Multiple-Conclusion Logics PART 2: "General Abstract Nonsense"

João Marcos
http://geocities.com/jm_logica/
Uni-Log 2005
Montreux, CH
Introductory (and Motivational) Course

$$
\Gamma \Vdash \Delta
$$

General Abstract Nonsense

Les idées générales et abstraites sont la source des plus grandes erreurs des hommes. -Jean-Jacques Rousseau, Profession de Foi du Vicaire Savoyard, in "Émile, ou de l'éducation", 1762.

General Abstract Nonsense

Les idées générales et abstraites sont la source des plus grandes erreurs des hommes.
-Jean-Jacques Rousseau, Profession de Foi du Vicaire Savoyard, in "Émile, ou de l'éducation", 1762.

Representation Theorems:

Consider logics $\mathcal{L}_{\Vdash-}=\langle\mathcal{S}, \Vdash\rangle$ and $\mathcal{L}_{\models}=\langle\mathcal{S}, \models\rangle$ over a fixed universe \mathcal{S}.

General Abstract Nonsense

Les idées générales et abstraites sont la source des plus grandes erreurs des hommes.
-Jean-Jacques Rousseau, Profession de Foi du Vicaire Savoyard, in "Émile, ou de l'éducation", 1762.

Representation Theorems:

Consider logics $\mathcal{L}_{\Vdash-}=\langle\mathcal{S}, \Vdash\rangle$ and $\mathcal{L}_{\models}=\langle\mathcal{S}, \models\rangle$
over a fixed universe \mathcal{S}.
We say that \mathcal{L}_{\vDash} is sound with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \subseteq \vDash$.

General Abstract Nonsense

Les idées générales et abstraites sont la source des plus grandes erreurs des hommes.
-Jean-Jacques Rousseau, Profession de Foi du Vicaire Savoyard, in "Émile, ou de l'éducation", 1762.

Representation Theorems:

Consider logics $\mathcal{L}_{\Vdash-}=\langle\mathcal{S}, \Vdash\rangle$ and $\mathcal{L}_{\models}=\langle\mathcal{S}, \models\rangle$
over a fixed universe \mathcal{S}.
We say that \mathcal{L}_{\vDash} is sound with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \subseteq \vDash$.
We say that \mathcal{L}_{\vDash} is complete with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \supseteq \vDash$.

General Abstract Nonsense

Les idées générales et abstraites sont la source des plus grandes erreurs des hommes.
-Jean-Jacques Rousseau, Profession de Foi du Vicaire Savoyard, in "Émile, ou de l'éducation", 1762.

Representation Theorems:

Consider logics $\mathcal{L}_{\Vdash-}=\langle\mathcal{S}, \Vdash\rangle$ and $\mathcal{L}_{\models}=\langle\mathcal{S}, \models\rangle$
over a fixed universe \mathcal{S}.
We say that \mathcal{L}_{\vDash} is sound with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \subseteq \vDash$.
We say that \mathcal{L}_{\vDash} is complete with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \supseteq \vDash$.
Recall that: adequacy $=$ soundness + completeness.

General Abstract Nonsense

Les idées générales et abstraites sont la source des plus grandes erreurs des hommes.
-Jean-Jacques Rousseau, Profession de Foi du Vicaire Savoyard, in "Émile, ou de l'éducation", 1762.

Representation Theorems:

Consider logics $\mathcal{L}_{\Vdash-}=\langle\mathcal{S}, \Vdash\rangle$ and $\mathcal{L}_{\models}=\langle\mathcal{S}, \models\rangle$
over a fixed universe \mathcal{S}.
We say that \mathcal{L}_{\vDash} is sound with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \subseteq \vDash$.
We say that \mathcal{L}_{\vDash} is complete with respect to $\mathcal{L}_{\Vdash \vdash}$ in case $\Vdash \supseteq \vDash$.
Recall that: adequacy $=$ soundness + completeness.

Idea: To provide abstract axiomatizations for interesting semantical ideas, and vice-versa.

An illustration from before

An illustration from before

Recall Kuratowski (topological) closure:

$$
\begin{aligned}
& (\mathrm{C} 1) \Gamma \subseteq \Gamma^{\Vdash} \\
& (\mathrm{C} 2) \quad\left(\Gamma^{\Vdash}\right)^{\Vdash} \subseteq \Gamma \\
& (\mathrm{C} 3) \\
& (\mathrm{CK} 1) \quad(\Gamma \cup \Lambda \Rightarrow)^{\Vdash}=\Gamma^{\Vdash} \subseteq \Lambda^{\Vdash} \\
& (\mathrm{CK} 2) \varnothing^{\Vdash}=\varnothing
\end{aligned}
$$

overlap
full cut
dilution
premise-apartness
no primitive theses

An illustration from before

Recall Kuratowski (topological) closure:

(C1) $\Gamma \subseteq \Gamma^{\Vdash}$	overlap
$(\mathrm{C} 2)\left(\Gamma^{\Vdash}\right)^{\Vdash} \subseteq \Gamma$	full cut
$(\mathrm{C} 3) \Gamma \subseteq \Lambda \Rightarrow \Gamma^{\Vdash} \subseteq \Lambda^{\Vdash}$	dilution
(CK1) $(\Gamma \cup \Sigma)^{\Vdash}=\Gamma^{\Vdash} \cup \Sigma^{\Vdash}$	premise-apartness
(CK2) $\varnothing^{\Vdash}=\varnothing$	no primitive theses

Which, in terms of consequence relations, could be rewritten as ...

An illustration from before

Recall Kuratowski (topological) closure:

An illustration from before

Recall Kuratowski (topological) closure:

(C1) $\Gamma, \beta \Vdash \beta$	overlap
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta$	full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$	dilution
(CK1) $\Sigma, \Gamma \Vdash \alpha \Leftrightarrow \Sigma \Vdash \alpha$ or $\Gamma \Vdash \alpha$	premise-apartness
(CK2) $\Vdash \alpha$	no primitive theses
\ldots providing a Representation Theorem for	
the 'semantics of closed sets'.	

An illustration from before

Now, go back to relations determined by Closure Operators:
(C1) $\Gamma, \beta \Vdash \beta \quad$ overlap
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta \quad$ full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
dilution

An illustration from before

Now, go back to relations determined by Closure Operators:
(C1) $\Gamma, \beta \Vdash \beta \quad$ overlap
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta \quad$ full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
dilution
What kind of Representation Theorem can be proved in the case of these T-logics?

An illustration from before

Now, go back to relations determined by Closure Operators:
(C1) $\Gamma, \beta \Vdash \beta \quad$ overlap
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta \quad$ full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
dilution
What kind of Representation Theorem can be proved in the case of these T-logics?

Here is a preliminary question:

An illustration from before

Now, go back to relations determined by Closure Operators:
(C1) $\Gamma, \beta \Vdash \beta \quad$ overlap
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta \quad$ full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
dilution
What kind of Representation Theorem can be proved in the case of these T-logics?

Here is a preliminary question:
Can (C2) be substituted by
$(\mathrm{C} 2 \mathrm{n}) \Sigma, \lambda \Vdash \beta$ and $\Gamma \Vdash \lambda \Rightarrow \Sigma, \Gamma \Vdash \beta$

A pledge for naive cut, and a problem

Let \Vdash respect (C1), (C2n) and (C3).

A pledge for naive cut, and a problem

Let \Vdash respect (C1), (C2n) and (C3).
Define $\asymp(\subseteq \mathcal{S} \times \mathcal{S})$ by setting $\alpha \asymp \beta$ iff $(\alpha \Vdash \beta$ and $\beta \Vdash \alpha)$.

A pledge for naive cut, and a problem

Let \Vdash respect (C1), (C2n) and (C3).
Define $\asymp(\subseteq \mathcal{S} \times \mathcal{S})$ by setting $\alpha \asymp \beta$ iff $(\alpha \Vdash \beta$ and $\beta \Vdash \alpha)$.
Then \asymp defines an equivalence relation over \mathcal{S}.
[given that (C1) and (C2n) define a preorder]

A pledge for naive cut, and a problem

Let \Vdash respect (C1), (C2n) and (C3).
Define $\asymp(\subseteq \mathcal{S} \times \mathcal{S})$ by setting $\alpha \asymp \beta$ iff $(\alpha \Vdash \beta$ and $\beta \Vdash \alpha)$.
Then \asymp defines an equivalence relation over \mathcal{S}.
[given that (C 1) and (C 2 n) define a preorder]
Suppose we now define $\approx(\subseteq \operatorname{Pow}(\mathcal{S}) \times \operatorname{Pow}(\mathcal{S}))$ by setting $\Gamma \approx \Delta$ iff $((\forall \delta \in \Delta) \Gamma \Vdash \delta$ and $(\forall \gamma \in \Gamma) \Delta \Vdash \gamma)$.

A pledge for naive cut, and a problem

Let \Vdash respect (C 1), (C 2 n) and (C3).
Define $\asymp(\subseteq \mathcal{S} \times \mathcal{S})$ by setting $\alpha \asymp \beta$ iff $(\alpha \Vdash \beta$ and $\beta \Vdash \alpha)$.
Then \asymp defines an equivalence relation over \mathcal{S}.
[given that (C1) and (C2n) define a preorder]
Suppose we now define $\approx(\subseteq \operatorname{Pow}(\mathcal{S}) \times \operatorname{Pow}(\mathcal{S}))$ by setting $\Gamma \approx \Delta$ iff $((\forall \delta \in \Delta) \Gamma \Vdash \delta$ and $(\forall \gamma \in \Gamma) \Delta \Vdash \gamma)$.
Then \approx is not an equivalence relation over $\operatorname{Pow}(\mathcal{S})$!

A pledge for naive cut, and a problem

Let \Vdash respect (C 1), (C 2 n) and (C3).
Define $\asymp(\subseteq \mathcal{S} \times \mathcal{S})$ by setting $\alpha \asymp \beta$ iff $(\alpha \Vdash \beta$ and $\beta \Vdash \alpha)$.
Then \asymp defines an equivalence relation over \mathcal{S}.
[given that (C1) and (C2n) define a preorder]
Suppose we now define $\approx(\subseteq \operatorname{Pow}(\mathcal{S}) \times \operatorname{Pow}(\mathcal{S}))$ by setting $\Gamma \approx \Delta$ iff $((\forall \delta \in \Delta) \Gamma \Vdash \delta$ and $(\forall \gamma \in \Gamma) \Delta \Vdash \gamma)$.
Then \approx is not an equivalence relation over $\operatorname{Pow}(\mathcal{S})$!

However:
E1: with (C2) in the place of (C2n), \approx does define an equivalence

A pledge for naive cut, and a problem

Let \Vdash respect (C1), (C2n) and (C3).
Define $\asymp(\subseteq \mathcal{S} \times \mathcal{S})$ by setting $\alpha \asymp \beta$ iff $(\alpha \Vdash \beta$ and $\beta \Vdash \alpha)$.
Then \asymp defines an equivalence relation over \mathcal{S}.
[given that (C1) and (C2n) define a preorder]
Suppose we now define $\approx(\subseteq \operatorname{Pow}(\mathcal{S}) \times \operatorname{Pow}(\mathcal{S}))$ by setting $\Gamma \approx \Delta$ iff $((\forall \delta \in \Delta) \Gamma \Vdash \delta$ and $(\forall \gamma \in \Gamma) \Delta \Vdash \gamma)$.
Then \approx is not an equivalence relation over $\operatorname{Pow}(\mathcal{S})$!
However:
E1: with $(\mathrm{C} 2)$ in the place of $(\mathrm{C} 2 \mathrm{n}), \approx$ does define an equivalence
$\mathrm{E} 2:(\mathrm{C} 1)+(\mathrm{C} 2)+(\mathrm{C} 3) \Rightarrow(\mathrm{C} 2 \mathrm{n})$
E3: $(\mathrm{C} 1)+(\mathrm{C} 2 \mathrm{n})+(\mathrm{C} 3) \nRightarrow(\mathrm{C} 2)$

Some refinements of T-logics

Other customary axioms. . .

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta \quad$ compactness where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta$
compactness
where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$
Axiom of Choice!

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta \quad$ compactness where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$

Note that:
E4: $(\mathrm{CC})+(\mathrm{C} 1)+(\mathrm{C} 2 \mathrm{n})+(\mathrm{C} 3) \Rightarrow(\mathrm{C} 2)$

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta$
compactness
where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$
Let's now suppose \mathcal{S} has an algebraic character, i.e.:

- atomic sentences: At (e.g. $\left.\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}\right)$

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta$
where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$

Let's now suppose \mathcal{S} has an algebraic character, i.e.:

- atomic sentences: At (e.g. $\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$)
- collections Cnt_{n} of n-ary connectives of a propositional signature $\mathrm{Cnt}=\left\{\mathrm{Cnt}_{n}\right\}_{n \in \mathbb{N}}$

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta$ where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$

Let's now suppose \mathcal{S} has an algebraic character, i.e.:

- atomic sentences: At (e.g. $\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$)
- collections Cnt_{n} of n-ary connectives of a propositional signature Cnt $=\left\{\mathrm{Cnt}_{n}\right\}_{n \in \mathbb{N}}$
- an algebra of formulas freely generated by At over UCnt.

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta$
compactness
where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$
Let's now suppose \mathcal{S} has an algebraic character, i.e.:

- atomic sentences: At (e.g. $\left.\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}\right)$
- collections Cnt_{n} of n-ary connectives of a propositional signature Cnt $=\left\{\mathrm{Cnt}_{n}\right\}_{n \in \mathbb{N}}$
- an algebra of formulas freely generated by At over UCnt.

Then, consider:
[Łoś \& Suszko 1958]
(CLS) $\Gamma \Vdash \beta \Rightarrow \Gamma^{\varepsilon} \Vdash \beta^{\varepsilon}$, for any endomorphism $\varepsilon: \mathcal{S} \rightarrow \mathcal{S}$ substitutionality

Some refinements of T-logics

Other customary axioms...
(CC) $\Gamma \Vdash \beta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right) \Gamma_{\Phi} \Vdash \beta$
compactness
where $\operatorname{Fin}(\Gamma)=\left\{\Gamma_{\Phi}: \Gamma_{\Phi}\right.$ is a finite subset of $\left.\Gamma\right\}$
Let's now suppose \mathcal{S} has an algebraic character, i.e.:

- atomic sentences: At (e.g. $\left.\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}\right)$
- collections Cnt_{n} of n-ary connectives of a propositional signature Cnt $=\left\{\mathrm{Cnt}_{n}\right\}_{n \in \mathbb{N}}$
- an algebra of formulas freely generated by At over UCnt.

Then, consider:
[Łoś \& Suszko 1958]
(CLS) $\Gamma \Vdash \beta \Rightarrow \Gamma^{\varepsilon} \Vdash \beta^{\varepsilon}$, for any endomorphism $\varepsilon: \mathcal{S} \rightarrow \mathcal{S}$

Logics in agreement

Consider a family of logics $\mathcal{F}=\left\{\mathcal{L}_{i}\right\}_{i \in I}$ over some fixed \mathcal{S}.

Logics in agreement

Consider a family of logics $\mathcal{F}=\left\{\mathcal{L}_{i}\right\}_{i \in I}$ over some fixed \mathcal{S}.
Define the superlogic $\mathcal{L}_{\mathcal{F}}$ of this family by taking $\bigcap_{i \in I} \mathcal{L}_{i}$, that is, $\mathcal{L}_{\mathcal{F}}=\left\langle\mathcal{S}, \cap_{i \in I} \Vdash_{i}\right\rangle$, where each $\mathcal{L}_{i}=\left\langle\mathcal{S}, \Vdash_{i}\right\rangle$, for $i \in I$.

Logics in agreement

Consider a family of logics $\mathcal{F}=\left\{\mathcal{L}_{i}\right\}_{i \in I}$ over some fixed \mathcal{S}.
Define the superlogic $\mathcal{L}_{\mathcal{F}}$ of this family by taking $\bigcap_{i \in I} \mathcal{L}_{i}$, that is, $\mathcal{L}_{\mathcal{F}}=\left\langle\mathcal{S}, \cap_{i \in I} \Vdash_{i}\right\rangle$, where each $\mathcal{L}_{i}=\left\langle\mathcal{S}, \Vdash_{i}\right\rangle$, for $i \in I$.

Which properties of a CR are preserved from \mathcal{F} into $\mathcal{L}_{\mathcal{F}}$?

Logics in agreement

Consider a family of logics $\mathcal{F}=\left\{\mathcal{L}_{i}\right\}_{i \in I}$ over some fixed \mathcal{S}.
Define the superlogic $\mathcal{L}_{\mathcal{F}}$ of this family by taking $\bigcap_{i \in I} \mathcal{L}_{i}$, that is, $\mathcal{L}_{\mathcal{F}}=\left\langle\mathcal{S}, \cap_{i \in I} \Vdash_{i}\right\rangle$, where each $\mathcal{L}_{i}=\left\langle\mathcal{S}, \Vdash_{i}\right\rangle$, for $i \in I$.

Which properties of a CR are preserved from \mathcal{F} into $\mathcal{L}_{\mathcal{F}}$?
(C1), (C2), (C2n), (C3) are all preserved

Logics in agreement

Consider a family of logics $\mathcal{F}=\left\{\mathcal{L}_{i}\right\}_{i \in I}$ over some fixed \mathcal{S}.
Define the superlogic $\mathcal{L}_{\mathcal{F}}$ of this family by taking $\bigcap_{i \in I} \mathcal{L}_{i}$, that is, $\mathcal{L}_{\mathcal{F}}=\left\langle\mathcal{S}, \cap_{i \in I} \Vdash_{i}\right\rangle$, where each $\mathcal{L}_{i}=\left\langle\mathcal{S}, \Vdash_{i}\right\rangle$, for $i \in I$.

Which properties of a CR are preserved from \mathcal{F} into $\mathcal{L}_{\mathcal{F}}$?
(C1), (C2), (C2n), (C3) are all preserved
(CLS) is preserved
(CC) is not preserved

Recall 'tarskian interpretations'

Fix some \mathcal{S} and let Sem be a many-valued semantics over it.

Recall 'tarskian interpretations'

Fix some \mathcal{S} and let Sem be a many-valued semantics over it. Each $\S \in$ Sem has the following associated elements:

- truth-values $\mathcal{V}_{\S}, \mathcal{D}_{\S}$ and \mathcal{U}_{\S}, such that

$$
\mathcal{V}_{\S}=\mathcal{D}_{\S} \cup \mathcal{U}_{\S} \text { and } \mathcal{D}_{\S} \cap \mathcal{U}_{\S}=\varnothing
$$

Recall 'tarskian interpretations'

Fix some \mathcal{S} and let Sem be a many-valued semantics over it. Each $\S \in$ Sem has the following associated elements:

- truth-values $\mathcal{V}_{\S}, \mathcal{D}_{\S}$ and \mathcal{U}_{\S}, such that

$$
\mathcal{V}_{\S}=\mathcal{D}_{\S} \cup \mathcal{U}_{\S} \text { and } \mathcal{D}_{\S} \cap \mathcal{U}_{\S}=\varnothing
$$

- local entailment relation \vDash_{\S} such that $\Gamma \vDash_{\S} \Delta$ iff $\S(\Gamma) \nsubseteq \mathcal{D}_{\S}$ or $\S(\Delta) \nsubseteq \mathcal{U}_{\S}$

Recall 'tarskian interpretations'

Fix some \mathcal{S} and let Sem be a many-valued semantics over it. Each $\S \in$ Sem has the following associated elements:

- truth-values $\mathcal{V}_{\S}, \mathcal{D}_{\S}$ and \mathcal{U}_{\S}, such that

$$
\mathcal{V}_{\S}=\mathcal{D}_{\S} \cup \mathcal{U}_{\S} \text { and } \mathcal{D}_{\S} \cap \mathcal{U}_{\S}=\varnothing
$$

- local entailment relation \vDash_{\S} such that $\Gamma \vDash_{\S} \Delta$ iff $\S(\Gamma) \nsubseteq \mathcal{D}_{\S}$ or $\S(\Delta) \nsubseteq \mathcal{U}_{\S}$
- global entailment relation $\vDash_{\text {Sem }}$ such that

$$
\vDash_{\text {Sem }}=\bigcap_{\S \in S_{e m}}\left(\vDash_{\S}\right)
$$

Recall 'tarskian interpretations'

Fix some \mathcal{S} and let Sem be a many-valued semantics over it. Each $\S \in$ Sem has the following associated elements:

- truth-values $\mathcal{V}_{\S}, \mathcal{D}_{\S}$ and \mathcal{U}_{\S}, such that

$$
\mathcal{V}_{\S}=\mathcal{D}_{\S} \cup \mathcal{U}_{\S} \text { and } \mathcal{D}_{\S} \cap \mathcal{U}_{\S}=\varnothing
$$

- local entailment relation \vDash_{\S} such that $\Gamma \vDash_{\S} \Delta$ iff $\S(\Gamma) \nsubseteq \mathcal{D}_{\S}$ or $\S(\Delta) \nsubseteq \mathcal{U}_{\S}$
- global entailment relation $\vDash_{\text {Sem }}$ such that

$$
\vDash_{\text {Sem }}=\bigcap_{\S \in S_{e m}}\left(\vDash_{\S}\right)
$$

Say that $\left\langle\mathcal{S}, \models_{\text {Sem }}\right\rangle$ is a κ-valued logic if $\kappa=\operatorname{Max}_{\S \in \operatorname{Sem}}\left(\left|\mathcal{V}_{\S}\right|\right)$.

Some fundamental semantic features

Some fundamental semantic features

Call a many-valued semantics unitary in case $|\operatorname{Sem}|=1$.

Some fundamental semantic features

Call a many-valued semantics unitary in case $|\operatorname{Sem}|=1$.
Let $\left\{\left\langle\mathcal{S}, \models_{\text {Sem }[i]}\right\rangle\right\}_{i \in I}$ be a family of logics with tarskian interpretations.

Some fundamental semantic features

Call a many-valued semantics unitary in case $|\operatorname{Sem}|=1$.
Let $\left\{\left\langle\mathcal{S}, \models_{\text {Sem }[i]}\right\rangle\right\}_{i \in I}$ be a family of logics with tarskian interpretations.

Notice that:

- Any such logic respects axioms (C1), (C2) and (C3)

Some fundamental semantic features

Call a many-valued semantics unitary in case $|\operatorname{Sem}|=1$.
Let $\left\{\left\langle\mathcal{S}, \models_{\text {Sem }[i]}\right\rangle\right\}_{i \in I}$ be a family of logics with tarskian interpretations.

Notice that:

- Any such logic respects axioms (C1), (C2) and (C3)
- Superlogics:

$$
\bigcap_{i \in I} \vDash_{\operatorname{Sem}(i)}=\vDash_{\bigcup_{i \in I} \operatorname{Sem}[i]}
$$

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

- $\Gamma \Vdash \beta$

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

- $\Gamma \nVdash \beta$
- $(\forall \alpha \notin \Gamma) \Gamma, \alpha \Vdash \beta$

Glossary:

- J.-Y. Béziau's β-excessive translates Günter Asser's 'vollständig in Bezug auf β '

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

- $\Gamma \Vdash \beta$
- $(\forall \alpha \notin \Gamma) \Gamma, \alpha \Vdash \beta$

Say that Γ is maximal in case it is β-excessive for every $\beta \notin \Gamma$.

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

- $\Gamma \nVdash \beta$
- $(\forall \alpha \notin \Gamma) \Gamma, \alpha \Vdash \beta$

Say that Γ is maximal in case it is β-excessive for every $\beta \notin \Gamma$. Say that Γ is (right-)closed in case $\Gamma \Vdash \delta \Rightarrow \delta \in \Gamma$.

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

- $\Gamma \nVdash \beta$
- $(\forall \alpha \notin \Gamma) \Gamma, \alpha \Vdash \beta$

Say that Γ is maximal in case it is β-excessive for every $\beta \notin \Gamma$. Say that Γ is (right-)closed in case $\Gamma \Vdash \delta \Rightarrow \delta \in \Gamma$.

Note that:

- If Γ is excessive, then Γ is closed.

A fundamental lemma on abstract logics

Fix some arbitrary \mathcal{L} for the following definitions.
Say that $\Gamma \subseteq \mathcal{S}$ is $(\beta$-)excessive (given $\beta \in \mathcal{S}$) in case it is such that:

- $\Gamma \nVdash \beta$
- $(\forall \alpha \notin \Gamma) \Gamma, \alpha \Vdash \beta$

Say that Γ is maximal in case it is β-excessive for every $\beta \notin \Gamma$. Say that Γ is (right-)closed in case $\Gamma \Vdash \delta \Rightarrow \delta \in \Gamma$.

Note that:

- If Γ is excessive, then Γ is closed.
- In classical logic, excessive \Rightarrow maximal.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma:
If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \Vdash \beta$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e.,

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\bigcup \mathcal{C})$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\cup \mathcal{C})$. Then $\Phi \subseteq \Sigma \in \mathcal{C}$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\cup \mathcal{C})$. Then $\Phi \subseteq \Sigma \in \mathcal{C}$. But $\Sigma \Vdash$ 妆.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\cup \mathcal{C})$. Then $\Phi \subseteq \Sigma \in \mathcal{C}$. But $\Sigma \Vdash \beta$. By dilution [(C3)], $\Phi \boldsymbol{H} \beta$.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \nVdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\cup \mathcal{C})$. Then $\Phi \subseteq \Sigma \in \mathcal{C}$. But $\Sigma \Vdash \beta$. By dilution [(C3)], Φ 将 β. By compactness [(CC)], $\cup \mathcal{C}$ 壮 β.

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose $\Gamma \Vdash \beta$. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. We show that $\cup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\cup \mathcal{C})$. Then $\Phi \subseteq \Sigma \in \mathcal{C}$. But $\Sigma \Vdash \beta$. By dilution [(C3)], $\Phi \Vdash$. By compactness [(CC)], $\cup \mathcal{C}$ 壮 β. By Zorn's Lemma,

A fundamental lemma on abstract logics

Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be the collection of all β-excessive theories extending Γ in \mathcal{L}.
Zorn's Lemma: If every chain in a partially ordered set has an upper bound, then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory Γ of a logic \mathcal{L} that respects (C3) and (CC) can be extended to an excessive theory $\Gamma_{\text {exc }}$.

Proof. Suppose Γ 将 β. Let $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ be partially ordered by \subseteq. Let \mathcal{C} be a chain (a totally ordered set) in $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$.
We show that $\bigcup \mathcal{C}$ is an upper bound for \mathcal{C}, i.e., $(\forall \Delta \in \mathcal{C}) \Delta \subseteq \bigcup \mathcal{C}$ (obvious) and $\bigcup \mathcal{C} \in \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$. Suppose $\Phi \in \operatorname{Fin}(\cup \mathcal{C})$. Then $\Phi \subseteq \Sigma \in \mathcal{C}$. But $\Sigma \Vdash \beta$. By dilution [(C3)], $\Phi \Vdash$. By compactness [(CC)], $\bigcup \mathcal{C} \Vdash$ 将 By Zorn's Lemma, $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$ has a maximal element $\Gamma_{\text {exc }}$.
Q.E.D.

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows. Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\Vdash}$

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\Vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\sharp}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\Vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:
Any fiber from the Lindenbaum Bundle is sound for a \mathbf{T}-logic \mathcal{L} :

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:
Any fiber from the Lindenbaum Bundle is sound for a T -logic \mathcal{L} :
Proof. Select some \mathcal{L}_{Γ} and some $\Delta \Vdash \beta$. [Show that $\Delta \models_{\Gamma} \beta$.]

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\Vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:
Any fiber from the Lindenbaum Bundle is sound for a \mathbf{T}-logic \mathcal{L} :
Proof. Select some \mathcal{L}_{Γ} and some $\Delta \Vdash \beta$. [Show that $\Delta \vDash_{\Gamma} \beta$.] Suppose that $\operatorname{ld}(\Delta) \subseteq \mathcal{D}$, i.e., $\Delta \subseteq \Gamma^{\Vdash}$.

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:
Any fiber from the Lindenbaum Bundle is sound for a \mathbf{T}-logic \mathcal{L} :
Proof. Select some \mathcal{L}_{Γ} and some $\Delta \Vdash \beta$. [Show that $\Delta \models_{\Gamma} \beta$.] Suppose that $\operatorname{ld}(\Delta) \subseteq \mathcal{D}$, i.e., $\Delta \subseteq \Gamma^{\Vdash}$. By $(\mathrm{C} 1),(\forall \delta \in \Delta) \Gamma^{\Vdash \Vdash} \Vdash$.

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\Vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:
Any fiber from the Lindenbaum Bundle is sound for a \mathbf{T}-logic \mathcal{L} :
Proof. Select some \mathcal{L}_{Γ} and some $\Delta \Vdash \beta$. [Show that $\Delta \models_{\Gamma} \beta$.] Suppose that $\operatorname{ld}(\Delta) \subseteq \mathcal{D}$, i.e., $\Delta \subseteq \Gamma^{\Vdash}$.

$$
\text { By (C1), }(\forall \delta \in \Delta) \Gamma^{\Vdash} \Vdash \delta \text {. By (C2), } \Gamma^{\Vdash \Vdash} \Vdash \text {, and } \beta \in \Gamma^{\Vdash .}
$$

Automatic soundness

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ and some theory Γ in what follows.
Call $\Gamma^{\Vdash}=\{\alpha: \Gamma \Vdash \alpha\}$ the right-closure of Γ.
Let $\operatorname{Clo}(\mathcal{L})$ be the collection of all right-closed theories of \mathcal{L}.
Consider a logic $\mathcal{L}_{\Gamma}=\left\langle\mathcal{S}, \models_{\Gamma}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}$
- $\mathcal{D}=\Gamma^{\Vdash}$
- Sem $=\{I d\}$ is a unitary semantics made of an identity mapping on \mathcal{V}

Call Lindenbaum Bundle of \mathcal{L} the set $\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Then:
Any fiber from the Lindenbaum Bundle is sound for a \mathbf{T}-logic \mathcal{L} :
Proof. Select some \mathcal{L}_{Γ} and some $\Delta \Vdash \beta$. [Show that $\Delta \models_{\Gamma} \beta$.] Suppose that $\operatorname{ld}(\Delta) \subseteq \mathcal{D}$, i.e., $\Delta \subseteq \Gamma^{\Vdash}$.

$$
\operatorname{By}(\mathrm{C} 1),(\forall \delta \in \Delta) \Gamma^{\Vdash} \Vdash \delta \text {. By }(\mathrm{C} 2), \Gamma^{\Vdash} \Vdash \beta \text {, and } \beta \in \Gamma^{\Vdash} \text {. Q.E.D. }
$$

Any single-conclusion T-logic is many-valued

[Wójcicki's Reduction]

Any single-conclusion T-logic is many-valued

[Wójcicki's Reduction]
Given some \mathbf{T}-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$.

Any single-conclusion T-logic is many-valued

[Wójcicki's Reduction]
Given some \mathbf{T}-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.

Any single-conclusion T-logic is many-valued

[Wójcicki's Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]

Any single-conclusion T-logic is many-valued

[Wójcicki’s Reduction]

Given some T-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]
Suppose $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta$.

Any single-conclusion T-logic is many-valued

[Wójcicki's Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]
Suppose $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta$.
Thus, $\Delta \vDash_{\Gamma} \beta$, for every $\Gamma \subseteq \mathcal{S}$.

Any single-conclusion T-logic is many-valued

[Wójcicki’s Reduction]

Given some T-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]
Suppose $\Delta \vDash_{\text {Sem }(\cap \mathcal{F})} \beta$.
Thus, $\Delta \models_{\Gamma} \beta$, for every $\Gamma \subseteq \mathcal{S}$.
By the definition of \vDash_{Γ}, and the fact that \mathcal{L} is a \mathbf{T}-logic, this means that $(\forall \Gamma \subseteq \mathcal{S}) \Gamma, \Delta \Vdash \beta$.

Any single-conclusion T-logic is many-valued

[Wójcicki's Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\text {Sem }(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]
Suppose $\Delta \vDash_{\text {Sem }(\cap \mathcal{F})} \beta$.
Thus, $\Delta \vDash_{\Gamma} \beta$, for every $\Gamma \subseteq \mathcal{S}$.
By the definition of \digamma_{Γ}, and the fact that \mathcal{L} is a \mathbf{T}-logic, this means that $(\forall \Gamma \subseteq \mathcal{S}) \Gamma, \Delta \Vdash \beta$.
In particular, for $\Gamma=\varnothing$, we have that $\Delta \Vdash \beta$.

Any single-conclusion T-logic is many-valued

[Wójcicki’s Reduction]

Given some T-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]
Suppose $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta$.
Thus, $\Delta \vDash_{\Gamma} \beta$, for every $\Gamma \subseteq \mathcal{S}$.
By the definition of \vDash_{Γ}, and the fact that \mathcal{L} is a \mathbf{T}-logic, this means that $(\forall \Gamma \subseteq \mathcal{S}) \Gamma, \Delta \Vdash \beta$.
In particular, for $\Gamma=\varnothing$, we have that $\Delta \Vdash \beta$. Q.E.D.

Any single-conclusion T-logic is many-valued

[Wójcicki’s Reduction]

Given some T-logic \mathcal{L}, consider the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Gamma}: \Gamma \subseteq \mathcal{S}\right\}$. Soundness is obvious.
[Now, for completeness: $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta \Rightarrow \Delta \Vdash \beta$.]
Suppose $\Delta \vDash_{\operatorname{Sem}(\cap \mathcal{F})} \beta$.
Thus, $\Delta \vDash_{\Gamma} \beta$, for every $\Gamma \subseteq \mathcal{S}$.
By the definition of \vDash_{Γ}, and the fact that \mathcal{L} is a \mathbf{T}-logic, this means that $(\forall \Gamma \subseteq \mathcal{S}) \Gamma, \Delta \Vdash \beta$.
In particular, for $\Gamma=\varnothing$, we have that $\Delta \Vdash \beta$. Q.E.D.

So:
Every single-conclusion T-logic is κ-valued, for $\kappa=|\mathcal{S}|$.

Any single-conclusion T-logic is 2 -valued

After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
-Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976.

Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
-Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976.
[Suszko's Reduction] 'logical' \times 'algebraic' truth-values
For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a \mathbf{T}-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':

Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
-Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976.
[Suszko's Reduction] 'logical' \times 'algebraic' truth-values
For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics Sem (κ), consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and

Any single-conclusion T-logic is 2-valued

> After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
> -Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976 .
[Suszko's Reduction] 'logical' \times 'algebraic' truth-values
For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

Any single-conclusion T-logic is 2-valued

> After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
> -Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976.
[Suszko's Reduction] 'logical' \times 'algebraic' truth-values
For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

$$
b^{\S}(\varphi)=T \quad \text { iff } \quad \S(\varphi) \in \mathcal{D}
$$

Any single-conclusion T-logic is 2-valued

> After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
> -Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976 .
[Suszko's Reduction] 'logical' \times 'algebraic' truth-values
For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

$$
b^{\S}(\varphi)=T \quad \text { iff } \quad \S(\varphi) \in \mathcal{D}
$$

Collect such b^{\S} 's into Sem (2).

Any single-conclusion T-logic is 2 -valued

> After 50 years we still face an illogical paradise of many truths and falsehoods. [...] Obviously any multiplication of logical values is a mad idea.
> -Roman Suszko, 22nd Conference on the History of Logic, Cracow, 1976.
[Suszko's Reduction] 'logical' \times 'algebraic' truth-values
For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a \mathbf{T}-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

$$
b^{\S}(\varphi)=T \quad \text { iff } \quad \S(\varphi) \in \mathcal{D}
$$

Collect such b^{\S} 's into Sem(2). Note that:

$$
\Delta \vDash_{\text {Sem }(2)} \beta \text { iff } \Delta \vDash_{\operatorname{Sem}(\kappa)} \beta .
$$

Q.E.D.

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \varphi \in \Gamma
$$

Recall $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$, the collection of all β-excessive theories extending Γ in \mathcal{L}.
Let $\operatorname{Max}(\Gamma, \mathcal{L})$ be the collection of all maximal theories extending Γ in \mathcal{L}.
Let $\operatorname{Clo}(\Gamma, \mathcal{L})$ be the collection of all closed theories extending Γ in \mathcal{L}.

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \quad \varphi \in \Gamma
$$

Fix some $\Gamma \cup\{\beta\} \subseteq \mathcal{S}$. Then:

Recall $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$, the collection of all β-excessive theories extending Γ in \mathcal{L}.
Let $\operatorname{Max}(\Gamma, \mathcal{L})$ be the collection of all maximal theories extending Γ in \mathcal{L}.
Let $\operatorname{Clo}(\Gamma, \mathcal{L})$ be the collection of all closed theories extending Γ in \mathcal{L}.

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \quad \varphi \in \Gamma
$$

Fix some $\Gamma \cup\{\beta\} \subseteq \mathcal{S}$. Then:

$$
\operatorname{Max}(\Gamma, \mathcal{L}) \subseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L}) \subseteq \operatorname{Clo}(\Gamma, \mathcal{L})
$$

Recall $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$, the collection of all β-excessive theories extending Γ in \mathcal{L}.
Let $\operatorname{Max}(\Gamma, \mathcal{L})$ be the collection of all maximal theories extending Γ in \mathcal{L}.
Let $\operatorname{Clo}(\Gamma, \mathcal{L})$ be the collection of all closed theories extending Γ in \mathcal{L}.

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \quad \varphi \in \Gamma
$$

Fix some $\Gamma \cup\{\beta\} \subseteq \mathcal{S}$. Then:

$$
\operatorname{Max}(\Gamma, \mathcal{L}) \subseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L}) \subseteq \operatorname{Clo}(\Gamma, \mathcal{L})
$$

Given a set of theories \mathcal{H}, let $\operatorname{Biv}(\mathcal{H})$ be its characteristic bivaluation semantics. (or vice-versa)

Recall $\operatorname{Exc}(\Gamma, \beta, \mathcal{L})$, the collection of all β-excessive theories extending Γ in \mathcal{L}.
Let $\operatorname{Max}(\Gamma, \mathcal{L})$ be the collection of all maximal theories extending Γ in \mathcal{L}.
Let $\operatorname{Clo}(\Gamma, \mathcal{L})$ be the collection of all closed theories extending Γ in \mathcal{L}.

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \varphi \in \Gamma
$$

Fix some $\Gamma \cup\{\beta\} \subseteq \mathcal{S}$. Then:

$$
\operatorname{Max}(\Gamma, \mathcal{L}) \subseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L}) \subseteq \operatorname{Clo}(\Gamma, \mathcal{L})
$$

Given a set of theories \mathcal{H}, let $\operatorname{Biv}(\mathcal{H})$ be its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T -logic \mathcal{L} and a set of theories \mathcal{H} :

* If $\mathcal{H} \nsubseteq \mathrm{Clo}(\Gamma, \mathcal{L})$, soundness fails for $\operatorname{Biv}(\mathcal{H})$

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \varphi \in \Gamma
$$

Fix some $\Gamma \cup\{\beta\} \subseteq \mathcal{S}$. Then:

$$
\operatorname{Max}(\Gamma, \mathcal{L}) \subseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L}) \subseteq \operatorname{Clo}(\Gamma, \mathcal{L})
$$

Given a set of theories \mathcal{H}, let $\operatorname{Biv}(\mathcal{H})$ be its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T -logic \mathcal{L} and a set of theories \mathcal{H} :

* If $\mathcal{H} \nsubseteq \mathrm{Clo}(\Gamma, \mathcal{L})$, soundness fails for $\operatorname{Biv}(\mathcal{H})$
* If $\mathcal{H} \nsupseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$, completeness fails for $\operatorname{Biv}(\mathcal{H})$ [Béziau 1999]

On the theory of (bi)valuations

Any theory $\Gamma \subseteq \mathcal{S}$ determines a characteristic bivaluation:

$$
b_{\Gamma}(\varphi)=T \quad \text { iff } \varphi \in \Gamma
$$

Fix some $\Gamma \cup\{\beta\} \subseteq \mathcal{S}$. Then:

$$
\operatorname{Max}(\Gamma, \mathcal{L}) \subseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L}) \subseteq \operatorname{Clo}(\Gamma, \mathcal{L})
$$

Given a set of theories \mathcal{H}, let $\operatorname{Biv}(\mathcal{H})$ be its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T -logic \mathcal{L} and a set of theories \mathcal{H} :

* If $\mathcal{H} \nsubseteq \mathrm{Clo}(\Gamma, \mathcal{L})$, soundness fails for $\operatorname{Biv}(\mathcal{H})$
* If $\mathcal{H} \nsupseteq \operatorname{Exc}(\Gamma, \beta, \mathcal{L})$, completeness fails for $\operatorname{Biv}(\mathcal{H})$ [Béziau 1999]
* If $\operatorname{Exc}(\Gamma, \beta, \mathcal{L}) \subseteq \mathcal{H} \subseteq \operatorname{Clo}(\Gamma, \mathcal{L})$, then $\operatorname{Biv}(\mathcal{H})$ is an adequate semantics for \mathcal{L}.
[da Costa \& Béziau 1994ff]

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed, consider a T-logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ s.t.: $\begin{aligned} & \mathcal{S}=\{x, y\}, \text { with } x \neq y \\ & x \Vdash y \quad y \Vdash x\end{aligned}$

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,
consider a \mathbf{T}-logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ s.t.: $\mathcal{S}=\{x, y\}$, with $x \neq y$
consider a \mathbf{T}-logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ s.t.: $\quad x \Vdash y \quad y \Vdash x$
Consider bivaluations b_{1} and b_{2} s.t.: $\quad b_{1}(x)=F \quad b_{2}(x)=T$, $b_{n}(y)=T$

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,
consider a \mathbf{T}-logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ s.t.: $\mathcal{S}=\{x, y\}$, with $x \neq y$
consider a T-logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ s.t.. $\quad x \Vdash y \quad y \Vdash x$
Consider bivaluations b_{1} and b_{2} s.t.: $\quad b_{1}(x)=F \quad b_{2}(x)=T$,

$$
b_{n}(y)=T
$$

Then both $\left\{b_{1}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ are adequate for \mathcal{L}.

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:

- CL with underdetermined 4-valued models

(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model (of a certain kind).
Say that a logic is categorical if it has only one adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:

- CL with underdetermined 4-valued models
- CL with ineffable inconsistencies

Multiple-Conclusion T-logics

Recall the abstract axioms of single-conclusion T-logics:
(C1) $\Gamma, \beta \Vdash \beta$
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta$
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
full cut
overlap
dilution

Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
(C1) $\Gamma, \beta \Vdash \beta, \Delta$
overlap
(C2) $\Lambda \Vdash \beta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda \Rightarrow \Gamma \Vdash \beta$
full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
dilution

Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
(C1) $\Gamma, \beta \Vdash \beta, \Delta$
overlap
$\dot{i}(\mathrm{C} 2 \mathrm{~L}) \boldsymbol{?} \Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Sigma \Vdash \lambda, \Pi \Rightarrow \Sigma, \Gamma \Vdash \Delta, \Pi$ left-cut $\dot{i}(\mathrm{C} 2 \mathrm{R}) \mathbf{?} \quad \Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Sigma, \lambda \Vdash \Pi \Rightarrow \Sigma, \Gamma \Vdash \Delta, \Pi$ right-cut (C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$

Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
(C1) $\Gamma, \beta \Vdash \beta, \Delta$
overlap
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
full cut
(C3) $\Gamma \Vdash \beta \Rightarrow \Sigma, \Gamma \Vdash \beta$
dilution

Call $\langle\Sigma, \Pi\rangle$ a quasi-partition of the set $\Theta \subseteq \mathcal{S}$ in case $\Sigma \cup \Pi=\Theta$ and $\Sigma \cap \Pi=\varnothing$.
Let $\operatorname{QPart}(\Theta)$ denote the collection of all quasi-partitions of a set Θ.

Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
(C1) $\Gamma, \beta \Vdash \beta, \Delta$
overlap
$(\mathrm{C} 2) \quad(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
full cut
$(\mathrm{C} 3 \mathrm{~L}) \Gamma \Vdash \Delta \Rightarrow \Sigma, \Gamma \Vdash \Delta$
left-dilution
$(\mathrm{C} 3 \mathrm{R}) \Gamma \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta, \Pi$
right-dilution

Call $\langle\Sigma, \Pi\rangle$ a quasi-partition of the set $\Theta \subseteq \mathcal{S}$ in case $\Sigma \cup \Pi=\Theta$ and $\Sigma \cap \Pi=\varnothing$.
Let $\operatorname{QPart}(\Theta)$ denote the collection of all quasi-partitions of a set Θ.

Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
(C1) $\Gamma, \beta \Vdash \beta, \Delta$
overlap
$(\mathrm{C} 2) \quad(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
full cut
(C3) $\Gamma \Vdash \Delta \Rightarrow \Sigma, \Gamma \Vdash \Delta, \Pi$ dilution

Call $\langle\Sigma, \Pi\rangle$ a quasi-partition of the set $\Theta \subseteq \mathcal{S}$ in case $\Sigma \cup \Pi=\Theta$ and $\Sigma \cap \Pi=\varnothing$. Let $\operatorname{QPart}(\Theta)$ denote the collection of all quasi-partitions of a set Θ.

Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:
(C1) $\Gamma, \beta \Vdash \beta, \Delta$
overlap
$(\mathrm{C} 2) \quad(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$ full cut
(C3) $\Gamma \Vdash \Delta \Rightarrow \Sigma, \Gamma \Vdash \Delta, \Pi$ dilution

Note that:

- $(\mathrm{C} 3 \mathrm{~L})+(\mathrm{C} 3 \mathrm{R}) \Rightarrow(\mathrm{C} 3)$
- $(\mathrm{C} 2 \mathrm{~L})+(\mathrm{C} 2 \mathbf{R}) \nRightarrow(\mathrm{C} 2)$

The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut

The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C 2 L) and $(\mathrm{C} 2 \mathbf{R})$, one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)

The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton

The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]

The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]
(C2LR) $(\forall \pi \in \Pi) \Gamma \Vdash \pi, \Delta$ and $(\forall \sigma \in \Sigma) \Gamma \Vdash \sigma, \Delta$ and $\Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$

The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]
(C2LR) $(\forall \pi \in \Pi) \Gamma \Vdash \pi, \Delta$ and $(\forall \sigma \in \Sigma) \Gamma \Vdash \sigma, \Delta$ and $\Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
Then, one can prove:

```
\((\mathrm{C} 2) \Leftrightarrow(\mathrm{C} 2 \mathcal{S}) \quad\{(\mathrm{C} 3)\}\)
(C2fin) \(\Leftrightarrow\) (C2for) \(\quad\{(\mathrm{C} 3)\}\)
```


The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C 2 L) and (C 2 R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]
(C2LR) $(\forall \pi \in \Pi) \Gamma \Vdash \pi, \Delta$ and $(\forall \sigma \in \Sigma) \Gamma \Vdash \sigma, \Delta$ and $\Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
Then, one can prove:

```
\((\mathrm{C} 2) \Leftrightarrow(\mathrm{C} 2 \mathcal{S}) \quad\{(\mathrm{C} 3)\}\)
(C2fin) \(\Leftrightarrow\) (C2for) \(\quad\{(\mathrm{C} 3)\}\)
(C2Lc) \(\Leftrightarrow(\mathrm{C} 2 \mathbf{R c}) \Leftrightarrow(\mathrm{C} 2 \mathbf{L R})\)
(C2Lc) and (C2Rc) \(\Leftrightarrow(\mathrm{C} 2 \mathbf{L R}) \quad[(\mathrm{C} 3)]\)
```


The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $\quad(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]
(C2LR) $(\forall \pi \in \Pi) \Gamma \Vdash \pi, \Delta$ and $(\forall \sigma \in \Sigma) \Gamma \Vdash \sigma, \Delta$ and $\Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
Then, one can prove:

```
(C2) \(\Leftrightarrow(\mathrm{C} 2 \mathcal{S}) \quad\{(\mathrm{C} 3)\}\)
(C2fin) \(\Leftrightarrow\) (C2for) \(\quad\{(\mathrm{C} 3)\}\)
\((\mathrm{C} 2 \mathbf{L c}) \nLeftarrow(\mathrm{C} 2 \mathbf{R c}) \nLeftarrow(\mathrm{C} 2 \mathbf{L R})\)
(C2Lc) and (C2Rc) \(\Leftrightarrow(\mathrm{C} 2 \mathbf{L R}) \quad[(\mathrm{C} 3)]\)
```


The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]
(C2LR) $(\forall \pi \in \Pi) \Gamma \Vdash \pi, \Delta$ and $(\forall \sigma \in \Sigma) \Gamma \Vdash \sigma, \Delta$ and $\Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
Then, one can prove:

```
\((\mathrm{C} 2) \Leftrightarrow(\mathrm{C} 2 \mathcal{S}) \quad\{(\mathrm{C} 3)\}\)
(C2fin) \(\Leftrightarrow\) (C2for) \(\quad\{(\mathrm{C} 3)\}\)
\((\mathrm{C} 2 \mathbf{L} \mathbf{c}) \nLeftarrow(\mathrm{C} 2 \mathbf{R c}) \nRightarrow(\mathrm{C} 2 \mathbf{L R})\)
(C2Lc) and (C2Rc) \(\Leftrightarrow(\mathrm{C} 2 \mathbf{L R}) \quad[(\mathrm{C} 3)]\)
(C2Lc) or (C2Rc) \(\Rightarrow\) (C2for)
(C2Lc) or (C2Rc) \(\nLeftarrow\) (C2for)
(C2) \(\Rightarrow\) (C2LR)
\((\mathrm{C} 2) \Leftrightarrow(\mathrm{C} 2 \mathbf{L R})\)
```


The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) $(\exists \Theta \subseteq \mathcal{S})(\forall\langle\Sigma, \Pi\rangle \in \operatorname{QPart}(\Theta)) \Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta \quad$ full cut
Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix $\Theta=\mathcal{S}$ in (C2)
(C2fin) Restrict (C2) to finite Θ
(C2for) Restrict (C2) by assuming Θ to be a singleton
(C2Lc) $\Gamma, \Lambda \Vdash \Delta$ and $(\forall \lambda \in \Lambda) \Gamma \Vdash \lambda, \Delta \Rightarrow \Gamma \Vdash \Delta \quad[F i x \Gamma=\Sigma$ and
(C2Rc) $\Gamma \Vdash \Lambda, \Delta$ and $(\forall \lambda \in \Lambda) \Gamma, \lambda \Vdash \Delta \Rightarrow \Gamma \Vdash \Delta \quad \Delta=\Pi$ in (C2X)]
(C2LR) $(\forall \pi \in \Pi) \Gamma \Vdash \pi, \Delta$ and $(\forall \sigma \in \Sigma) \Gamma \Vdash \sigma, \Delta$ and $\Sigma, \Gamma \Vdash \Delta, \Pi \Rightarrow \Gamma \Vdash \Delta$
Then, one can prove:

```
\((\mathrm{C} 2) \Leftrightarrow(\mathrm{C} 2 \mathcal{S}) \quad\{(\mathrm{C} 3)\} \quad\) (C2Lc) or (C2Rc) \(\Rightarrow\) (C2for)
(C2fin) \(\Leftrightarrow\) (C2for) \(\quad\{(\mathrm{C} 3)\}\)
\((\mathrm{C} 2 \mathbf{L} \mathbf{c}) \nLeftarrow(\mathrm{C} 2 \mathbf{R c}) \nRightarrow(\mathrm{C} 2 \mathbf{L R})\)
(C2Lc) and (C2Rc) \(\Leftrightarrow(\mathrm{C} 2 \mathbf{L R}) \quad[(\mathrm{C} 3)]\)
(C2Lc) or (C2Rc) \(\nLeftarrow\) (C2for)
(C2) \(\Rightarrow\) (C2LR)
\((\mathrm{C} 2\) for \() \Rightarrow(\mathrm{C} 2) \quad\{(\mathrm{CC})\}\)
```


Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \Vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Vdash \Delta$.

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Downarrow \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \vDash_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\mathcal{V}}\right\}$

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Vdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \models_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\mathcal{V}}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set $\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Then, again:

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Vdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \models_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\mathcal{V}}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set $\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic \mathcal{L} :

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Vdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \models_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\mathcal{V}}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set

$$
\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S}) \text { and } \Xi \text { is closed }\right\} \text {. Then, again: }
$$

Any fiber from the Lindenbaum Bundle is sound for a T-logic \mathcal{L} :
Proof. Select some closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$.

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Vdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \models_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\mathcal{V}}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set

$$
\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S}) \text { and } \Xi \text { is closed }\right\} . \text { Then, again: }
$$

Any fiber from the Lindenbaum Bundle is sound for a T-logic \mathcal{L} :
Proof. Select some closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$. Suppose that $\Sigma \nvdash \Xi \Pi$. [Show that $\Sigma \Vdash \Pi$.]

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \Vdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \vDash_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\nu}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set

$$
\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S}) \text { and } \Xi \text { is closed }\right\} . \text { Then, again: }
$$

Any fiber from the Lindenbaum Bundle is sound for a T-logic \mathcal{L} :
Proof. Select some closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$. Suppose that $\Sigma \not \forall_{\Xi} \Pi$. [Show that $\Sigma \Vdash \Pi$.] By the definition of \vDash_{Ξ}, then $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$.

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \nVdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \vDash_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\nu}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set

$$
\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S}) \text { and } \Xi \text { is closed }\right\} . \text { Then, again: }
$$

Any fiber from the Lindenbaum Bundle is sound for a T -logic \mathcal{L} :
Proof. Select some closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$. Suppose that $\Sigma \nexists_{\Xi} \Pi$. [Show that $\Sigma \Vdash \Pi$.] By the definition of \vDash_{Ξ}, then $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. But, as Ξ is closed, $\Gamma \Vdash \Delta$.

Lindenbaum Bundle, upgraded

Fix some logic $\mathcal{L}=\langle\mathcal{S}, \mid \vdash\rangle$ in what follows.
Call the quasi-partition $\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$ closed in case $\Gamma \nVdash \Delta$.
Given a closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$, consider a logic $\mathcal{L}_{\Xi}=\left\langle\mathcal{S}, \vDash_{\Xi}\right\rangle$ defined by setting:

- $\mathcal{S}=\mathcal{V}, \mathcal{D}=\Gamma, \mathcal{U}=\Delta$, Sem $=\left\{\right.$ Id $\left._{\mathcal{V}}\right\}$

The Lindenbaum Bundle of \mathcal{L} will now be the set

$$
\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S}) \text { and } \Xi \text { is closed }\right\} . \text { Then, again: }
$$

Any fiber from the Lindenbaum Bundle is sound for a T-logic \mathcal{L} :
Proof. Select some closed $\Xi=\langle\Gamma, \Delta\rangle \in \operatorname{QPart}(\mathcal{S})$. Suppose that $\Sigma \nexists_{\Xi} \Pi$. [Show that $\Sigma \Vdash \Pi$.] By the definition of \vDash_{Ξ}, then $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. But, as Ξ is closed, $\Gamma \Vdash \Delta$. By (C3), $\Sigma \Vdash \Pi$.
Q.E.D.

A fundamental lemma, reconsidered

LA-Extension Lemma:

[Scott 1971, Segerberg 1982]

A fundamental lemma, reconsidered

LA-Extension Lemma:
[Scott 1971, Segerberg 1982]
Any pair of sets Γ and Δ such that $\Gamma \Vdash \Delta$ of a logic \mathcal{L}
that respects (C3) and (CC) can be extended to
sets $\Gamma_{\text {cqp }} \supseteq \Gamma$ and $\Delta_{\text {cqp }} \supseteq \Delta$ that define a
closed quasi-partition $\left\langle\Gamma_{\text {cqp }}, \Delta_{\text {cqp }}\right\rangle$ of \mathcal{S}.

A fundamental lemma, reconsidered

LA-Extension Lemma:

Any pair of sets Γ and Δ such that $\Gamma \Vdash \Delta$ of a logic \mathcal{L}
that respects (C3) and (CC) can be extended to
sets $\Gamma_{\text {cqp }} \supseteq \Gamma$ and $\Delta_{\text {cqp }} \supseteq \Delta$ that define a closed quasi-partition $\left\langle\Gamma_{\text {cqp }}, \Delta_{\text {cqp }}\right\rangle$ of \mathcal{S}.
Proof. Similar to the one before, now using (C2Lc) and (C2Rc).

Obviously, by compactness, in a multiple-conclusion environment, one means:
(CC) $\Gamma \Vdash \Delta \Rightarrow\left(\exists \Gamma_{\Phi} \in \operatorname{Fin}(\Gamma)\right)\left(\exists \Delta_{\Phi} \in \operatorname{Fin}(\Delta)\right) \Gamma_{\Phi} \Vdash \Delta_{\Phi}$

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$.
Soundness is obvious.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its
Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$.
Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Downarrow \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi, \text { where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right)
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \Vdash \Delta$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \Vdash \Delta$.
By (C1), we must have $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \Vdash \Delta$.
By (C1), we must have $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. By definition of ξ_{Ξ}, we conclude that $\Sigma \not \forall_{\Xi} \Pi$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \nVdash \Delta$.
By (C1), we must have $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. By definition of ξ_{Ξ}, we conclude that $\Sigma \nmid \Xi \Pi$. Thus,

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \nVdash \Delta$.
By (C1), we must have $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. By definition of ξ_{Ξ}, we conclude that $\Sigma \not \forall \Xi \Pi$. Thus, $\Sigma \not \forall_{\mathcal{F}} \Pi$.
Q.E.D.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi \text {, where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \Vdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \nVdash \Delta$.
By (C1), we must have $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. By definition of \vDash_{Ξ}, we conclude that $\Sigma \not \forall_{\Xi} \Pi$. Thus, $\Sigma \not \mathcal{F}_{\mathcal{F}} \Pi$.
Q.E.D.

So: Every multiple-conclusion T-logic is κ-valued, for $\kappa=|\mathcal{S}|$.

Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Tarskian, or Scottian Logics?
Given some \mathbf{T}-logic \mathcal{L}, consider again the superlogic $\mathcal{L}_{\mathcal{F}}$ of its Lindenbaum Bundle $\mathcal{F}=\left\{\mathcal{L}_{\Xi}: \Xi \in \operatorname{QPart}(\mathcal{S})\right.$ and Ξ is closed $\}$. Soundness is obvious. Now, for completeness:

$$
\Sigma \vDash_{\mathcal{F}} \Pi \Rightarrow \Sigma \Vdash \Pi, \text { where } \vDash_{\mathcal{F}}=\bigcap_{\mathcal{F}}\left(\vDash_{\Xi}\right) .
$$

Suppose $\Sigma \Vdash \Pi$. By (C2), there is some quasi-partition
$\Xi=\langle\Gamma, \Delta\rangle$ of \mathcal{S} such that $\Sigma, \Gamma \nvdash \Delta, \Pi$.
From (C3), Ξ must be closed: $\Gamma \Vdash \Delta$.
By (C1), we must have $\Sigma \subseteq \Gamma$ and $\Pi \subseteq \Delta$. By definition of \vDash_{Ξ}, we conclude that $\Sigma \not \forall_{\Xi} \Pi$. Thus, $\Sigma \not \forall_{\mathcal{F}} \Pi$.
Q.E.D.

So: Every multiple-conclusion T-logic is κ-valued, for $\kappa=|\mathcal{S}|$.

Multiple-Conclusion T-logics are 2-valued

[S-Reduction]
Exactly like before...

Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and
define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

$$
b^{\S}(\varphi)=T \quad \text { iff } \quad \S(\varphi) \in \mathcal{D}
$$

Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and
define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

$$
b^{\S}(\varphi)=T \quad \text { iff } \quad \S(\varphi) \in \mathcal{D}
$$

Collect such b^{\S} 's into Sem(2). Note that:

$$
\Sigma \vDash_{\text {Sem }(2)} \Pi \text { iff } \Sigma \vDash_{\text {Sem }(\kappa)} \Pi .
$$

Q.E.D.

Multiple-Conclusion T-logics are 2-valued

[S-Reduction]

For any many-valued valuation $\S: \mathcal{S} \rightarrow \mathcal{V}_{\S}$ for a T-logic \mathcal{L}, with semantics $\operatorname{Sem}(\kappa)$, consider its 'binary print':
Let $\mathcal{V}(2)=\{T, F\}$ and $\mathcal{D}(2)=T$, and
define a bivaluation $b^{\S}: \mathcal{S} \rightarrow \mathcal{V}(2)$ such that

$$
b^{\S}(\varphi)=T \quad \text { iff } \quad \S(\varphi) \in \mathcal{D}
$$

Collect such b^{\S} 's into Sem(2). Note that:

$$
\Sigma \vDash_{\text {Sem }(2)} \Pi \text { iff } \Sigma \vDash_{\text {Sem }(\kappa)} \Pi .
$$

Q.E.D.

More importantly, as we will see:
The binary print of a multiple-conclusion logic is unique!

Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical, neither for many-valued tarskian interpretations nor for 2-valued tarskian interpretations...

Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical, neither for many-valued tarskian interpretations nor for 2-valued tarskian interpretations...

Is it possible that $\operatorname{Sem}_{1} \neq \operatorname{Sem}_{2}$ yet $\vDash_{1}=\vDash_{2}$, in a multiple-conclusion environment?

Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical, neither for many-valued tarskian interpretations nor for 2-valued tarskian interpretations...

Is it possible that $\operatorname{Sem}_{1} \neq \operatorname{Sem}_{2}$ yet $\vDash_{1}=\vDash_{2}$, in a multiple-conclusion environment?

The answer is NO if we are talking about bivaluation semantics!!

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not \forall_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2 -valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not \forall_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, BSem $_{1} \neq$ BSem $_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not \forall_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, $\mathrm{BSem}_{1} \neq \mathrm{BSem}_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.
Proof. Suppose $b \in \mathrm{BSem}_{1}$ but $b \notin \mathrm{BSem}_{2}$.

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not{ }_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, $\mathrm{BSem}_{1} \neq \mathrm{BSem}_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.
Proof. Suppose $b \in \mathrm{BSem}_{1}$ but $b \notin \mathrm{BSem}_{2}$.

$$
\text { Let } \Sigma=\{\sigma: b(\sigma)=T\} \text { and } \Pi=\{\pi: b(\pi)=F\} .
$$

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not{ }_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, $\mathrm{BSem}_{1} \neq \mathrm{BSem}_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.
Proof. Suppose $b \in \mathrm{BSem}_{1}$ but $b \notin \mathrm{BSem}_{2}$.
Let $\Sigma=\{\sigma: b(\sigma)=T\}$ and $\Pi=\{\pi: b(\pi)=F\}$.
Then, $\Sigma \not \forall_{b}^{m} \Pi$,

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not{ }_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, $\mathrm{BSem}_{1} \neq \mathrm{BSem}_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.
Proof. Suppose $b \in \mathrm{BSem}_{1}$ but $b \notin \mathrm{BSem}_{2}$.
Let $\Sigma=\{\sigma: b(\sigma)=T\}$ and $\Pi=\{\pi: b(\pi)=F\}$.
Then, $\Sigma \nvdash_{b}^{m} \Pi$, thus $\Sigma \not \forall_{1}^{m} \Pi$.

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not{ }_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, $\mathrm{BSem}_{1} \neq \mathrm{BSem}_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.
Proof. Suppose $b \in \mathrm{BSem}_{1}$ but $b \notin \mathrm{BSem}_{2}$.
Let $\Sigma=\{\sigma: b(\sigma)=T\}$ and $\Pi=\{\pi: b(\pi)=F\}$.
Then, $\Sigma \not \forall_{b}^{m} \Pi$, thus $\Sigma \not \forall_{1}^{m} \Pi$.
But, from the Uniqueness Lemma, $\Sigma \vDash_{2}^{m} \Pi$.

Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]
Let b and c be two bivaluations on \mathcal{S}.
Let $\langle\Sigma, \Pi\rangle$ be a quasi-partition of \mathcal{S}.
Then, $\Sigma \not \forall_{b} \Pi$ and $\Sigma \not \forall_{c} \Pi \Rightarrow b=c$.

Theorem [Categoricity]

Let BSem_{1} and BSem_{2} be two bivaluation semantics over \mathcal{S}.
Then, $\mathrm{BSem}_{1} \neq \mathrm{BSem}_{2} \Rightarrow \vDash_{1}^{m} \neq \vDash_{2}^{m}$.
Proof. Suppose $b \in \mathrm{BSem}_{1}$ but $b \notin \mathrm{BSem}_{2}$.
Let $\Sigma=\{\sigma: b(\sigma)=T\}$ and $\Pi=\{\pi: b(\pi)=F\}$.
Then, $\Sigma \not \forall_{b}^{m} \Pi$, thus $\Sigma \not \forall_{1}^{m} \Pi$.
But, from the Uniqueness Lemma, $\Sigma \vDash_{2}^{m} \Pi$.
Q.E.D.

What is that supposed to mean, in practice??

Categoricity of multiple-conclusion CRs

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Categoricity of multiple-conclusion CRs

Fix some \mathcal{S}.
Let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Given a quasi-partition $\Theta=\langle\Gamma, \Delta\rangle$, say that a bivaluation $b: \mathcal{S} \rightarrow\{T, F\}$ respects Θ if $b(\Gamma) \nsubseteq\{T\}$ or $b(\Delta) \nsubseteq\{F\}$.

Categoricity of multiple-conclusion CRs

Fix some \mathcal{S}.
Let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Say that b respects $\Theta=\langle\Gamma, \Delta\rangle$ if $b(\Gamma) \nsubseteq\{T\}$ or $b(\Delta) \nsubseteq\{F\}$.

Given a collection of quasi-partitions \mathcal{P}, let $\operatorname{Biv}(\mathcal{P})$ be the set of all bivaluations that respect some $\Theta \in \mathcal{P}$.

Categoricity of multiple-conclusion CRs

Fix some \mathcal{S}.
Let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Say that b respects $\Theta=\langle\Gamma, \Delta\rangle$ if $b(\Gamma) \nsubseteq\{T\}$ or $b(\Delta) \nsubseteq\{F\}$.
$\operatorname{Biv}(\mathcal{P})$ is the set of all bivaluations that respect some $\Theta \in \mathcal{P}$.

Call CQPart (\mathcal{S}) the set of all closed quasi-partitions of \mathcal{S}.

Categoricity of multiple-conclusion CRs

Fix some \mathcal{S}.
Let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Say that b respects $\Theta=\langle\Gamma, \Delta\rangle$ if $b(\Gamma) \nsubseteq\{T\}$ or $b(\Delta) \nsubseteq\{F\}$.
$\operatorname{Biv}(\mathcal{P})$ is the set of all bivaluations that respect some $\Theta \in \mathcal{P}$.
Call CQPart $(\mathcal{S}, \mathcal{L})$ the set of all closed quasi-partitions of \mathcal{S} in \mathcal{L}.

Then, for a multiple-conclusion logic \mathcal{L} :

$$
\operatorname{Biv}(\mathcal{P}) \text { is adequate for } \mathcal{L} \text { iff } \mathcal{P}=\operatorname{CQPart}(\mathcal{S}, \mathcal{L})
$$

Categoricity of multiple-conclusion CRs

Fix some \mathcal{S}.
Let $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Say that b respects $\Theta=\langle\Gamma, \Delta\rangle$ if $b(\Gamma) \nsubseteq\{T\}$ or $b(\Delta) \nsubseteq\{F\}$.
$\operatorname{Biv}(\mathcal{P})$ is the set of all bivaluations that respect some $\Theta \in \mathcal{P}$.
Call CQPart $(\mathcal{S}, \mathcal{L})$ the set of all closed quasi-partitions of \mathcal{S} in \mathcal{L}.

Then, for a multiple-conclusion logic \mathcal{L} :

$$
\operatorname{Biv}(\mathcal{P}) \text { is adequate for } \mathcal{L} \text { iff } \mathcal{P}=\operatorname{CQPart}(\mathcal{S}, \mathcal{L})
$$

In this sense, categoricity is the 'dual' to adequacy!

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S}, and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Given some $\operatorname{Biv} \in \mathcal{T}^{\mathcal{B}}$,
let $\Vdash_{\text {Biv }}$ denote the abstract $C R$ corresponding to $\vDash_{\text {Biv }}$.

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T} \mathcal{A}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Given some $\operatorname{Biv} \in \mathcal{T}^{\mathcal{B}}$,
let $\Vdash_{\text {Biv }}$ denote the abstract $C R$ corresponding to $\vDash_{\text {Biv }}$.
Given some $\Vdash \in \mathcal{T}^{\mathcal{A}}$,
let $\mathrm{Biv}_{\|}$be the collection of all bivaluations
that respect every $\langle\Gamma, \Delta\rangle$, where $\Gamma \Vdash \Delta$.

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Consider the mappings $\mathrm{BA}: \mathcal{T}^{\mathcal{B}} \rightarrow \mathcal{T}^{\mathcal{A}}$ and $\mathrm{AB}: \mathcal{T}^{\mathcal{A}} \rightarrow \mathcal{T}^{\mathcal{B}}$ such that:

Biv $\stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }}$
$\Vdash \stackrel{\text { AB }}{\mapsto} \mathrm{Biv}_{\|}$

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S}, and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.

Observe that:
[Dunn \& Hardegree 2001]
$\langle\mathbf{B A}, \mathbf{A B}\rangle$ is a Galois connection
between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, that is:

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T A}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S}, and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Consider: \quad Biv $\stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }} \quad \Vdash \stackrel{\text { AB }}{\longmapsto} \operatorname{Biv}_{\|}$

Observe that:
[Dunn \& Hardegree 2001]
$\langle\mathbf{B A}, \mathbf{A B}\rangle$ is a Galois connection
between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, that is:

1. (a) $\mathbf{B A}(\mathbf{A B}(\Vdash)) \supseteq \Vdash$ for every $\Vdash \in \mathcal{T}^{\mathcal{A}}$
(b) $\operatorname{Biv} \subseteq \mathbf{A B}(\mathbf{B A}(\mathrm{Biv}))$
for every $\operatorname{Biv} \in \mathcal{T}^{\mathcal{B}}$

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T A}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Consider: $\quad \operatorname{Biv} \stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }} \quad \Vdash \stackrel{\text { AB }}{\longmapsto} \operatorname{Biv}_{\|}$

Observe that:
[Dunn \& Hardegree 2001]
$\langle\mathbf{B A}, \mathbf{A B}\rangle$ is a Galois connection
between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, that is:

1. (a) $\mathbf{B A}(\mathbf{A B}(\Vdash)) \supseteq \Vdash$ for every $\Vdash \in \mathcal{T}^{\mathcal{A}}$
(b) $\operatorname{Biv} \subseteq \mathbf{A B}(\mathbf{B A}(\mathrm{Biv}))$
for every $\operatorname{Biv} \in \mathcal{T}^{\mathcal{B}}$
2. both $\mathbf{B A}$ and $\mathbf{A B}$ are monotonic

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Consider: Biv $\stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }} \quad \Vdash \stackrel{\text { AB }}{\longmapsto} \operatorname{Biv}_{\Vdash \vdash}$
Observe that:
[Dunn \& Hardegree 2001]
$\langle\mathrm{BA}, \mathrm{AB}\rangle$ is a Galois connection
between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, that is:

1. (a) $\mathbf{B A}(\mathbf{A B}(\Vdash)) \supseteq \Vdash$
for every $\Vdash \in \mathcal{T}^{\mathcal{A}}$
(b) $\operatorname{Biv} \subseteq \mathrm{AB}(\mathrm{BA}(\mathrm{Biv}))$
for every $\operatorname{Biv} \in \mathcal{T}^{\mathcal{B}}$
2. both BA and AB are monotonic

Question: When can the converses of 1(a) and 1(b) be proven?

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S}, and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Consider: $\quad \operatorname{Biv} \stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }} \quad \Vdash \stackrel{\text { AB }}{\longmapsto}$ Biv $_{\|-}$
$\langle\mathbf{B A}, \mathbf{A B}\rangle$ is a Galois connection between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, i.e.:

1. (a) $\mathbf{B A}(\mathbf{A B}(\Vdash)) \supseteq \Vdash \quad$ for every $\Vdash \in \mathcal{T}^{\mathcal{A}}$
(b) Biv $\subseteq \mathbf{A B}(\mathbf{B A}($ Biv $)) \quad$ for every Biv $\in \mathcal{T B}^{\mathcal{B}}$
2. both $\mathbf{B A}$ and $\mathbf{A B}$ are monotonic

As a matter of fact:

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T}^{\mathcal{A}}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Consider: \quad Biv $\stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }} \quad \Vdash \stackrel{\text { AB }}{\mapsto}$ Biv $_{\|}$
$\langle\mathbf{B A}, \mathbf{A B}\rangle$ is a Galois connection between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, i.e.:

1. (a) $\mathbf{B A}(\mathbf{A B}(\Vdash)) \supseteq \Vdash \quad$ for every $\Vdash \in \mathcal{T}^{\mathcal{A}}$
(b) Biv $\subseteq \mathbf{A B}(\mathbf{B A}($ Biv $)) \quad$ for every Biv $\in \mathcal{T}^{\mathcal{B}}$
2. both $\mathbf{B A}$ and $\mathbf{A B}$ are monotonic

As a matter of fact:

- The converse to $1(a)$ amounts to completeness, and can be attained in either single- or multiple-conclusion T-logics.

Having the right connections

Fix some \mathcal{S} in what follows.
Let $\mathcal{T A}$ be the collection of all abstract \mathbf{T}-logics over \mathcal{S},
and $\mathcal{T}^{\mathcal{B}}$ be the collection of all tarskian bivaluation semantics over \mathcal{S}.
Consider: \quad Biv $\stackrel{\text { BA }}{\mapsto} \Vdash_{\text {Biv }} \quad \Vdash \stackrel{\text { AB }}{\mapsto} \operatorname{Biv}_{\|}$
$\langle\mathbf{B A}, \mathbf{A B}\rangle$ is a Galois connection between the posets $\left\langle\mathcal{T}^{\mathcal{A}}, \supseteq\right\rangle$ and $\left\langle\mathcal{T}^{\mathcal{B}}, \subseteq\right\rangle$, i.e.:

1. (a) $\mathbf{B A}(\mathbf{A B}(\Vdash)) \supseteq \Vdash \quad$ for every $\Vdash \in \mathcal{T}^{\mathcal{A}}$
(b) Biv $\subseteq \mathbf{A B}(\mathbf{B A}($ Biv $)) \quad$ for every Biv $\in \mathcal{T}^{\mathcal{B}}$
2. both $\mathbf{B A}$ and $\mathbf{A B}$ are monotonic

As a matter of fact:

- The converse to $1(a)$ amounts to completeness, and can be attained in either single- or multiple-conclusion T-logics.
- The converse to $1(\mathrm{~b})$ amounts to categoricity, and can only be attained in multiple-conclusion T-logics.

Having the right connections

As a matter of fact:

- The converse to $1(a)$ amounts to completeness, and can be attained in either single- or multiple-conclusion T-logics.
- The converse to $1(\mathrm{~b})$ amounts to categoricity, and can only be attained in multiple-conclusion T-logics.

So, here is a further good reason to go multiple-conclusion: To reconciliate most logics with their intended models!!

