γ 6
 ∆.

Given a closed Ξ = 〈Γ,∆〉 ∈ QPart(S), consider a logic
LΞ = 〈S,�Ξ〉 defined by setting:

• S = V , D = Γ, U = ∆, Sem = {IdV}

The Lindenbaum Bundle of L will now be the set

{LΞ : Ξ ∈ QPart(S) and Ξ is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:

Proof. Select some closed Ξ = 〈Γ, ∆〉 ∈ QPart(S). Suppose

that Σ 6�Ξ Π. [Show that Σ 6
 Π.] By the definition of �Ξ,

then Σ ⊆ Γ and Π ⊆ ∆.

Multiple-Conclusion Logics – p.17/22



Lindenbaum Bundle, upgraded

Fix some logic L = 〈S, 
〉 in what follows.

Call the quasi-partition 〈Γ, ∆〉 ∈ QPart(S) closed in case Γ 6
 ∆.

Given a closed Ξ = 〈Γ,∆〉 ∈ QPart(S), consider a logic
LΞ = 〈S,�Ξ〉 defined by setting:

• S = V , D = Γ, U = ∆, Sem = {IdV}

The Lindenbaum Bundle of L will now be the set

{LΞ : Ξ ∈ QPart(S) and Ξ is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:

Proof. Select some closed Ξ = 〈Γ, ∆〉 ∈ QPart(S). Suppose

that Σ 6�Ξ Π. [Show that Σ 6
 Π.] By the definition of �Ξ,

then Σ ⊆ Γ and Π ⊆ ∆. But, as Ξ is closed, Γ 6
 ∆.
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Lindenbaum Bundle, upgraded

Fix some logic L = 〈S, 
〉 in what follows.

Call the quasi-partition 〈Γ, ∆〉 ∈ QPart(S) closed in case Γ 6
 ∆.

Given a closed Ξ = 〈Γ,∆〉 ∈ QPart(S), consider a logic
LΞ = 〈S,�Ξ〉 defined by setting:

• S = V , D = Γ, U = ∆, Sem = {IdV}

The Lindenbaum Bundle of L will now be the set

{LΞ : Ξ ∈ QPart(S) and Ξ is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:

Proof. Select some closed Ξ = 〈Γ, ∆〉 ∈ QPart(S). Suppose

that Σ 6�Ξ Π. [Show that Σ 6
 Π.] By the definition of �Ξ,

then Σ ⊆ Γ and Π ⊆ ∆. But, as Ξ is closed, Γ 6
 ∆.

By (C3), Σ 6
 Π. Q.E.D.
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A fundamental lemma, reconsidered

LA-Extension Lemma: [Scott 1971, Segerberg 1982]
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A fundamental lemma, reconsidered

LA-Extension Lemma: [Scott 1971, Segerberg 1982]

Any pair of sets Γ and ∆ such that Γ 6
 ∆ of a logic L

that respects (C3) and (CC) can be extended to

sets Γcqp ⊇ Γ and ∆cqp ⊇ ∆ that define a

closed quasi-partition 〈Γcqp,∆cqp〉 of S.
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A fundamental lemma, reconsidered

LA-Extension Lemma: [Scott 1971, Segerberg 1982]

Any pair of sets Γ and ∆ such that Γ 6
 ∆ of a logic L

that respects (C3) and (CC) can be extended to

sets Γcqp ⊇ Γ and ∆cqp ⊇ ∆ that define a

closed quasi-partition 〈Γcqp,∆cqp〉 of S.

Proof. Similar to the one before, now using (C2Lc) and (C2Rc).

Obviously, by compactness, in a multiple-conclusion environment, one means:

(CC) Γ 
 ∆ ⇒ (∃ΓΦ ∈ Fin(Γ))(∃∆Φ ∈ Fin(∆)) ΓΦ 
 ∆Φ
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.

By (C1), we must have Σ ⊆ Γ and Π ⊆ ∆.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.

By (C1), we must have Σ ⊆ Γ and Π ⊆ ∆. By definition of �Ξ,

we conclude that Σ 6�Ξ Π.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.

By (C1), we must have Σ ⊆ Γ and Π ⊆ ∆. By definition of �Ξ,

we conclude that Σ 6�Ξ Π. Thus,
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.

By (C1), we must have Σ ⊆ Γ and Π ⊆ ∆. By definition of �Ξ,

we conclude that Σ 6�Ξ Π. Thus, Σ 6�F Π. Q.E.D.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.

By (C1), we must have Σ ⊆ Γ and Π ⊆ ∆. By definition of �Ξ,

we conclude that Σ 6�Ξ Π. Thus, Σ 6�F Π. Q.E.D.

So: Every multiple-conclusion T-logic is κ-valued, for κ = |S|.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction] Tarskian, or Scottian Logics?

Given some T-logic L, consider again the superlogic LF of its

Lindenbaum Bundle F = {LΞ : Ξ ∈ QPart(S) and Ξ is closed}.

Soundness is obvious. Now, for completeness:

Σ �F Π ⇒ Σ 
 Π, where �F =
⋂

F(�Ξ).

Suppose Σ 6
 Π. By (C2), there is some quasi-partition

Ξ = 〈Γ,∆〉 of S such that Σ,Γ 6
 ∆,Π.

From (C3), Ξ must be closed: Γ 6
 ∆.

By (C1), we must have Σ ⊆ Γ and Π ⊆ ∆. By definition of �Ξ,

we conclude that Σ 6�Ξ Π. Thus, Σ 6�F Π. Q.E.D.

So: Every multiple-conclusion T-logic is κ-valued, for κ = |S|.
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

Exactly like before. . .
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

For any many-valued valuation § : S → V§ for a T-logic L,

with semantics Sem(κ), consider its ‘binary print’:

Let V(2) = {T, F} and D(2) = T , and

define a bivaluation b§ : S → V(2) such that

b§(ϕ) = T iff §(ϕ) ∈ D.
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

For any many-valued valuation § : S → V§ for a T-logic L,

with semantics Sem(κ), consider its ‘binary print’:

Let V(2) = {T, F} and D(2) = T , and

define a bivaluation b§ : S → V(2) such that

b§(ϕ) = T iff §(ϕ) ∈ D.

Collect such b§’s into Sem(2). Note that:

Σ �Sem(2) Π iff Σ �Sem(κ) Π. Q.E.D.
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

For any many-valued valuation § : S → V§ for a T-logic L,

with semantics Sem(κ), consider its ‘binary print’:

Let V(2) = {T, F} and D(2) = T , and

define a bivaluation b§ : S → V(2) such that

b§(ϕ) = T iff §(ϕ) ∈ D.

Collect such b§’s into Sem(2). Note that:

Σ �Sem(2) Π iff Σ �Sem(κ) Π. Q.E.D.

More importantly, as we will see:

The binary print of a multiple-conclusion logic is unique!
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Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical,

neither for many-valued tarskian interpretations

nor for 2-valued tarskian interpretations. . .
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Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical,

neither for many-valued tarskian interpretations

nor for 2-valued tarskian interpretations. . .

Is it possible that Sem1 6= Sem2 yet �1 = �2,

in a multiple-conclusion environment?
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Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical,

neither for many-valued tarskian interpretations

nor for 2-valued tarskian interpretations. . .

Is it possible that Sem1 6= Sem2 yet �1 = �2,

in a multiple-conclusion environment?

The answer is NO if we are talking about

bivaluation semantics!!
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .

Proof. Suppose b ∈ BSem1 but b 6∈ BSem2.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .

Proof. Suppose b ∈ BSem1 but b 6∈ BSem2.

Let Σ = {σ : b(σ) = T} and Π = {π : b(π) = F}.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .

Proof. Suppose b ∈ BSem1 but b 6∈ BSem2.

Let Σ = {σ : b(σ) = T} and Π = {π : b(π) = F}.

Then, Σ 6�m
b

Π,
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .

Proof. Suppose b ∈ BSem1 but b 6∈ BSem2.

Let Σ = {σ : b(σ) = T} and Π = {π : b(π) = F}.

Then, Σ 6�m
b

Π, thus Σ 6�m
1

Π.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .

Proof. Suppose b ∈ BSem1 but b 6∈ BSem2.

Let Σ = {σ : b(σ) = T} and Π = {π : b(π) = F}.

Then, Σ 6�m
b

Π, thus Σ 6�m
1

Π.

But, from the Uniqueness Lemma, Σ �
m
2 Π.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and c be two bivaluations on S.
Let 〈Σ,Π〉 be a quasi-partition of S.
Then, Σ 6�b Π and Σ 6�c Π ⇒ b = c.

Theorem [Categoricity]

Let BSem1 and BSem2 be two bivaluation semantics over S.
Then, BSem1 6= BSem2 ⇒ �

m
1 6= �

m
2 .

Proof. Suppose b ∈ BSem1 but b 6∈ BSem2.

Let Σ = {σ : b(σ) = T} and Π = {π : b(π) = F}.

Then, Σ 6�m
b

Π, thus Σ 6�m
1

Π.

But, from the Uniqueness Lemma, Σ �
m
2 Π. Q.E.D.

What is that supposed to mean, in practice??
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Categoricity of multiple-conclusion CRs

Fix some S in what follows.

Let T B be the collection of all tarskian bivaluation semantics

over S.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let T B be the collection of all tarskian bivaluation semantics over S.

Given a quasi-partition Θ = 〈Γ,∆〉, say that

a bivaluation b: S → {T, F} respects Θ

if b(Γ) 6⊆ {T} or b(∆) 6⊆ {F}.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let T B be the collection of all tarskian bivaluation semantics over S.

Say that b respects Θ = 〈Γ, ∆〉 if b(Γ) 6⊆ {T} or b(∆) 6⊆ {F}.

Given a collection of quasi-partitions P , let Biv(P) be

the set of all bivaluations that respect some Θ ∈ P .
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Categoricity of multiple-conclusion CRs

Fix some S.

Let T B be the collection of all tarskian bivaluation semantics over S.

Say that b respects Θ = 〈Γ, ∆〉 if b(Γ) 6⊆ {T} or b(∆) 6⊆ {F}.

Biv(P) is the set of all bivaluations that respect some Θ ∈ P.

Call CQPart(S) the set of all closed quasi-partitions of S.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let T B be the collection of all tarskian bivaluation semantics over S.

Say that b respects Θ = 〈Γ, ∆〉 if b(Γ) 6⊆ {T} or b(∆) 6⊆ {F}.

Biv(P) is the set of all bivaluations that respect some Θ ∈ P.

Call CQPart(S,L) the set of all closed quasi-partitions of S in L.

Then, for a multiple-conclusion logic L:

Biv(P) is adequate for L iff P = CQPart(S,L)
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Categoricity of multiple-conclusion CRs

Fix some S.

Let T B be the collection of all tarskian bivaluation semantics over S.

Say that b respects Θ = 〈Γ, ∆〉 if b(Γ) 6⊆ {T} or b(∆) 6⊆ {F}.

Biv(P) is the set of all bivaluations that respect some Θ ∈ P.

Call CQPart(S,L) the set of all closed quasi-partitions of S in L.

Then, for a multiple-conclusion logic L:

Biv(P) is adequate for L iff P = CQPart(S,L)

In this sense, categoricity is the ‘dual’ to adequacy!
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics

over S.
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Given some Biv ∈ T B,

let 
Biv denote the abstract CR corresponding to �Biv.
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Given some Biv ∈ T B,

let 
Biv denote the abstract CR corresponding to �Biv.

Given some 
 ∈ T A,

let Biv
 be the collection of all bivaluations

that respect every 〈Γ,∆〉, where Γ 
 ∆.
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider the mappings BA : T B → T A and AB : T A → T B

such that:

Biv
BA
7→ 
Biv



AB
7→ Biv
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


Observe that: [Dunn & Hardegree 2001]

〈BA,AB〉 is a Galois connection

between the posets 〈T A,⊇〉 and 〈T B,⊆〉, that is:
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


Observe that: [Dunn & Hardegree 2001]

〈BA,AB〉 is a Galois connection

between the posets 〈T A,⊇〉 and 〈T B,⊆〉, that is:

1. (a) BA(AB(
)) ⊇ 
 for every 
 ∈ T A

(b) Biv ⊆ AB(BA(Biv)) for every Biv ∈ T B
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


Observe that: [Dunn & Hardegree 2001]

〈BA,AB〉 is a Galois connection

between the posets 〈T A,⊇〉 and 〈T B,⊆〉, that is:

1. (a) BA(AB(
)) ⊇ 
 for every 
 ∈ T A

(b) Biv ⊆ AB(BA(Biv)) for every Biv ∈ T B

2. both BA and AB are monotonic
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


Observe that: [Dunn & Hardegree 2001]

〈BA,AB〉 is a Galois connection

between the posets 〈T A,⊇〉 and 〈T B,⊆〉, that is:

1. (a) BA(AB(
)) ⊇ 
 for every 
 ∈ T A

(b) Biv ⊆ AB(BA(Biv)) for every Biv ∈ T B

2. both BA and AB are monotonic

Question: When can the converses of 1(a) and 1(b) be proven?
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


〈BA,AB〉 is a Galois connection between the posets 〈T A,⊇〉 and 〈T B,⊆〉, i.e.:

1. (a) BA(AB(
)) ⊇ 
 for every 
 ∈ T A

(b) Biv ⊆ AB(BA(Biv)) for every Biv ∈ T B

2. both BA and AB are monotonic

As a matter of fact:
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Having the right connections

Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


〈BA,AB〉 is a Galois connection between the posets 〈T A,⊇〉 and 〈T B,⊆〉, i.e.:

1. (a) BA(AB(
)) ⊇ 
 for every 
 ∈ T A

(b) Biv ⊆ AB(BA(Biv)) for every Biv ∈ T B

2. both BA and AB are monotonic

As a matter of fact:

• The converse to 1(a) amounts to completeness, and can
be attained in either single- or multiple-conclusion

T-logics.
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Fix some S in what follows.

Let T A be the collection of all abstract T-logics over S,

and T B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv
BA
7→ 
Biv 


AB
7→ Biv


〈BA,AB〉 is a Galois connection between the posets 〈T A,⊇〉 and 〈T B,⊆〉, i.e.:

1. (a) BA(AB(
)) ⊇ 
 for every 
 ∈ T A

(b) Biv ⊆ AB(BA(Biv)) for every Biv ∈ T B

2. both BA and AB are monotonic

As a matter of fact:

• The converse to 1(a) amounts to completeness, and can
be attained in either single- or multiple-conclusion

T-logics.

• The converse to 1(b) amounts to categoricity,
and can only be attained in multiple-conclusion T-logics.
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Having the right connections

As a matter of fact:

• The converse to 1(a) amounts to completeness, and can
be attained in either single- or multiple-conclusion

T-logics.

• The converse to 1(b) amounts to categoricity,
and can only be attained in multiple-conclusion T-logics.

So, here is a further good reason to go multiple-conclusion:

To reconciliate most logics with their intended models!!
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