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More specific kinds of consequence

Recall, again, the axioms of T-logics:
(C1) Γ, β  β, ∆ overlap

(C2) (∃Θ ⊆ S)(∀〈Σ, Π〉 ∈ QPart(Θ)) Σ, Γ  ∆, Π ⇒ Γ  ∆ full cut

(C3) Γ  ∆ ⇒ Σ, Γ  ∆, Π dilution
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An adequate semantics is given by tarskian interpretations:
• a many-valued semantics Sem = {§k : S → V§k
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• truth-values D§ ∪ U§ = V§ such that D§ ∩ U§ = ∅

• associated entailment relations �§ and �Sem
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An adequate semantics is given by tarskian interpretations:
• a many-valued semantics Sem = {§k : S → V§k

}k∈K

• truth-values D§ ∪ U§ = V§ such that D§ ∩ U§ = ∅

• associated entailment relations �§ and �Sem

As we have seen, another usual axiom of abstract logics is:
(CLS) Γ  ∆ ⇒ Γε  ∆ε, for any endomorphism ε : S → S, where S is

the free algebra generated by At over ∪Cnt =
⋃

n∈N
Cntn

substitutionality
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• truth-values D§ ∪ U§ = V§ such that D§ ∩ U§ = ∅

• associated entailment relations �§ and �Sem

As we have seen, another usual axiom of abstract logics is:
(CLS) Γ  ∆ ⇒ Γε  ∆ε, for any endomorphism ε : S → S, where S is

the free algebra generated by At over ∪Cnt =
⋃

n∈N
Cntn

substitutionality

But this last axiom corresponds to:
• representativeness: Sem[ϕ] ⊇ Sem[ϕε],

where Sem[α] = {§(α) : § ∈ Sem}, and S is a free algebra etc
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More specific kinds of consequence

Now, what about truth-functional logics?
• a many-valued semantics Sem = {§k : S → V§k

}k∈K

• truth-values D§ ∪ U§ = V§ such that D§ ∩ U§ = ∅

• associated entailment relations �§ and �Sem
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• a many-valued semantics Sem = {§k : S → V§k

}k∈K

• truth-values D§ ∪ U§ = V§ such that D§ ∩ U§ = ∅

• associated entailment relations �§ and �Sem

• representativeness: Sem[ϕ] ⊇ Sem[ϕε], S a free algebra etc

• fixed sets V , D and U , for every § ∈ Sem

• a laplacian set of valuations: Sem[p] = V , for p ∈ At

• a set of operators: Op = {Opn}n∈N of same similarity type as Cnt

Finally, generate on V a (∪Cnt)-algebra homomorphic to S,
setting:
• ⊚ : Vm → V , and
• §(⊚(ϕ1, . . . , ϕm)) = ⊚(§(ϕ1), . . . , §(ϕm)), for each ⊚ ∈ Opm

We will call any such semantics a matrix semantics (over V).

How can such logics be characterized abstractly?
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Logics with matrix semantics

Let Asg be the set of all (assignment) mappings a : At → V .
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Let Asg be the set of all (assignment) mappings a : At → V .

Then, if L has a matrix semantics, Sem is the set of all

homomorphic extensions of assignments into valuations.
(In particular, Sem|At = Asg.)

Say that L is genuinely n-valued in case

n = Min(|V| : L has an adequate matrix semantics over V).
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Let Asg be the set of all (assignment) mappings a : At → V .

Then, if L has a matrix semantics, Sem is the set of all

homomorphic extensions of assignments into valuations.
(In particular, Sem|At = Asg.)

Say that L is genuinely n-valued in case

n = Min(|V| : L has an adequate matrix semantics over V).

Examples:

• Classical Logic is genuinely 2-valued

• each of  Lukasiewicz’s  Ln, for n ∈ N, is genuinely n-valued

•  Lukasiewicz’s  Lℵ0 is genuinely 2ℵ0 -valued [Shoesmith & Smiley 1971]
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Logics with matrix semantics

Let Asg be the set of all (assignment) mappings a : At → V .

Then, if L has a matrix semantics, Sem is the set of all

homomorphic extensions of assignments into valuations.
(In particular, Sem|At = Asg.)

Say that L is genuinely n-valued in case

n = Min(|V| : L has an adequate matrix semantics over V).

Examples:

• Classical Logic is genuinely 2-valued

• each of  Lukasiewicz’s  Ln, for n ∈ N, is genuinely n-valued

•  Lukasiewicz’s  Lℵ0 is genuinely 2ℵ0 -valued [Shoesmith & Smiley 1971]

• Intuitionistic Logic is not genuinely finitely-valued [Gödel 1932]

• most usual Normal Modal Logics are not genuinely finitely-valued
[Dugundji 1940]
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Logics with matrix semantics

Let Asg be the set of all (assignment) mappings a : At → V .

Then, if L has a matrix semantics, Sem is the set of all

homomorphic extensions of assignments into valuations.
(In particular, Sem|At = Asg.)

Say that L is genuinely n-valued in case

n = Min(|V| : L has an adequate matrix semantics over V).

Theorem: [Shoesmith & Smiley 1971]

Every logic L = 〈S,〉 with |S| = ℵ0

and an adequate matrix semantics

has an adequate matrix semantics such that |V| = 2ℵ0 .
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Logics with matrix semantics

Let Asg be the set of all (assignment) mappings a : At → V .

Then, if L has a matrix semantics, Sem is the set of all

homomorphic extensions of assignments into valuations.
(In particular, Sem|At = Asg.)

Say that L is genuinely n-valued in case

n = Min(|V| : L has an adequate matrix semantics over V).

Theorem: [Shoesmith & Smiley 1971]

Every logic L = 〈S,〉 with |S| = ℵ0

and an adequate matrix semantics

has an adequate matrix semantics such that |V| = 2ℵ0 .

But then again, which logics have adequate matrix semantics?
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Logics with matrix semantics

Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.
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Logics with matrix semantics

Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

Recall that a theory Λ of L is called L-trivializing

in case (∀Υ ⊆ S) Λ  Υ.
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Logics with matrix semantics

Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

A theory Λ of L is L-trivializing in case (∀Υ ⊆ S) Λ  Υ.

Consider now the following axiom:

(C4) [Γk]k∈K  [∆k]k∈K ⇒ Γk  ∆k, for any k ∈ K,

whenever {Γk,∆k}k∈K is a disconnected family of theories
cancellation
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Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

A theory Λ of L is L-trivializing in case (∀Υ ⊆ S) Λ  Υ.

Consider now the following axiom:

(C4) [Γk]k∈K  [∆k]k∈K ⇒ Γk  ∆k, for any k ∈ K,

whenever {Γk,∆k}k∈K is a disconnected family of theories
cancellation

Or, in a single-conclusion version:

(C4s) [Γk]k∈K ,Γ  β ⇒ Γ  β, s-cancellation

whenever Γ ∪ {β}, [Γk]k∈K are pairwise disconnected,
and no Γk is L-trivializing
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Logics with matrix semantics

Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

A theory Λ of L is L-trivializing in case (∀Υ ⊆ S) Λ  Υ.

(C4) [Γk]k∈K  [∆k]k∈K ⇒ Γk  ∆k, for any k ∈ K,

whenever {Γk,∆k}k∈K is a disconnected family of theories
cancellation

(C4s) [Γk]k∈K ,Γ  β ⇒ Γ  β, s-cancellation

whenever Γ ∪ {β}, [Γk]k∈K are pairwise disconnected,
and no Γk is L-trivializing

Examples:

• Positive Classical Logic respects cancellation
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Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

A theory Λ of L is L-trivializing in case (∀Υ ⊆ S) Λ  Υ.

(C4) [Γk]k∈K  [∆k]k∈K ⇒ Γk  ∆k, for any k ∈ K,

whenever {Γk,∆k}k∈K is a disconnected family of theories
cancellation

(C4s) [Γk]k∈K ,Γ  β ⇒ Γ  β, s-cancellation

whenever Γ ∪ {β}, [Γk]k∈K are pairwise disconnected,
and no Γk is L-trivializing

Examples:

• Positive Classical Logic respects cancellation
• Intuitionistic Logic respects cancellation
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Examples:

• Positive Classical Logic respects cancellation
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• All usual Normal Modal Logics respect cancellation
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Logics with matrix semantics

Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

A theory Λ of L is L-trivializing in case (∀Υ ⊆ S) Λ  Υ.

(C4) [Γk]k∈K  [∆k]k∈K ⇒ Γk  ∆k, for any k ∈ K,

whenever {Γk,∆k}k∈K is a disconnected family of theories
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(C4s) [Γk]k∈K ,Γ  β ⇒ Γ  β, s-cancellation

whenever Γ ∪ {β}, [Γk]k∈K are pairwise disconnected,
and no Γk is L-trivializing

Examples:

• Positive Classical Logic respects cancellation
• Intuitionistic Logic respects cancellation
• All usual Normal Modal Logics respect cancellation
• Johánsson’s Minimalkalkül does not respect cancellation

Multiple-Conclusion Logics – p.3/14



Logics with matrix semantics

Say that sets Γ and ∆ are disconnected if At[Γ] ∩ At[∆] = ∅.

(C4) [Γk]k∈K  [∆k]k∈K ⇒ Γk  ∆k, for any k ∈ K, cancellation

whenever {Γk, ∆k}k∈K is a disconnected family of theories

Examples:

• Positive Classical Logic respects cancellation
• Intuitionistic Logic respects cancellation
• All usual Normal Modal Logics respect cancellation
• Johánsson’s Minimalkalkül does not respect cancellation

Theorem: Suppose |At| = |S|. Then: [Shoesmith & Smiley 1971]

A single-conclusion logic L has an adequate matrix semantics

iff

L is a substitutional T-logic that respects cancellation [(C4)].

[check also Wójcicki 1969–1970]
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Theorem: Suppose |At| = |S|. Then: [Shoesmith & Smiley 1971]

A single-conclusion logic L has an adequate matrix semantics

iff

L is a substitutional T-logic that respects cancellation [(C4)].

Other results, and questions that remain (as far as I know!!):
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A single-conclusion logic L has an adequate matrix semantics

iff

L is a substitutional T-logic that respects cancellation [(C4)].

Other results, and questions that remain (as far as I know!!):

• The above theorem is also valid for compact

multiple-conclusion logics [Shoesmith & Smiley 1978]
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Logics with matrix semantics

Theorem: Suppose |At| = |S|. Then: [Shoesmith & Smiley 1971]

A single-conclusion logic L has an adequate matrix semantics

iff

L is a substitutional T-logic that respects cancellation [(C4)].

Other results, and questions that remain (as far as I know!!):

• The above theorem is also valid for compact

multiple-conclusion logics [Shoesmith & Smiley 1978]

• Which property would play the role of cancellation, in

general, for multiple-conclusion logics?
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Logics with matrix semantics

Theorem: Suppose |At| = |S|. Then: [Shoesmith & Smiley 1971]

A single-conclusion logic L has an adequate matrix semantics

iff

L is a substitutional T-logic that respects cancellation [(C4)].

Other results, and questions that remain (as far as I know!!):

• The above theorem is also valid for compact

multiple-conclusion logics [Shoesmith & Smiley 1978]

• Which property would play the role of cancellation, in

general, for multiple-conclusion logics?

• How can genuinely finite-valued logics be abstractly

characterized? (they are all compact and decidable, but  Lℵ0
also is. . . )
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Generalizing truth-functionality

Recall that logics with matrix semantics are based on fixed sets
V , D, U , and a family of mappings Sem = {§k : S → V} s.t.:
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Generalizing truth-functionality

Recall that logics with matrix semantics are based on fixed sets

V , D, U , and a family of mappings Sem = {§k : S → V} s.t.:

(a) V = D ∪ U , D ∩ U = ∅

(b) �§ and �Sem defined as usual
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V , D, U , and a family of mappings Sem = {§k : S → V} s.t.:

(a) V = D ∪ U , D ∩ U = ∅

(b) �§ and �Sem defined as usual

(c) Sem[ϕ] ⊇ Sem[ϕε], where ε is an endomorphism on S

(d) Sem[p] = V , for p ∈ At

(e) Op = {Opn}n∈N has the same similarity type as Cnt

(f) ⊚ : Vm → V , for each ⊚ ∈ Opm

(g) §(⊚(ϕ1, . . . , ϕm)) = ⊚(§(ϕ1), . . . , §(ϕm)),

for each ⊚ ∈ Opm
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Generalizing truth-functionality

Recall that logics with matrix semantics are based on fixed sets
V , D, U , and a family of mappings Sem = {§k : S → V} s.t.:

(a) V = D ∪ U , D ∩ U = ∅

(b) �§ and �Sem defined as usual

(c) Sem[ϕ] ⊇ Sem[ϕε], where ε is an endomorphism on S

(d) Sem[p] = V , for p ∈ At

(e) Op = {Opn}n∈N has the same similarity type as Cnt

(f) ⊚ : Vm → V , for each ⊚ ∈ Opm

(g) §(⊚(ϕ1, . . . , ϕm)) = ⊚(§(ϕ1), . . . , §(ϕm)), for each ⊚ ∈ Opm

A non-deterministic matrix semantics (Nmatrix) is based on
clauses (a)–(e), plus, for each ⊚ ∈ Opm: [Avron & Lev 2005]

Multiple-Conclusion Logics – p.4/14



Generalizing truth-functionality

Recall that logics with matrix semantics are based on fixed sets
V , D, U , and a family of mappings Sem = {§k : S → V} s.t.:

(a) V = D ∪ U , D ∩ U = ∅

(b) �§ and �Sem defined as usual

(c) Sem[ϕ] ⊇ Sem[ϕε], where ε is an endomorphism on S

(d) Sem[p] = V , for p ∈ At

(e) Op = {Opn}n∈N has the same similarity type as Cnt

(f) ⊚ : Vm → V , for each ⊚ ∈ Opm

(g) §(⊚(ϕ1, . . . , ϕm)) = ⊚(§(ϕ1), . . . , §(ϕm)), for each ⊚ ∈ Opm

A non-deterministic matrix semantics (Nmatrix) is based on
clauses (a)–(e), plus, for each ⊚ ∈ Opm: [Avron & Lev 2005]

N(f) ⊚ : Vm → 2V \ {∅}
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Generalizing truth-functionality
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clauses (a)–(e), plus, for each ⊚ ∈ Opm: [Avron & Lev 2005]

N(f) ⊚ : Vm → 2V \ {∅}

N(g) §(⊚(ϕ1, . . . , ϕm)) ∈ ⊚(§(ϕ1), . . . , §(ϕm))

Some facts and open questions:

• Many genuinely infinite-valued logics have adequate

finite-valued Nmatrices

• Is there a procedure for obtaining an equivalent matrix for

any given Nmatrix?

• Just like genuinely finite-valued logics, all logics with

adequate finite-valued Nmatrices are compact and

decidable. How can they be abstractly characterized,

either in single- or in multiple-conclusion fashion?
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Some alternative kinds of consequence

The T-axioms:
(C1) Γ, β  β, ∆ overlap

(C2) (∃Θ ⊆ S)(∀〈Σ, Π〉 ∈ QPart(Θ)) Σ, Γ  ∆, Π ⇒ Γ  ∆ full cut

(C3) Γ  ∆ ⇒ Σ, Γ  ∆, Π dilution
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Illustration: Inferential Many-Valuedness

SC-axioms:

(C2c) Γ, α  β and Γ  α ⇒ Γ  β cautious cut

(C3) Γ  β ⇒ Σ,Γ  β dilution
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rejected values R ⊆ U (inspired on  Lukasiewicz’s refutation)
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• besides D and V , there is also a set of rejected values R ⊆ U

• the associated single-conclusion CR is provided by quasi-entailment:

Γ �Sem ϕ iff §(Γ) ⊆ (V \ R) implies §(ϕ) ∈ D

An interesting consequence: (against ‘Suszko’s Thesis’)

The canonical way of producing an ‘S-Reduction’
would now result in a 3-valued semantics:

D 7→ T R 7→ F U \ R 7→ I

where I is some sort of ‘intermediary logical value’.
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Observe that (i)–(iv) consist in
:::::::::

compact
:::::::::::::::

substitutional
::::::::::

T-logics.

Note also that (iii) is the only one that

does not have a
:::::::

matrix
:::::::::::

semantics.
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Examples? Recall the indecent logics:

(i) (ii) (iii) (iv)
dadaistic nihilistic semitrivial trivial

(∀βΓ∆) (∀αΓ∆) (∀αβΓ∆) (∀Γ∆)

Γ i β,∆ Γ, α ii ∆ Γ, α iii β,∆ Γ iv ∆

How to avoid these, and restore minimal decency ? Through:

(PNO) ¬(C0.1.1) Principle of Non-Overcompleteness
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Case study: NEGATION: Pure local rules

Here is a typical subclassical rule of negation:
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(Γ, α,∼α  β,∆)

//////And///////here///is////its/////////dual:
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Case study: NEGATION: Pure local rules

Here is a typical subclassical rule of negation:

ex contradictione
sequitur quodlibet

(Γ, α,∼α  β,∆)

//////And///////here///is////its/////////dual:

pseudo-scotus (Γ, α,∼α  ∆)

Notice that ex contradictione and pseudo-scotus

are distinct rules!
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Case study: NEGATION: Pure local rules

Here is a typical subclassical rule of negation:

ex contradictione
sequitur quodlibet

(Γ, α,∼α  β,∆)

And here is its dual:

quodlibet sequitur(Γ, α  ∼β, β,∆)
ad casos
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Case study: NEGATION: Pure local rules

Here is a typical subclassical rule of negation:

(Γ, β  ∼β,∆) / (Γ  ∼β, ∆) consequentia
mirabilis

//////And///////here///is////its/////////dual:

quodlibet sequitur(Γ, α  ∼β, β,∆)
ad casos
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Case study: NEGATION: Pure local rules
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(Γ, β  ∼β,∆) / (Γ  ∼β, ∆) consequentia
mirabilis

And here is its dual:

causa
mirabilis

(Γ,∼α  α,∆) / (Γ, ∼α  ∆)
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Case study: NEGATION: Pure local rules

Here is a typical subclassical rule of negation:

(Γ, β  α,∆ and left

Γ′, ∼β  α, ∆′) / redundancy, or

(Γ′,Γ  α,∆, ∆′) proof by cases

//////And///////here///is////its/////////dual:

causa
mirabilis

(Γ,∼α  α,∆) / (Γ, ∼α  ∆)
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Case study: NEGATION: Pure local rules

Here is a typical subclassical rule of negation:

(Γ, β  α,∆ and left

Γ′, ∼β  α, ∆′) / redundancy, or

(Γ′,Γ  α,∆, ∆′) proof by cases

And here is its dual:

right (Γ, β  α,∆ and

redundancy Γ′, β  ∼α, ∆′) /

(Γ′,Γ, β  ∆,∆′)
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:::::::::

classical
:::::::::::
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Case study: NEGATION: Pure local rules

Here are the pure rules making up a
:::::::::

classical
:::::::::::

negation:

CRR : ‘Consistency-Related Rules’

dextro-levo (Γ  α,∆) / (Γ,∼α  ∆)

symmetry (Γ  ∼α,∆) / (Γ, α  ∆)
(“α and ∼α are not both true”)
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Here are the pure rules making up a
:::::::::

classical
:::::::::::

negation:

CRR : ‘Consistency-Related Rules’

dextro-levo (Γ  α,∆) / (Γ,∼α  ∆)

symmetry (Γ  ∼α,∆) / (Γ, α  ∆)
(“α and ∼α are not both true”)

‘Determinedness-Related Rules’ : DRR

(Γ, β  ∆) / (Γ  ∼β,∆) levo-dextro

(Γ,∼β  ∆) / (Γ  β,∆) symmetry
(“α and ∼α are not both false”)
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CRR : ‘Consistency-Related Rules’
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symmetry (Γ  ∼α,∆) / (Γ, α  ∆)

‘Determinedness-Related Rules’ : DRR
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(Γ,∼β  ∆) / (Γ  β,∆) symmetry

Interlude on Paranormality:
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Case study: NEGATION: Pure local rules

Here are the pure rules making up a
:::::::::

classical
:::::::::::

negation:

CRR : ‘Consistency-Related Rules’

dextro-levo (Γ  α,∆) / (Γ,∼α  ∆)

symmetry (Γ  ∼α,∆) / (Γ, α  ∆)

‘Determinedness-Related Rules’ : DRR

(Γ, β  ∆) / (Γ  ∼β,∆) levo-dextro

(Γ,∼β  ∆) / (Γ  β,∆) symmetry

Interlude on Paranormality:

Some CRR must be failed by paraconsistent logics.

Some DRR must be failed by paracomplete logics.
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Case study: NEGATION: Pure local rules

Some more general rules are:
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Case study: NEGATION: Pure local rules

Some more general rules are:

reductio ad absurdum

(Γ, β  α,∆ and Γ′, β  ∼α,∆′) / (Γ′,Γ  ∼β, ∆,∆′)

(Γ,∼β  α, ∆ and Γ′,∼β  ∼α,∆′) / (Γ′,Γ  β,∆,∆′)
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Case study: NEGATION: Pure local rules

Some more general rules are:

reductio ad absurdum

(Γ, β  α,∆ and Γ′, β  ∼α,∆′) / (Γ′,Γ  ∼β, ∆,∆′)

(Γ,∼β  α, ∆ and Γ′,∼β  ∼α,∆′) / (Γ′,Γ  β,∆,∆′)

And its so far unsuspected dual:

reductio ex evidentia

(Γ, β  α,∆ and Γ′,∼β  α,∆′) / (Γ′,Γ,∼α  ∆,∆′)

(Γ, β  ∼α, ∆ and Γ′,∼β  ∼α,∆′) / (Γ′,Γ, α  ∆,∆′)
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Case study: NEGATION: Pure local rules

Some more general rules are:

reductio ad absurdum

(Γ, β  α,∆ and Γ′, β  ∼α,∆′) / (Γ′,Γ  ∼β, ∆,∆′)

(Γ,∼β  α, ∆ and Γ′,∼β  ∼α,∆′) / (Γ′,Γ  β,∆,∆′)

And its so far unsuspected dual:

reductio ex evidentia

(Γ, β  α,∆ and Γ′,∼β  α,∆′) / (Γ′,Γ,∼α  ∆,∆′)

(Γ, β  ∼α, ∆ and Γ′,∼β  ∼α,∆′) / (Γ′,Γ, α  ∆,∆′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Some have claimed that reductio (ad absurdum) rules

are enough so as to characterize classical negation. . .
[See, e.g., Béziau 1994]
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are enough so as to characterize classical negation. . .

. . . but this is only true in a single-conclusion framework!!
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. . . but this is only true in a single-conclusion framework!!

Indeed, in multiple-conclusion:

ad absurdum 6⇔ ex evidentia
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Case study: NEGATION: Pure local rules

Some have claimed that reductio (ad absurdum) rules

are enough so as to characterize classical negation. . .

. . . but this is only true in a single-conclusion framework!!

Indeed, in multiple-conclusion:

ad absurdum 6⇔ ex evidentia

In particular:

reductio ad absurdum ⇒ casus judicans ( ∼β, β)

ex contradictione (α,∼α  β)
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Case study: NEGATION: Pure local rules

Some have claimed that reductio (ad absurdum) rules

are enough so as to characterize classical negation. . .

. . . but this is only true in a single-conclusion framework!!

Indeed, in multiple-conclusion:

ad absurdum 6⇔ ex evidentia

In particular:

reductio ad absurdum ⇒ casus judicans ( ∼β, β)

ex contradictione (α,∼α  β)

reductio ad absurdum 6⇒ pseudo-scotus (α,∼α )

Multiple-Conclusion Logics – p.8/14



But WHAT is negation, after all?

There are several other usual rules for negation, such as:
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But WHAT is negation, after all?

There are several other usual rules for negation, such as:

Double negation introduction

(Γ, γ  ∼∼γ,∆)

Double negation elimination

(Γ,∼∼γ  γ,∆)
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But WHAT is negation, after all?

There are several other usual rules for negation, such as:

Double negation manipulation

(Γ, γ  δ,∆) / (Γ,∼∼γ  ∼∼δ,∆)

(Γ,∼∼γ  δ,∆) / (Γ, γ  ∼∼δ,∆)

(Γ, γ  ∼∼δ,∆) / (Γ,∼∼γ  δ,∆)

(Γ,∼∼γ  ∼∼δ,∆) / (Γ, γ  δ,∆)
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But WHAT is negation, after all?

There are several other usual rules for negation, such as:

(Contextual) Contraposition

(Γ, γ  δ,∆) / (Γ,∼δ  ∼γ,∆)

(Γ,∼γ  δ,∆) / (Γ,∼δ  γ,∆)

(Γ, γ  ∼δ,∆) / (Γ, δ  ∼γ,∆)

(Γ,∼γ  ∼δ,∆) / (Γ, δ  γ,∆)
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But WHAT is negation, after all?

There are several other usual rules for negation, such as:

Contextual Replacement (for negation)

(Γ, γ ⊣|⊢ δ,∆) / (Γ,∼γ ⊣|⊢ ∼δ,∆)

(Γ,∼γ ⊣|⊢ δ,∆) / (Γ, γ ⊣|⊢ ∼δ,∆)

(Γ, γ ⊣|⊢ ∼δ,∆) / (Γ,∼γ ⊣|⊢ δ,∆)

(Γ,∼γ ⊣|⊢ ∼δ,∆) / (Γ, γ ⊣|⊢ δ,∆)
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But WHAT is negation, after all?

However, any of the previously presented rules for negation

can fail, for some sufficiently exotic ‘negation’.. . .
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However, any of the previously presented rules for negation

can fail, for some sufficiently exotic ‘negation’.. . .

So: What gives an operator the right to be called negation?
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But WHAT is negation, after all?

However, any of the previously presented rules for negation

can fail, for some sufficiently exotic ‘negation’.. . .

So: What gives an operator the right to be called negation?

Is there a set of
::::::::::::

indisputable
::::::

rules for negation??

Multiple-Conclusion Logics – p.9/14



A semantic intuition

A ‘binary print’ of negation: [Béziau 1996]
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A ‘binary print’ of negation: [Béziau 1996]

⊚3

2

T T

T F

F F

⊚2

2

T T

F T

F F

⊚1

2

T T

F F

kinds of
affirmation
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A proposal

Let ∼0ϕ
def
== ϕ, and ∼n+1ϕ

def
== ∼n∼ϕ.
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def
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On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.
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A proposal

Let ∼0ϕ
def
== ϕ, and ∼n+1ϕ

def
== ∼n∼ϕ.

On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

Some particular consequences:
• (m-nonbot) (Γ,∼m+1ϕ 6 ∆)

• (m-nontop) (Γ 6 ∼m+1ϕ, ∆)

• (m-paradoxical inequivalence) (Γ,∼mϕ ⊣|⊢/ ∼m+1ϕ, ∆)
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A proposal

On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

Let ¬ be classical negation, and
let � and ♦ come from Normal Modal Logics.
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Here are a few more consequences, involving paranormality:
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(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

Let ¬ be classical negation, and
let � and ♦ come from Normal Modal Logics.

Here are a few more consequences, involving paranormality:

The operator aϕ
def
== �¬ϕ defines a decent (paracomplete) negation.
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A proposal

On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

Let ¬ be classical negation, and
let � and ♦ come from Normal Modal Logics.

Here are a few more consequences, involving paranormality:

The operator aϕ
def
== �¬ϕ defines a decent (paracomplete) negation.

The operator `ϕ
def
== ♦¬ϕ defines a decent (paraconsistent) negation.

Multiple-Conclusion Logics – p.11/14



A proposal

On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

But the above negative rules might not be enough. . .
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Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

But the above negative rules might not be enough. . .

Consider indeed some annoying (global) rules such as:

(∀Γ∀∆)(Γ  ϕ,∆) ⇒ (∀Γ∀∆)(Γ  ∼ϕ,∆) nec
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A proposal

On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

But the above negative rules might not be enough. . .

Consider indeed some annoying (global) rules such as:

(∀Γ∀∆)(Γ  ϕ,∆) ⇒ (∀Γ∀∆)(Γ  ∼ϕ,∆) nec

pos (∀Γ∀∆)(Γ, ϕ  ∆) ⇒ (∀Γ∀∆)(Γ,∼ϕ  ∆))
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A proposal

On what negation is not: [Marcos 2005]

(N1.m) (Γ,∼m+1ϕ 6 ∼mϕ,∆) m-verificatio

m-falsificatio (Γ,∼mϕ 6 ∼m+1ϕ,∆) (N2.m)

Then: A decent negation should respect

(N1.m) and (N2.m), for every m.

But the above negative rules might not be enough. . .

Consider indeed some annoying (global) rules such as:

(∀Γ∀∆)(Γ  ϕ,∆) ⇒ (∀Γ∀∆)(Γ  ∼ϕ,∆) nec

pos (∀Γ∀∆)(Γ, ϕ  ∆) ⇒ (∀Γ∀∆)(Γ,∼ϕ  ∆))

These should also be avoided!!
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Ineffable Inconsistencies, revisited

“Every logic has an inconsistent counterpart that
coincides with it from the point of view of single-conclusion.”

Given any consistent tarskian logic L, one can

always find an inconsistent logic IL such that:

Γ �m
IL β,∆ iff Γ �m

L β,∆

yet: S 6�m
IL .
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Ineffable Inconsistencies, revisited

“Every logic has an inconsistent counterpart that
coincides with it from the point of view of single-conclusion.”

Given any consistent tarskian logic L, one can

always find an inconsistent logic IL such that:

Γ �m
IL β,∆ iff Γ �m

L β,∆

yet: S 6�m
IL .

The trick: Adding to SemL a dadaistic valuation. . .

Now, what about ∼-inconsistency??
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Ineffable Inconsistencies, revisited

Given any consistent tarskian logic L, one can

always find an inconsistent logic IL such that:

Γ �m
IL β,∆ iff Γ �m

L β,∆

yet: S 6�m
IL .

Here are some descriptions of paraconsistency

sometimes to be found in the literature:
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Logique et Analyse (N.S.), 37(146):95–117, 1994.

Arnon Avron and Iddo Lev. Non-deterministic multiple-valued

structures. Journal of Logic and Computation, 2005. In print.

Multiple-Conclusion Logics – p.13/14



A general bibliography

ON NATURAL DEDUCTION

Anthony M. Ungar. Normalization, Cut-Elimination and the Theory

of Proofs, volume 28 of CSLI Lecture Notes. CSLI, Stanford / CA, 1992.

Michel Parigot. λ-µ-calculus: An algorithmic interpretation of classical

natural deduction. In Logic Programming and Automated Reasoning,

volume 624 of Lecture Notes in Computer Science, pages 190–201.

Springer-Verlag, Berlin, 1992.

Multiple-Conclusion Logics – p.13/14



A general bibliography

ON NEGATION

D. M. Gabbay and H. Wansing, editors. What is Negation?, volume 13

of Applied Logic Series. Kluwer, Dordrecht, 1999.
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Sociedade Paranaense de Matemática (2), 15(1/2):37–43, 1996.

Multiple-Conclusion Logics – p.13/14



A personal bibliography
(All these papers have preprints available on-line.)

ON MULTIPLE-CONCLUSION

João Marcos. Possible-translations semantics. In W. A. Carnielli, F. M.
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