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General Abstract Nonsense

Les idées générales et abstraites sont la source des
plus grandes erreurs des hommes.

—Jean-Jacques Rousseau, Profession de Foi du Vi-
caire Savoyard, in “Emile, ou de |I'éducation”, 1762.
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plus grandes erreurs des hommes.

—Jean-Jacques Rousseau, Profession de Foi du Vi-
caire Savoyard, in “Emile, ou de |I'éducation”, 1762.

Representation Theorems:

Consider logics L = (S,IF) and L = (S, F)
over a fixed universe S.
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General Abstract Nonsense

Les idées générales et abstraites sont la source des

plus grandes erreurs des hommes.
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caire Savoyard, in “Emile, ou de |I'éducation”, 1762.
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Consider logics Lir = (S,IF) and L = (S, F)

over a fixed universe S.
We say that L= is sound with respect to L~ in case |- C F.
We say that L is complete with respect to L in case IF D F.

Recall that: adequacy = soundness + completeness.
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General Abstract Nonsense

Les idées générales et abstraites sont la source des
plus grandes erreurs des hommes.

—Jean-Jacques Rousseau, Profession de Foi du Vi-
caire Savoyard, in “Emile, ou de |I'éducation”, 1762.

Representation Theorems:

Consider logics Lir = (S,IF) and L = (S, F)

over a fixed universe S.
We say that L= is sound with respect to L~ in case |- C F.
We say that L is complete with respect to L in case IF D F.

Recall that: adequacy = soundness + completeness.

7

Idea: To provide abstract axiomatizations for
interesting semantical ideas, and vice-versa.
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An illustration from before
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An illustration from before

Recall Kuratowski (topological) closure:

(Cl) T CIF overlap
(C2) (IM*~Cr full cut
(C3) TCA = I'"mCAF dilution
(CK1) (T'U Z)'F IR premise-apartness
(CK2) o' = no primitive theses
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An illustration from before

Recall Kuratowski (topological) closure:

(Cl1) T C1I" overlap
(C2) (IM*FCrT full cut
(C3) TCA = I'"mCAF dilution
(CK1) (DuX)F =rFyuxr premise-apartness
(CK2) g =g no primitive theses

Which, in terms of consequence relations,

could be rewritten as ...
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An illustration from b

Recall Kuratowski (topological) closure:
(C1) T,81IF 3
(C2) AlFBand (VA€ AT IFA = TIF g
(C3) TIFG = N, TG

(CK1) ©,TlFa < SlFaorTlFa

(CK2) It o AN

A
N
Which, in terms of consequence relations,
. 4
could be rewritten as . ..

efore

overlap
full cut
dilution
premise-apartness

no primitive theses
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An illustration from before

Recall Kuratowski (topological) closure:

(C1) T8I overlap
(C2) AlFBand (VA€ AT IFX = TI- 3 full cut
(C3) TIFB = LT3 dilution
(CK1) ¥, TFa < YlFaor'lFa premise-apartness
(CK2) I « no primitive theses

... providing a Representation Theorem for

the ‘semantics of closed sets'.
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An illustration from before

Now, go back to relations determined by Closure Operators:
(C1) I,BIF 3 overlap
(C2) AlFgand (MA e A)T'IFA = T'IFg full cut
(C3) TG = X TIFEg dilution
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An illustration from before

Now, go back to relations determined by Closure Operators:

(C1) I,BIF 3 overlap
(C2) AlFgand VAe A)TIFX = TIFg full cut
() T'IFEB = S TIFS dilution

What kind of Representation Theorem can be proved
in the case of these T-logics?
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in the case of these T-logics?
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An illustration from before

Now, go back to relations determined by Closure Operators:

(C1) I,BIF 3 overlap
(C2) AlFgand VAe A)TIFX = TIFg full cut
() T'IFEB = S TIFS dilution

What kind of Representation Theorem can be proved
in the case of these T-logics?

Here is a preliminary question:
Can (C2) be substituted by

(C2n) Y AIFBand TIFA = X TIFQ naive cut
77?
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A pledge for naive cut, and a problem

Let I respect (C1), (C2n) and (C3).
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A pledge for naive cut, and a problem

Let I respect (C1), (C2n) and (C3).
Define < (C S x §) by setting a < 3 iff (aIF 3 and G IF «).
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A pledge for naive cut, and a problem

Let I respect (C1), (C2n) and (C3).

Define < (C S x §) by setting a < § iff (aIF 8 and 8 IF ).

Then =< defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]
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' Aiff (V6 € A)T'IF§ and (Vy € T)A IF ).

Multiple-Conclusion Logics — p.4/22



A pledge for naive cut, and a problem

Let I respect (C1), (C2n) and (C3).

Define < (C S x §) by setting a < § iff (aIF 8 and 8 IF ).
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A pledge for naive cut, and a problem

Let I respect (C1), (C2n) and (C3).

Define < (C S x §) by setting a < § iff (aIF 8 and 8 IF ).

Then =< defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]

Suppose we now define < (C Pow(S) x Pow(S)) by setting
' Aiff (V6 € A)T'IF§ and (Vy € T)A IF ).
Then < s not an equivalence relation over Pow(S)!

However:

E1l: with (C2) in the place of (C2n), = does define an equivalence
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A pledge for naive cut, and a problem

Let I respect (C1), (C2n) and (C3).

Define < (C S x §) by setting a < § iff (aIF 8 and 8 IF ).
Then =< defines an equivalence relation over S.
[given that (C1) and (C2n) define a preorder]

Suppose we now define < (C Pow(S) x Pow(S)) by setting
' Aiff (V6 € A)T'IF§ and (Vy € T)A IF ).
Then < s not an equivalence relation over Pow(S)!

However:

E1l: with (C2) in the place of (C2n), = does define an equivalence
E2: (C1) + (C2) + (C3) = (C2n)

E3: (C1) + (C2n) + (C3) @ (C2)
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Some refinements of T-logics

Other customary axioms. . .
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactn@
where Fin(I') = {I'g : ' is a finite subset of I'} \

Axiom of Choice!
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}

Note that:
E4: (CC) + (C1) + (C2n) 4+ (C3) = (C2)
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}

Let's now suppose & has an algebraic character, i.e.:

* atomic sentences: At (e.g. {p1,p2,ps3,..-})
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(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}

Let's now suppose & has an algebraic character, i.e.:
* atomic sentences: At (e.g. {p1,p2,ps3,..-})

* collections Cnt,, of n-ary connectives of a

propositional signature Cnt = {Cnt,, },en
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}

Let's now suppose & has an algebraic character, i.e.:
* atomic sentences: At (e.g. {p1,p2,ps3,..-})

* collections Cnt,, of n-ary connectives of a

propositional signature Cnt = {Cnt,, },en

* an algebra of formulas freely generated by At over UCnt.
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}

Let's now suppose & has an algebraic character, i.e.:

* atomic sentences: At (e.g. {p1,p2,ps3,..-})

* collections Cnt,, of n-ary connectives of a

propositional signature Cnt = {Cnt,, } ,ex
* an algebra of formulas freely generated by At over UCnt.

Then, consider: [Lo$ & Suszko 1958]

(CLS) 'l 8 = T¢Ik G, for any endomorphisme:S — S

substitutionality
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Some refinements of T-logics

Other customary axioms. . .
(CC) T'IFB = (Al'g € Fin(I')) ' IF 3 compactness
where Fin(I') = {I'g : ' is a finite subset of I'}

Let's now suppose & has an algebraic character, i.e.:
* atomic sentences: At (e.g. {p1,p2,ps3,..-})

* collections Cnt,, of n-ary connectives of a

propositional signature Cnt = {Cnt,, } ,ex
* an algebra of formulas freely generated by At over UCnt.
Then, consider: [Lo$ & Suszko 1958]
(CLS) 'l 8 = T¢Ik G, for any endomorphisme:S — S

@titution@\/ notion of ‘logical form’!
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Logics in agreement

Consider a family of logics F = {L;};c; over some fixed S.
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Logics in agreement

Consider a family of logics F = {L;};c; over some fixed S.

Define the superlogic L~ of this family
by taking (,.; £i, that is, L = (S, Nicrlk),
where each £; = (S,IF;), for ¢ € 1.
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Define the superlogic L~ of this family
by taking (,.; £i, that is, L = (S, Nicrlk),
where each £; = (S,IF;), for ¢ € 1.

Which properties of a CR are preserved from F into L£7
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Logics in agreement

Consider a family of logics F = {L;};c; over some fixed S.

Define the superlogic L~ of this family
by taking (,.; £i, that is, L = (S, Nicrlk),
where each £; = (S,IF;), for ¢ € 1.

Which properties of a CR are preserved from F into L£7
(C1), (C2), (C2n), (C3) are all preserved (Horn clauses. . .)
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Logics in agreement

Consider a family of logics F = {L;};c; over some fixed S.

Define the superlogic L~ of this family
by taking (,.; £i, that is, L = (S, Nicrlk),
where each £; = (S,IF;), for ¢ € 1.

Which properties of a CR are preserved from F into L£7

(C1), (C2), (C2n), (C3) are all preserved (Horn clauses. . .)
(CLS) /s preserved

(CC) is not preserved

(w-rules. . .)
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Recall ‘tarskian interpretations’

Fix some § and let Sem be a many-valued semantics over it.
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Recall ‘tarskian interpretations’

Fix some § and let Sem be a many-valued semantics over it.

Each § € Sem has the following associated elements:

* truth-values Vs, Dy and Uy, such that
Vg = Dg UU§ and D§ ﬂu§ =5%]
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Recall ‘tarskian interpretations’

Fix some § and let Sem be a many-valued semantics over it.

Each § € Sem has the following associated elements:

* truth-values Vs, Dy and Uy, such that
Ve = DsUlUs and Dy NUy = &

* |ocal entailment relation Fg such that
['Es Aiff §(I') € Dy or §(A)  Us

* global entailment relation Fsey, such that
FSem = m§esem(|:§)
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Recall ‘tarskian interpretations’

Fix some § and let Sem be a many-valued semantics over it.

Each § € Sem has the following associated elements:

* truth-values Vs, Dy and Uy, such that
Vg = D§ UU§ and D§ ﬂu§ =5%]

* |ocal entailment relation Fg such that
['Es Aiff §(I') € Dy or §(A)  Us

* global entailment relation Fsey, such that
FSem = m§esem(|:§)

Say that (S, Fsem) is a r-valued logic if kK = Maxgesem(|Vs])-
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Some fundamental semantic features
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.
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Call a many-valued semantics unitary in case |Sem| = 1.

Let {(S,Fsemp) }icr be a family of logics
with tarskian interpretations.
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.

Let {(S,Fsemp) }icr be a family of logics
with tarskian interpretations.

Notice that:

* Any such logic respects axioms (C1), (C2) and (C3)
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Some fundamental semantic features

Call a many-valued semantics unitary in case |Sem| = 1.

Let {(S,Fsemp) }icr be a family of logics
with tarskian interpretations.

Notice that:
* Any such logic respects axioms (C1), (C2) and (C3)

* Superlogics:
ﬂ Fsem(i)) = FU,., Semli]

el
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.
Say that I' C § is ([3-)excessive (given 3 € S)
In case it is such that:
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Say that I' C § is ([3-)excessive (given 3 € S)
In case it is such that:

e I'IF G
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.

Say that I' C § is ([3-)excessive (given 3 € S)
In case it Is such that:
c L'l p
e VagD)Ial-g

Glossary:

® J.-Y. Béziau's (3-excessive translates Giinter Asser's ‘vollstindig in Bezug auf 3’

Multiple-Conclusion Logics — p.9/22



A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.
Say that I' C § is ([3-)excessive (given 3 € S)
In case it Is such that:

e T'If
e VaegD)IalFp

Say that I' is maximal in case it is (3-excessive for every 3 £ I'.
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A fundamental lemma on abstract logics

Fix some arbitrary £ for the following definitions.
Say that I' C § is ([3-)excessive (given 3 € S)
In case it Is such that:
c T'lFp
e VadgD)I'alFp
Say that I' is maximal in case it is (3-excessive for every 3 £ I'.
Say that I' is (right-)closed incase I'lF§ = § €T
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.
Say that I' C § is ([3-)excessive (given 3 € S)
In case it Is such that:

e DI 13
e VagD)T,alFg

Say that I' is maximal in case it is (3-excessive for every 3 £ I'.
Say that I' is (right-)closed incase I'lF§ = § €T

Note that:

e |f ' is excessive, then I' is closed.
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A fundamental lemma on abstract logics

Fix some arbitrary L for the following definitions.
Say that I' C § is ([3-)excessive (given 3 € S)
In case it Is such that:

e DI 13
e VagD)T,alFg

Say that I' is maximal in case it is (3-excessive for every 3 £ I'.
Say that I' is (right-)closed incase I'lF§ = § €T

Note that:
e |f ' is excessive, then I' is closed.

* In classical logic, excessive = maximal.
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A fundamental lemma on abstract logics

Let Exc(I', 3, £) be the collection of all $-excessive theories

extending I' in L.
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma:
If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma:  If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma:  If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I 3.
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma:  If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(I', 3, £).
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(I', 3, £).
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(I', 3, £).
We show that | JC is an upper bound for C, i.e.,
(VA € C) A C|JC (obvious) and
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(I', 3, £).
We show that | JC is an upper bound for C, i.e.,

(VA € C) A C |JC (obvious) and | JC € Exc(T', 3, L).
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(I', 3, £).
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Suppose ¢ € Fin(|JC).
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(T', 3, £).
We show that | JC is an upper bound for C, i.e.,
(VA € C) A C |JC (obvious) and | JC € Exc(T', 3, L).
Suppose © € Fin(| JC). Then ® C 3 € C.
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A fundamental lemma on abstract logics

Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' I} 5. Let Exc(I', 8, L) be partially ordered by C.
Let C be a chain (a totally ordered set) in Exc(I', 3, £).
We show that | JC is an upper bound for C, i.e.,
(VA € C) A C |JC (obvious) and | JC € Exc(T', 3, L).
Suppose ® € Fin(|JC). Then ® C > € C. But 2 If .
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Let Exc(I', 8, £) be the collection of all 3-excessive theories extending I' in L.

Zorn's Lemma: If every chain in a partially ordered set has an upper bound,

then there is a maximal element in that set.

Lindenbaum-Asser Extension Lemma:

Any non-trivial theory I' of a logic £ that respects (C3)
and (CC) can be extended to an excessive theory I'e,c.

Proof. Suppose I' If 5. Let Exc(I', 3, L) be partially ordered by C.

Let C be a chain (a totally ordered set) in Exc(I', 3, £).

We show that | JC is an upper bound for C, i.e.,

(VA € C) A C |JC (obvious) and | JC € Exc(T', 3, L).

Suppose ® € Fin(| JC). Then @ C X (. But X If S

By dilution [(C3)], ® If 8. By compactness [(CC)], |JC I 5.

By Zorn's Lemma, Exc(T', 3, £) has a maximal element T',..
Q.E.D.
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Automatic soundness

Fix some logic £ = (S,IF) and some theory I' in what follows.
Call " = {a : T' IF a} the right-closure of T

Let Clo(L) be the collection of all right-closed theories of L.
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Fix some logic £ = (S,IF) and some theory I' in what follows.
Call I'" = {a : T' IF a} the right-closure of T..
Let Clo(L) be the collection of all right-closed theories of L.

Consider a logic Lr = (S,Fr) defined by setting:
¢ S=V
o D — FII—

® Sem = {lId} is a unitary semantics made of an identity mapping on V
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Automatic soundness

Fix some logic £ = (S, ) and some theory I' in what follows.
Call I'" = {a : T' IF a} the right-closure of T..
Let Clo(L) be the collection of all right-closed theories of L.

Consider a logic Lr = (S,Fr) defined by setting:
°* S=V
e D=T"
® Sem = {lId} is a unitary semantics made of an identity mapping on V

Call Lindenbaum Bundle of £ the set {Lr : ' C S}. Then:
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Fix some logic £ = (S, ) and some theory I' in what follows.

Call I'" = {a : T' IF a} the right-closure of T..
Let Clo(L) be the collection of all right-closed theories of L.

Consider a logic Lr = (S,Fr) defined by setting:
¢ S=V
o D — FII—

® Sem = {lId} is a unitary semantics made of an identity mapping on V

Call Lindenbaum Bundle of £ the set {Lr : ' C S}. Then:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
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Consider a logic Lr = (S, Fr) defined by setting:
°* S=V
e D=T"
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Proof. Select some L1 and some A I 3. [Show that A Fr 3]
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Fix some logic £ = (S, ) and some theory I' in what follows.

Call I'" = {a : T' IF a} the right-closure of T..
Let Clo(L) be the collection of all right-closed theories of L.

Consider a logic Lr = (S,Fr) defined by setting:
¢ S=V
o D — FII—

® Sem = {lId} is a unitary semantics made of an identity mapping on V

Call Lindenbaum Bundle of £ the set {Lr : ' C S}. Then:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some L1 and some A [ 3. [Show that A Fr 3]
Suppose that Id(A) C D, i.e., ACT".
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Automatic soundness

Fix some logic £ = (S, ) and some theory I' in what follows.

Call I'" = {a : T' IF a} the right-closure of T..
Let Clo(L) be the collection of all right-closed theories of L.

Consider a logic Lr = (S,Fr) defined by setting:
¢ S=V
o D — FII—

® Sem = {lId} is a unitary semantics made of an identity mapping on V

Call Lindenbaum Bundle of £ the set {Lr : ' C S}. Then:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some L and some A IF 3. [Show that A Fr 3]
Suppose that Id(A) C D, ie., ACT".
By (C1), (V6 € A)T'"IF§. By (C2), T IF3,and 3 cI'". Q.E.D.
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Any single-conclusion T-logic is many-valued

[Wéjcicki’s Reduction]

Multiple-Conclusion Logics — p.11/22



Any single-conclusion T-logic is many-valued
[Wéjcicki’s Reduction]

Given some T-logic £, consider the superlogic L of its
Lindenbaum Bundle 7 = {Lr: T C S}.
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[Wéjcicki’s Reduction]
Given some T-logic £, consider the superlogic L of its
Lindenbaum Bundle F = {Lr : I' C S}. Soundness is obvious.
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Lindenbaum Bundle F = {Lr : I' C S}. Soundness is obvious.
[Now, for completeness: A Fsem(nz) 8 = AlF 3]
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Any single-conclusion T-logic is many-valued

[Wéjcicki’s Reduction]

Given some T-logic £, consider the superlogic L of its
Lindenbaum Bundle F = {Lr : I' C S}. Soundness is obvious.
[Now, for completeness: A Fsem(nz) 8 = AlF 3]

Suppose A Fsemin 7 5.
Thus, A Fr 3, for every I' C S.
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[Wéjcicki’s Reduction]

Given some T-logic £, consider the superlogic L of its
Lindenbaum Bundle F = {Lr : I' C S}. Soundness is obvious.
[Now, for completeness: A Fsem(nz) 8 = AlF 3]

Suppose A Fsemn7) B-
Thus, A Fr 3, for every I' C S.

By the definition of Fr, and the fact that £ is a T-logic,
this means that (VI' C &) I, A I .
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Suppose A Fsemn7) B-
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Any single-conclusion T-logic is many-valued

[Wéjcicki’s Reduction]

Given some T-logic £, consider the superlogic L of its
Lindenbaum Bundle F = {Lr : I' C §}. Soundness is obvious.
[Now, for completeness: A Fsem(nz) 8 = AlF 3]

Suppose A Fsemin 7 5.
Thus, A Fr 3, forevery I' C S.

By the definition of Fr, and the fact that £ is a T-logic,
this means that (V' C S) I', A I+ 5.
In particular, for I' = &, we have that A |- /. Q.E.D.
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Any single-conclusion T-logic is many-valued

[Wéjcicki’s Reduction]

Given some T-logic £, consider the superlogic L of its
Lindenbaum Bundle F = {Lr : I' C §}. Soundness is obvious.
[Now, for completeness: A Fsem(nz) 8 = AlF 3]

Suppose A Fsemn7) B-
Thus, A Fr 3, forevery I' C S.

By the definition of Fr, and the fact that £ is a T-logic,
this means that (V' C S) I', A I 5.
In particular, for I' = &, we have that A I (. Q.E.D.

So:

Every single-conclusion T-logic is x-valued, for k = |S]|.
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Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many
truths and falsehoods. [...] Obviously any multiplica-
tion of logical values is a mad idea.

—Roman Suszko, 22nd Conference on the History of
Logic, Cracow, 1976.

[SUSZkO’S Reduction] ‘logical’ x ‘algebraic’ truth-values
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For any many-valued valuation §: & — Vs for a T-logic L,

with semantics Sem(x), consider its ‘binary print':
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After 50 years we still face an illogical paradise of many
truths and falsehoods. [...] Obviously any multiplica-
tion of logical values is a mad idea.

—Roman Suszko, 22nd Conference on the History of
Logic, Cracow, 1976.

[Suszko’s Reduction] ‘logical’ x ‘algebraic’ truth-values

For any many-valued valuation §: & — Vs for a T-logic L,
with semantics Sem(x), consider its ‘binary print':

Let V(2) ={T, F} and D(2) =T, and

define a bivaluation b : S — V(2) such that
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Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many
truths and falsehoods. [...] Obviously any multiplica-
tion of logical values is a mad idea.

—Roman Suszko, 22nd Conference on the History of
Logic, Cracow, 1976.

[Suszko’s Reduction] ‘logical’ x ‘algebraic’ truth-values

For any many-valued valuation §: & — Vs for a T-logic L,
with semantics Sem(x), consider its ‘binary print':

Let V(2) ={T, F} and D(2) =T, and

define a bivaluation b : S — V(2) such that

bi(p) = T iff §(y) € D.
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Let V(2) ={T, F} and D(2) =T, and
define a bivaluation b : S — V(2) such that
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Collect such b%'s into Sem(2).
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Any single-conclusion T-logic is 2-valued

After 50 years we still face an illogical paradise of many
truths and falsehoods. [...] Obviously any multiplica-
tion of logical values is a mad idea.

—Roman Suszko, 22nd Conference on the History of
Logic, Cracow, 1976.

[SUSZkO’S Reduction] ‘logical’ x ‘algebraic’ truth-values
For any many-valued valuation §: & — Vs for a T-logic L,

with semantics Sem(x), consider its ‘binary print':
Let V(2) ={T, F} and D(2) =T, and
define a bivaluation b : S — V(2) such that
b(p) =T iff §(p) € D.
Collect such b%'s into Sem(2). Note that:

A I:Sem(2) 6 iff A I:Sem(m) 6 Q.E.D.
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On the theory of (bi)valuations

Any theory I' C S determines a characteristic bivaluation:
br(p) =T iff peT.

Recall Exc(I', 8, £), the collection of all 3-excessive theories extending I' in L.
Let Max(I', £) be the collection of all maximal theories extending I" in L.
Let Clo(I", £) be the collection of all closed theories extending I" in L.
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Given a set of theories H, let Biv(H) be

Its characteristic bivaluation semantics. (or vice-versa)
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Any theory I' C S determines a characteristic bivaluation:
br(p) =T iff peT.

Fix some ' U {8} C S. Then:
Max(T', £) C Exc(I',3,L£) C Clo(I', £).

Given a set of theories H, let Biv(H) be

Its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T-logic £ and a set of theories H:
* If H & Clo(T", L), soundness fails for Biv(H)
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br(p) =T iff peT.

Fix some ' U {8} C S. Then:
Max(T', £) C Exc(I',3,L£) C Clo(I', £).

Given a set of theories H, let Biv(H) be

Its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T-logic £ and a set of theories H:

* If H & Clo(T", L), soundness fails for Biv(H)
*x If ' H 2 Exc(T', 3, L), completeness fails for Biv(H) [Béziau 1999]
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On the theory of (bi)valuations

Any theory I' C S determines a characteristic bivaluation:
br(p) =T iff peT.

Fix some ' U {8} C S. Then:
Max(T', £) C Exc(I',3,L£) C Clo(I', £).

Given a set of theories H, let Biv(H) be
Its characteristic bivaluation semantics. (or vice-versa)

Note that, given a compact T-logic £ and a set of theories H:
* If H & Clo(T", L), soundness fails for Biv(H)
*x If ' H 2 Exc(T', 3, L), completeness fails for Biv(H) [Béziau 1999]

*x If Exc(T', 6, £)| € H C|Clo(T", £), then Biv(H) is
an adequate semantics for L. [da Costa & Béziau 1994ff]
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model
(of a certain kind).
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adequate collection of models (of a certain kind).
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model
(of a certain kind).

Say that a logic is categorical if it has only one
adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,
S ={x,y}, with x £y

consider a T-logic £ = (S, IF) s.t.:
xlFy y I x
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model
(of a certain kind).

Say that a logic is categorical if it has only one
adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,
: : S ={z,y}, withx £y
consider a T-logic £ = (S, IF) s.t.:

Consider bivaluations b; and b5 s.t.: bi(z) =F  by(z) =T,
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model
(of a certain kind).

Say that a logic is categorical if it has only one
adequate collection of models (of a certain kind).

Categoricity can easily fail in SC-CRs. Indeed,

consider a T-logic £ = (S, IF) s.t.: § =1y} withw 7y

Consider bivaluations b; and b5 s.t.: bi(z) =F  by(z) =T,

Then both {b;} and {by, by} are adequate for L.
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(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model
(of a certain kind).

Say that a logic is categorical if it has only one
adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:
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Categoricity fails even for SC-classical logic. Recall:

e CL with |underdetermined | 4-valued models

Multiple-Conclusion Logics — p.14/22



(Non)categoricity of single-conclusion logics

Say that a theory is categorical if it has only one model
(of a certain kind).

Say that a logic is categorical if it has only one
adequate collection of models (of a certain kind).

Categoricity fails even for SC-classical logic. Recall:

e CL with |underdetermined | 4-valued models

e CL with ineffable | inconsistencies
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Multiple-Conclusion T-logics

Recall the abstract axioms of single-conclusion T-logics:

(C1) I,BIF 3 overlap
(C2) AlFgand VAe A)T'IFX = TIFg full cut
() T'IFEFB = U TIFS dilution
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(C1) I, 6 IF 6, A overlap
(C2) AlIFBand (MAXeAN)'IFAX = TIFJ full cut
() TIES = TIPS dilution
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(C1) I',6IF 6, A overlap
L(C2L)? TbAIFAand (WA e M)XIFANIT = X, T IF AT left-cut
i(C2R)? T'IFA, A and (WA e )X AIFIT = X, T'IF AT right-cut

(C3) T'lFB = X, T'IFS dilution
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(Cl) IG5, A overlap

(C2) (30 C 8)(V(Z, 1) € QPart(©)) T, T IF A TT = T IF A
full cut

() T'IFB = U TIFS dilution

Call (3,II) a quasi-partition of the set © C Sincase X UIl =0 and X NIl = @.
Let QPart(©) denote the collection of all quasi-partitions of a set ©.
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(C1) T,5IF B,A overlap
(C2) (30 C S)(V(T,II) € QPart(®) T, T IFA,II = Tl A
full cut

(C3L) TIFA = X TIFA left-dilution
(C3R) T'IFA = TIFAII right-dilution

Call (3,II) a quasi-partition of the set © C Sincase X UIl =0 and X NIl = @.
Let QPart(©) denote the collection of all quasi-partitions of a set ©.
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(Cl) IG5, A overlap

(C2) (36 C S)(W(Z,II) € QPart(©)) T, T IFA,IT = T I A
full cut

(C3) T'IFA = X, T'IFATI dilution

Call (3,II) a quasi-partition of the set © C S incase X UIl =0 and X NIl = @.
Let QPart(©) denote the collection of all quasi-partitions of a set ©.
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Multiple-Conclusion T-logics

And now consider multiple-conclusion approaches of them:

(Cl) IG5, A overlap

(C2) (36 C S)(W(Z,II) € QPart(©)) T, T IFA,IT = T I A
full cut

(C3) T'IFA = X, T'IFATI dilution

Note that:

e (C3L) + (C3R) = (C3)

* (C2L) + (C2R)

7>

(C2)

Multiple-Conclusion Logics — p.15/22



The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)
(C2fin) Restrict (C2) to finite ©
(C2for) Restrict (C2) by assuming © to be a singleton
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©

(C2for) Restrict (C2) by assuming © to be a singleton

(C2Le) T,AI-FAand (VA€ A)TIFAA = TIFA [Fix T = ¥ and
(C2Rc) T'IFA;,Aand (VA€ AT AIFA = TIFA A =1Iin (C2X)]
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©

(C2for) Restrict (C2) by assuming © to be a singleton

(C2Le) T,AI-FAand (VA€ A)TIFAA = TIFA [Fix T = ¥ and
(C2Rc) T'IFA;,Aand (VA€ AT AIFA = TIFA A =1Iin (C2X)]
(C2LR) (Vr € )T IF 7, Aand (Vo € S)T' - o, Aand S, TIF A, TT =T I A
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©

(C2for) Restrict (C2) by assuming © to be a singleton

(C2Le) T,AI-FAand (VA€ A)TIFAA = TIFA [Fix T = ¥ and
(C2Rc) T'IFA;,Aand (VA€ AT AIFA = TIFA A =1Iin (C2X)]
(C2LR) (Vr € )T IF 7, Aand (Vo € S)T' - o, Aand S, TIF A, TT =T I A

Then, one can prove:

(C2) & (C25) {(C3)}
(C2fin) < (C2for) {(C3)}
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©

(C2for) Restrict (C2) by assuming © to be a singleton

(C2Le) T,AI-FAand (VA€ A)TIFAA = TIFA [Fix T = ¥ and
(C2Rc) T'IFA;,Aand (VA€ AT AIFA = TIFA A =1Iin (C2X)]
(C2LR) (Vr € )T IF 7, Aand (Vo € S)T' - o, Aand S, TIF A, TT =T I A

Then, one can prove:
(C2) & (C25) {(C3)}
(C2fin) & (C2for) {(C3)}

(C2Lc) ¢ (C2Rc) ¢4 (C2LR)
(C2Lc) and (C2Rc) & (C2LR) [(C3)]
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©
(C2for) Restrict (C2) by assuming © to be a singleton
(C2Lc) T,Al-FAand (VA€ A)TIFAA = TIFA [Fix T = ¥ and
(C2Rc) T'IFA;,Aand (VA€ AT AIFA = TIFA A =1Iin (C2X)]
(C2LR) (Vr e INT - 7, Aand (Vo € DT Ik o,Aand S, T IFA, I =T IF A
Then, one can prove:
(C2) & (C28) {(C3)} (C2Lc) or (C2Rc) = (C2for)
(C2fin) & (C2for) {(C3)} (C2Le) or (C2Rc) (C2for)

(C2Lc) ¢ (C2Rc) ¢4 (C2LR)
(C2Lc) and (C2Rc) & (C2LR) [(C3)]
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©
(C2for) Restrict (C2) by assuming © to be a singleton
(C2Lc) T,AlFAand (WA A)TIFANA = TIFA [Fix I = X and
(C2Rc) T'IFA;Aand (VA€ A)TSAFA = TIFA A =TI in (C2X)]
(C2LR) (Vr eI)T I m,Aand (Vo € )L ko, AandS, T IF AT =T |- A
Then, one can prove:
(C2) & (C28) {(C3)} (C2Lc) or (C2Rc) = (C2for)
(C2fin) < (C2for) {(C3)} (C2Lc) or (C2Rc) (C2for)
(C2Lc) ¢ (C2Rc) + (C2LR) (C2) = (C2LR)
(C2Lc) and (C2Re) < (C2LR)  [(C3)] (C2) (C2LR)
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The many ways of cutting

Recall the multiple-conclusion version of (C2):
(C2) (30 C 8)(V(Z,II) € QPart(®)) ,T IF A,TT = TIFA  full cut

Now, besides (C2L) and (C2R), one might also consider:
(C2S) Fix © = S in (C2)

(C2fin) Restrict (C2) to finite ©
(C2for) Restrict (C2) by assuming © to be a singleton
(C2Lc) T,AlFAand (WA A)TIFANA = TIFA [Fix I = X and
(C2Rc) T'IFA;Aand (VA€ A)TSAFA = TIFA A =TI in (C2X)]
(C2LR) (Vr eI)T I m,Aand (Vo € )L ko, AandS, T IF AT =T |- A
Then, one can prove:
(C2) & (C28) {(C3)} (C2Lc) or (C2Rc) = (C2for)
(C2fin) < (C2for) {(C3)} (C2Lc) or (C2Rc) (C2for)
(C2Lc) ¢ (C2Rc) + (C2LR) (C2) = (C2LR)
(C2Lc) and (C2Re) < (C2LR)  [(C3)] (C2) (C2LR)

(C2for) = (C2) {(CC)}
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I', A) € QPart(S) closed
in case I' I A.
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:

© S=V,D=T,U=A, Sem = {Idy}
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:

* S=V,D=T,U=A, Sem = {ldy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:

* S=V,D=T,U=A, Sem = {ldy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:

* S=V,D=T,U=A, Sem = {ldy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some closed = = (I', A) € QPart(S).
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:
® S=V,D=T,U=A, Sem = {Idy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some closed = = (I', A) € QPart(S). Suppose
that ¥ = I1. [Show that X Iff IT.]
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:
© S=V,D=T,U=A, Sem = {Idy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some closed = = (I', A) € QPart(S). Suppose
that > 7= II. [Show that X I IT.] By the definition of Fz,
then > C " and II C A.
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:
© S=V,D=T,U=A, Sem = {Idy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some closed = = (I', A) € QPart(S). Suppose
that X F= II. [Show that X I I1.] By the definition of Fz,
then X C I'and II C A. But, as = is closed, I' [/ A.
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Lindenbaum Bundle, upgraded

Fix some logic £ = (S, IF) in what follows.
Call the quasi-partition (I'; A) € QPart(S) closed in case I' I} A,

Given a closed = = (I', A) € QPart(S), consider a logic
L= = (S,F=) defined by setting:
© S=V,D=T,U=A, Sem = {Idy}
The Lindenbaum Bundle of £ will now be the set
{L=:Z= € QPart(S) and = is closed}. Then, again:

Any fiber from the Lindenbaum Bundle is sound for a T-logic L:
Proof. Select some closed = = (I', A) € QPart(S). Suppose
that X F= II. [Show that X I IT.] By the definition of Fz,
then X C I'and II C A. But, as = is closed, I' [/ A.

By (C3), ¥ I I1. Q.E.D.
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A fundamental lemma, reconsidered

LA-Extension Lemma: [Scott 1971, Segerberg 1982]
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A fundamental lemma, reconsidered

LA-Extension Lemma: [Scott 1971, Segerberg 1982]
Any pair of sets I' and A such that I' I A of a logic £

that respects (C3) and (CC) can be extended to

sets ['cqp 2 I' and Aqp 2 A that define a

closed quasi-partition (I'cqp, Acgp) Of S.
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A fundamental lemma, reconsidered

LA-Extension Lemma: [Scott 1971, Segerberg 1982]
Any pair of sets I' and A such that I' I A of a logic £
that respects (C3) and (CC) can be extended to
sets ['cqp 2 I' and Aqp 2 A that define a
closed quasi-partition (I'cqp, Acgp) Of S.
Proof. Similar to the one before, now using (C2Lc) and (C2Rc).

Obviously, by compactness, in a multiple-conclusion environment, one means:

(CC) TIFA = (3lg € Fin(I))(3Ag € Fin(A)) T'g IF Ag
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its

Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.

Soundness is obvious.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]

Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:

Y ErII = XIFIL where Fr = () £(F=z).

[1]
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:

Y ErII = X IFII where Fr = (£ (F
Suppose X Iff 11.

)

[1]
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:

Y ErII = XIFIL where Fr = () £(F=z).
Suppose > Iff TI. By (C2), there is some quasi-partition
== (I',A) of § such that >, [" [/ A II.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:
Y ErII = XIFIL where Fr = () £(F=z).
Suppose X I TI. By (C2), there is some quasi-partition
== (I',A) of § such that >, " [/ A II.
From (C3), = must be closed: "I/ A.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:
Y ErII = XIFIL where Fr = () £(F=z).
Suppose X I TI. By (C2), there is some quasi-partition
== (I',A) of & such that >, [" |/ A II.
From (C3), = must be closed: T" I A.
By (C1), we must have > C [" and [I C A.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:
Y ErII = XIFIL where Fr = () £(F=z).
Suppose X I TI. By (C2), there is some quasi-partition
== (I',A) of § such that X, T" I A,II.
From (C3), = must be closed: T" I A.
By (C1), we must have > C " and [T C A. By definition of Fz,

we conclude that > 7= 1.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:
Y ErII = XIFIL where Fr = () £(F=z).
Suppose X I TI. By (C2), there is some quasi-partition
== (I',A) of § such that X, T" I A,II.
From (C3), = must be closed: T' I A.
By (C1), we must have > C I" and IT C A. By definition of Fz,

we conclude that > 7= II. Thus,
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:

YErII = XIFIL where Fr = () -(F=).
Suppose * I/ TI. By (C2), there is some quasi-partition
== (I',A) of § such that X, T" I A,II.
From (C3), = must be closed: T" I A.
By (C1), we must have > C I" and IT C A. By definition of Fz,
we conclude that X #= II. Thus, > 7 1. Q.E.D.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction]
Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:

Y ErII = XIFIL where Fr = () £(F=z).
Suppose X I TI. By (C2), there is some quasi-partition
== (I',A) of § such that X, T" I A,II.
From (C3), = must be closed: T" I A.
By (C1), we must have > C I" and IT C A. By definition of Fz,
we conclude that X 7= II. Thus, X F£ II. Q.E.D.

So: | Every multiple-conclusion T-logic is x-valued, for k = |S]|.
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Multiple-Conclusion T-logics are many-valued

[W-Reduction] <Tarskian, or Scottian LogiCD

Given some T-logic £, consider again the superlogic L of its
Lindenbaum Bundle F = {L= : = € QPart(S) and = is closed}.
Soundness is obvious. Now, for completeness:

Y ErII = XIFIL where Fr = () £(F=z).
Suppose X I TI. By (C2), there is some quasi-partition
== (I',A) of § such that X, T" I A,II.
From (C3), = must be closed: T" I A.
By (C1), we must have > C I" and IT C A. By definition of Fz,
we conclude that X 7= II. Thus, X F£ II. Q.E.D.

So: | Every multiple-conclusion T-logic is x-valued, for k = |S]|.
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]
Exactly like before. ..
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]
For any many-valued valuation § : § — Vs for a T-logic L,

with semantics Sem(k), consider its ‘binary print':
Let V(2) ={T, F'} and D(2) =T, and
define a bivaluation % : & — V(2) such that

bi(p) =T iff §(p) € D.
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]
For any many-valued valuation § : § — Vs for a T-logic L,
with semantics Sem(k), consider its ‘binary print':

Let V(2) ={T, F'} and D(2) =T, and
define a bivaluation b® : & — V(2) such that
b3(p) =T iff §(p) € D.
Collect such b®'s into Sem(2). Note that:
Y Fsem(2) IT it X Fsem(x) 11 Q.E.D.
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Multiple-Conclusion T-logics are 2-valued

[S-Reduction]
For any many-valued valuation § : § — Vs for a T-logic L,
with semantics Sem(k), consider its ‘binary print':

Let V(2) ={T, F'} and D(2) =T, and
define a bivaluation b® : & — V(2) such that
b3(p) =T iff §(p) € D.
Collect such b®'s into Sem(2). Note that:
Y Fsem(2) IT it X Fsem(x) 11 Q.E.D.

More importantly, as we will see:

The binary print of a multiple-conclusion logic is unique!
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Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical,
neither for many-valued tarskian interpretations
nor for 2-valued tarskian interpretations. . .
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Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical,
neither for many-valued tarskian interpretations
nor for 2-valued tarskian interpretations. . .

s it possible that Sem; # Sem, yet F; = Es,

in a multiple-conclusion environment?
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Categoricity of multiple-conclusion CRs

Recall that single-conclusion CRs are not categorical,
neither for many-valued tarskian interpretations
nor for 2-valued tarskian interpretations. . .

s it possible that Sem; # Sem, yet F; = Es,

in a multiple-conclusion environment?

The answer is NO if we are talking about

bivaluation semantics!!
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I

Multiple-Conclusion Logics — p.21/22



Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I

Proof. Suppose b € BSem; but b ¢ BSems,.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I

Proof. Suppose b € BSem; but b ¢ BSems,.
Llet X ={o:b(c) =T} and Il = {7 :b(w) = F}.
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I
Proof. Suppose b € BSem; but b ¢ BSems,.
Let > ={o:b(o) =T} and Il = {7 :b(mr) = F}.
Then, ¥ &7 11,
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I
Proof. Suppose b € BSem; but b ¢ BSems,.
Llet X ={o:b(c) =T} and Il = {7 :b(w) = F}.
Then, > " 11, thus X 7" 11
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I
Proof. Suppose b € BSem; but b ¢ BSems,.
Llet X ={o:b(c) =T} and Il = {7 :b(w) = F}.
Then, S & 11, thus ¥ &7 1.
But, from the Uniqueness Lemma, > F5' 11
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Categoricity of multiple-conclusion CRs

Lemma [Uniqueness of 2-valued counter-examples]

Let b and ¢ be two bivaluations on S.
Let (3, IT) be a quasi-partition of S.
Then, X Fy Il and X Z. 1l = b=c.

Theorem [Categoricity]

Let BSem; and BSem, be two bivaluation semantics over S.
Then, BSem; # BSem, = FET" # I
Proof. Suppose b € BSem; but b ¢ BSems,.
Llet X ={o:b(c) =T} and Il = {7 :b(w) = F}.
Then, S & 11, thus 3 &7 11.
But, from the Uniqueness Lemma, > F5' I1. Q.E.D.

What is that supposed to mean, in practice??

Multiple-Conclusion Logics — p.21/22



Categoricity of multiple-conclusion CRs

Fix some S in what follows.
Let 75 be the collection of all tarskian bivaluation semantics
over S.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let 7B be the collection of all tarskian bivaluation semantics over S.

Given a quasi-partition © = (I', A), say that
a bivaluation b: & — {T, F'} respects ©
if o(I') € {T'} or b(A) Z {F'}.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let 758 be the collection of all tarskian bivaluation semantics over S.
Say that b respects © = (I', A) if b(I') € {T'} or b(A) € {F'}.

Given a collection of quasi-partitions P, let Biv(P) be
the set of all bivaluations that respect some © € P.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let 758 be the collection of all tarskian bivaluation semantics over S.
Say that b respects © = (I', A) if b(I') € {T'} or b(A) € {F'}.
Biv(P) is the set of all bivaluations that respect some © € P.

Call CQPart(S) the set of all closed quasi-partitions of S.
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Categoricity of multiple-conclusion CRs

Fix some S.

Let 758 be the collection of all tarskian bivaluation semantics over S.
Say that b respects © = (I', A) if b(I') € {T'} or b(A) € {F'}.
Biv(P) is the set of all bivaluations that respect some © € P.

Call CQPart(S, L) the set of all closed quasi-partitions of S in L.

Then, for a multiple-conclusion logic L:

Biv(P) is adequate for £ iff P = CQPart(S, L)
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Categoricity of multiple-conclusion CRs

Fix some S.

Let 75 be the collection of all tarskian bivaluation semantics over S.
Say that b respects © = (I', A) if b(I') € {T'} or b(A) € {F'}.
Biv(P) is the set of all bivaluations that respect some © € P.

Call CQPart(S, L) the set of all closed quasi-partitions of S in L.

Then, for a multiple-conclusion logic L:

Biv(P) is adequate for £ iff P = CQPart(S, L)

In this sense, categoricity is the ‘dual’ to adequacy!
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 75 be the collection of all tarskian bivaluation semantics

over S.
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Given some Biv € 758,

let I-g;, denote the abstract CR corresponding to Fg;,.
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Given some Biv € 758,
let I-g;, denote the abstract CR corresponding to Fg;,.

Given some IF € T4,
let Biv. be the collection of all bivaluations
that respect every (I', A), where T" IF A.
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Consider the mappings BA : 7% - T4 and AB: 7A - 758
such that:
Biv % H_Biv

Is ‘|A_]>3 BiV||_
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv 75 Irg, - 22 Biv,
Observe that: [Dunn & Hardegree 2001]

(BA, AB) is a Galois connection
between the posets (74, D) and (75, C), that is:
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv 75 kg, - 22 Biv,
Observe that: [Dunn & Hardegree 2001]

(BA, AB) is a Galois connection
between the posets (74, D) and (75, C), that is:

1. (a) BA(AB(IF)) D I for every IF € TA
(b) BivC AB(BA(Biv)) for every Biv € T8
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv 75 kg, - 22 Biv,
Observe that: [Dunn & Hardegree 2001]

(BA, AB) is a Galois connection
between the posets (74, D) and (75, C), that is:

1. (a) BA(AB(IF)) D I for every IF € TA
(b) BivC AB(BA(Biv)) for every Biv € T8
2. both BA and AB are monotonic
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Having the right connections

Fix some & in what follows.
Let 74 be the collection of all abstract T-logics over S,

and 78 be the collection of all tarskian bivaluation semantics over S.

Consider: Biv 2% IFBiy [ERS Biv-

Observe that: [Dunn & Hardegree 2001]
(BA, AB) is a Galois connection
between the posets (74, D) and (75, C), that is:

1. (a) BA(AB(IF)) D I for every IF € TA
(b) BivC AB(BA(Biv)) for every Biv € T8
2. both BA and AB are monotonic

Question: When can the converses of 1(a) and 1(b) be proven?
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Having the right connections

Fix some & in what follows.
Let 74 be the collection of all abstract T-logics over S,

and 78 be the collection of all tarskian bivaluation semantics over S.
BA AB

Consider: Biv — IFgiy I = Biv-
(BA, AB) is a Galois connection between the posets (74, D) and (753, C), i.e.:
1. (a) BA(AB(IF)DIF for every I € T4
(b) BivC AB(BA(Biv)) for every Biv € T8

2. both BA and AB are monotonic

As a matter of fact:
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Having the right connections

Fix some & in what follows.
Let 74 be the collection of all abstract T-logics over S,

and 78 be the collection of all tarskian bivaluation semantics over S.
BA AB

Consider: Biv — IFgiy I = Biv-
(BA, AB) is a Galois connection between the posets (74, D) and (753, C), i.e.:
1. (a) BA(AB(IF)DIF for every I € T4
(b) BivC AB(BA(Biv)) for every Biv € T8

2. both BA and AB are monotonic

As a matter of fact:

* The converse to 1(a) amounts to completeness, and can
be attained in either single- or multiple-conclusion

T-logics.
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Having the right connections

Fix some S in what follows.
Let 74 be the collection of all abstract T-logics over S,
and 7B be the collection of all tarskian bivaluation semantics over S.

Consider: Biv 75 kg, - 22 Biv,
(BA, AB) is a Galois connection between the posets (74, D) and (753, C), i.e.:
1. (a) BA(AB(IF)DIF for every I € T4
(b) BivC AB(BA(Biv)) for every Biv € T8

2. both BA and AB are monotonic

As a matter of fact:

* The converse to 1(a) amounts to completeness, and can
be attained in either single- or multiple-conclusion

T-logics.

* The converse to 1(b) amounts to categoricity,
and can only be attained in multiple-conclusion T-logics.
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Having the right connections

As a matter of fact:

* The converse to 1(a) amounts to completeness, and can
be attained in either single- or multiple-conclusion

T-logics.

* The converse to 1(b) amounts to categoricity,
and can only be attained in multiple-conclusion T-logics.

So, here is a further good reason to go multiple-conclusion:

|To reconciliate most logics with their intended models!! '
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