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Abstract
This text aims at providing a bird’s eye view of possible-translations
semantics ([10, 24]), defined, developed and illustrated as a very com-
prehensive formalism for obtaining or for representing semantics for all
sorts of logics. With that tool, a wide class of complex logics will very
naturally turn out to be (de)composable by way of some suitable com-
bination of simpler logics. Several examples will be mentioned, and
some related special cases of possible-translations semantics, among
which are society semantics and non-deterministic semantics, will also
be surveyed.

1 Logics, translations, possible-translations

Let a logic L be a structure of the form 〈S,〉, where S denotes its language
(its set of formulas) and ⊆ Pow(S)×Pow(S) represents its associated con-
sequence relation (cr), somehow defined so as to embed some formal model
of reasoning. Call any subset of S a theory . As usual, capital Greek letters
will denote theories, and lowercase Greek will denote formulas; a sequence
such as Γ, α, Γ′  ∆′, β, ∆ should be read as asserting that Γ ∪ {α} ∪ Γ′ 
∆′ ∪ {β} ∪∆.

Morphisms between any two of the above structures will be called trans-
lations. So, given any two logics, L1=〈S1,1〉 and L2=〈S2,2〉, a mapping
t : S1 → S2 will constitute a translation from L1 into L2 just in case the
following holds:
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2.1 Possible-Translations Semantics (extended abstract)

(T1) Γ 1 ∆ ⇒ t(Γ) 2 t(∆)

A translation is said to be conservative in case the converse of (T1) holds,
i.e.:

(T2) Γ 1 ∆ ⇐ t(Γ) 2 t(∆)

Given a logic L=〈S,〉, a possible-translations representation (ptr) over
it is a structure of the form 〈Log,Tr,Reg〉, where Log = {〈Sj ,j〉}j∈J is an
indexed set of logics (also called factors or ingredients of this ptr), Tr = {tj :
S → Sj}j∈J is an indexed set of translations, and Reg ⊆ Pow(Tr). To any
such ptr one can immediately associate three levels of consequence relations:
A local pt-cr, j

pt, for each tj ∈ Tr, a regional pt-cr, R
pt, for each R ∈ Reg,

and a global pt-cr, pt. These relations will be defined by setting:

(L-pt) Γ j
pt ∆ iff tj(Γ) j tj(∆)

(R-pt) Γ R
pt ∆ iff (atj ∈ R)[Γ j

pt ∆],
where a is some (generalized) quantifier

(G-pt) Γ pt ∆ iff (∀R ∈ Reg)[Γ R
pt ∆]

Obviously, (L-pt) is just a particular case of (R-pt). Taking Reg = {{tj} :
tj ∈ Tr} makes the regional pt-cr perfectly dispensable —we will call any ptr
with that characteristic a simple ptr and write it more simply as 〈Log,Tr〉.
There are usually many ways of obtaining the same global pt-cr. Suppose
for instance that ‘a = ∀’ in (R-pt). Then, pt will be exactly the same, for
every Reg such that

⋃
Reg ⊇ Tr.

Given two logics L1=〈S1,1〉 and L2=〈S2,2〉, we will say that L1 is
sound with respect to L2 in case 1⊆2. Similarly, we will say that L1 is
complete with respect to L2 in case 1⊇2. Notice that translations can
be endomorphisms. In particular, any logic is sound and complete with re-
spect to itself, the identity endomorphism always constituting thus a trifling
example of a ptr. A ptr over a logic L=〈S,〉 is said to be adequate in case
L is sound and complete with respect to 〈S,pt〉. Thus, an adequate ptr can
be seen as a way of combining a set of translations so as to obtain a very
particular conservative translation. Finally, a possible-translations seman-
tics (pts) is simply a possible-translations representation in which all factors
are defined by ‘semantic means’ (in contrast to, say, ‘abstract deductive’ or
‘proof-theoretical’ means). This characterization certainly looks very vague,
but I will show in more detail in the following subsections how the canonical
semantic notions work and how they can be seen as special cases of simple
pts, according to the above definitions.

One last methodological discrimination is sometimes useful. In case one
starts with a logic L and then finds a set of factors for it in an adequate
ptr, one will call the process splitting logics; in case one starts with the
factors and then build a logic for which the corresponding ptr is adequate,
the process will be called splicing logics. The immense majority of examples
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2.1 Possible-Translations Semantics (extended abstract)

from the literature on combining logics is of a more synthetic character:
More and more logics are spliced as time goes by. Here, on the contrary,
it will be often natural to use ptr’s in order to analyze some given logics,
splitting them into simpler components in order to understand them. Frango
ut patefaciam.

Digression 1.1 (Categorial) If one considers the category where logics are
the objects and translations are the arrows, the diagrams we get for the
ptr’s all look like there were sunbeams irradiating from a common core. The
logic that originates from the combination can be seen as the colimit of this
diagram. In [11] the authors show how to generalize this construction for
arbitrary diagrams. This should be compared to what is done in [29] in
understanding fibring (a more general form of combination, check [23, 4]) as
a categorial construction. A first advance in that direction, generalizing the
basic construction of fibring, can be found in [16]. A different semantically-
driven generalization of fibring, cryptofibring, is categorially investigated
in [7]. �

Digression 1.2 (Historical) Possible-translations semantics were first in-
troduced in [9], restricted to the use of finite-valued truth-functional fac-
tors. The embryo was then frozen for a period, and in between 1997 and
1998 it was publicized under the denomination ‘non-deterministic seman-
tics’, in [12], and in several talks by Carnielli and a few by myself. Noticing
that the non-deterministic element was but a particular accessory of the
more general picture, from 1999 on the semantics retook its earlier denomi-
nation ([10, 24, 14, 15, 26]). �

1.1 What is a logic?

To be sure, this is a question that will not be answered in this section.
Any number of answers to it can be found in the literature, if you dig hard
enough. I will here instead recall how some among the most popular answers
can be recast in the present framework.

Given a logic L = 〈S,〉 as above, we will call it an MCT logic in case
its cr is subject to the following restrictions:

(C1) (Γ, ϕ  ϕ, ∆) (overlap)
(C2) (Γ  ϕ, ∆) and (Γ′, ϕ  ∆′) ⇒ (Γ′, Γ  ∆, ∆′) (cut)
(C3) (Γ  ∆) ⇒ (Γ′, Γ  ∆, ∆′) (dilution)

Call any clause of the form Γ  ∆ an inference. Theories that appear at the
left-hand side of the  are also dubbed countertheories, or premises assumed
by the inference; theories that appear at the right-hand side of the  are also
called alternatives sanctioned by the inference. An SCT consequence rela-
tion (cf. [31]) is a particular case of an MCT consequence relation, in which
each inference has a single formula as alternative (no real ‘alternative’ in
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2.1 Possible-Translations Semantics (extended abstract)

that case, is it?). Such alternative is often called conclusion of the infer-
ence. SCT logics are also called single-conclusion, in contrast to the more
symmetrical (multiple-premise) multiple-conclusion MCT logics. It would
be just as natural, of course, to consider here a SPMCT logic to be defined
by the same restrictions above, but on a single-premise-multiple-conclusion
environment. Very uncommon in practice, the SPMCT case works pretty
much like the SCT case in most circumstances. Below I will only mention
SPMCT logics explicitly, thus, when relevant.

Here are some degenerate examples of logics. Let a logic 〈S,〉 be called
overcomplete in case its cr is characterized by one of the following universal
properties:

(C0.0.0) (Γ  ∆) (triviality)
(C0.0.1) (Γ, α  ∆) (nihilism)
(C0.1.0) (Γ  β, ∆) (dadaism)
(C0.1.1) (Γ, α  β, ∆) (semitriviality)

Note, by the way, that the trivial logic is characterized by the nonproper cr
over the language S. Clearly, SCT logics must identify trivial and dadaistic
logics, and identify nihilistic and semitrivial logics. When we talk about the
dadaistic logic in a given language we will be referring to the logic having a
non-trivial dadaistic cr. Similarly, the nihilistic logic will refer to the logic
having a non-trivial nihilistic cr, and the semitrivial logic will denote the
logic having a non-dadaistic non-nihilistic cr.

A formula β of a logic L is said to be a thesis of this logic in case
(Γ  β, ∆), for any choice of Γ and ∆; an antithesis of this logic is any
formula α such that (Γ, α  ∆), for any choice of Γ and ∆. An arbitrary
thesis is sometimes denoted by >, and an arbitrary antithesis is sometimes
denoted by ⊥.

Theorem 1.1.1 (i) Every multiple-conclusion overcomplete logic is MCT.
Every single-conclusion overcomplete logic is SCT.
(ii) The empty language defines a unique MCT / SCT logic.
(iii) Any arbitrary intersection of MCT / tarkian logics defined over some
fixed language defines a MCT / SCT logic.

Proof:
(i): Just check that properties (C1)–(C3) of a MCT / SCT logic hold for each
of the above four kinds of overcomplete logics.
(ii): Indeed, in the MCT case, Pow(∅)×Pow(∅) = {〈∅, ∅〉} and 〈∅, 〈∅, ∅〉〉
is obviously trivial. Similarly for the SCT case.
(iii): Given some language S and any indexed set of MCT / SCT logics
{〈S,i〉}i∈I , it is easy to see that 〈S,

⋂
i∈I(i)〉 is also a MCT / SCT logic.

In particular, note that, in the MCT case,
⋂

i∈I(i) = {〈∅, ∅〉} iff (S = ∅),
and then you’re in case (ii); besides, note that the condition I = ∅ puts you
directly in case (i). Similarly for the SCT case. �
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2.1 Possible-Translations Semantics (extended abstract)

Theorem 1.1.2 Fix some MCT / SCT logic L over some non-empty lan-
guage S. Then:
(i) L is the trivial logic iff there is at least one formula in its language which
is both a thesis and an antithesis of L.
(ii) L is the nihilistic logic iff all of its formulas are antitheses of it.
(iii) L is the dadaistic logic iff all of its formulas are theses of it.
(iv) L is the semitrivial logic iff any formula implies any other (or the same)
formula, but no antitheses nor theses are present in the language of this
logic.

Proof: Immediate. �

Several other restrictions and extensions of the above notion of logic are
studied in [25], from an abstract viewpoint. As in that paper, a logic here
will be called minimally decent in case it is not overcomplete.

1.2 What is the canonical notion of entailment?

Let V denote an arbitrary set of truth-values, where DV ⊆ V denotes its
subset of designated values (the ‘true truth-values’), and UV = V \ DV de-
notes its subset of undesignated values (the ‘false truth-values’). Given a
language S, let a valuation over it be any mapping §V : S → V. Call any col-
lection of valuations over S a (MCT) semantics sem over S. This semantics
will be called κ-valued if κ is the greatest cardinality of truth-values of the
valuations in sem, that is, κ = sup§V∈sem(|V|). To any valuation §V ∈ sem
and any semantics sem one can associate canonical notions of local entail-
ment, �§

sem and global entailment, �sem, by setting:

(L-ce) Γ �§V
sem ∆ iff (§V(Γ) ∩ UV 6= ∅ or §V(∆) ∩ DV 6= ∅)

(G-ce) Γ �sem ∆ iff (∀§V ∈ sem)[Γ �§V
sem ∆]

An ordinary MCT semantics is one in which a fixed cardinal of designated /
undesignated values is set throughout all the valuations of the semantics.
Obviously, any semantics can be made ordinary by just adding to each valu-
ation a convenient number of truth-values that will not be used. Similarly to
above, a SCT (ordinary) κ-valued semantics will be defined just like an MCT
(ordinary) κ-valued semantics, only that all inferences will have exactly one
formula at their right-hand sides.

Theorem 1.2.1 (i) Any MCT / SCT κ-valued semantics induces at least
one MCT / SCT logic by way of one of its associated canonical entailment
relations.
(ii) Consider any covering of the valuations of a given MCT / SCT semantics.
Each layer of the covering can now be said to determine a new (universal)
‘regional semantics’, and the intersection of all the entailments associated
to the latter gives you back the global entailment.

137
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Proof: (i): It is easy to check that any � defined as in (L-ce) or in (G-ce)
respects the properties (CR1)–(CR3). Note that this holds good irrespective
of κ or of the number of valuations in sem.
(ii): Just recall Theorem 1.1.1(iii). �

Given the above results, one sees that any semantic structure of the form
〈S,�〉 defines an MCT and a SCT logic, and the logics corresponding to the
global entailment relation can be obtained through the intersection of all
local (or regional) entailment relations. As before, given a logic L = 〈S,〉
and a semantics sem over S, one can now very naturally talk about L being
locally sound with respect to some § ∈ sem in case ⊆�§

sem, and being
globally sound with respect to sem in case ⊆�sem. Similarly for local and
global completeness and adequacy. The statement of the following result
parallels that of Theorem 1.1.2.

Theorem 1.2.2 Here is how you can obtain adequate ordinary semantics
for each variety of overcomplete logic:
(i) For the trivial logic, consider the empty semantics (empty set of truth-
values).
(ii) For the nihilistic logic, consider some semantics whose valuations make
everything false.
(iii) For the dadaistic logic, consider some semantics whose valuations make
everything true.
(iv) For the semitrivial logic, consider some semantics whose valuations ei-
ther make everything true or make everything false.

Proof: Let S be an arbitrary fixed language, let Dn and Un be pairwise
disjoint arbitrary sets of truth-values, for each 1 ≤ n ≤ 4, such that U2 6= ∅,
D3 6= ∅, D4 6= ∅ and U4 6= ∅. For each n, let val(Dn) = {§ : §(S) ⊆ Dn}
denote the sets of all valuations over S whose counterdomains range only
over designated values, and let val(Un) = {§ : §(S) ⊆ Un} do a similar thing
for undesignated values. Consider now semantics such that sem1 ⊆ val(D1)∩
val(U1) = ∅, sem2 ⊆ val(U2), sem3 ⊆ val(D3) and sem4 ⊆ val(D4) ∪ val(U4).
It is easy, then, to check that: (i) sem1 is adequate for the trivial logic;
(ii) sem2 is adequate for the nihilistic logic; (iii) sem3 is adequate for the
dadaistic logic; (iv) sem4 is adequate for the semitrivial logic. �

1.3 What can be done with translations between logics?

The general definitions of translation and of conservative translation that
you found at the beginning of the present section were studied in detail in
[12, 19], and interesting specializations of these notions were proposed in [20].
Typical examples of everyday translations are given by the endomorphisms
that define uniform substitutions in a logic whose language is formed by a
free algebra (of formulas). One can here also easily check that:
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2.1 Possible-Translations Semantics (extended abstract)

Theorem 1.3.1 (i) A logic can always be conservatively translated into
itself.
(ii) To check soundness or completeness of a given logic with respect to some
MCT / SCT semantics amounts to checking the identity mapping from the
language into itself to be a translation.

Proof: (i): Just consider the identity mapping t : ϕ 7→ ϕ, for every ϕ ∈ S.
(ii): Considering a logic La = 〈S,〉 and a SCT semantic structure Lb =
〈S,�〉, to show that La is sound with respect to Lb you have to show that the
identity mapping, as in part (i), is a translation from La into Lb. Similarly,
to show that La is complete with respect to Lb your task is showing that
the identity mapping is a translation from Lb into La. �

Here are some degenerate examples of translations:

Theorem 1.3.2 For arbitrary logics (not necessarily MCT nor SCT) over
some fixed language S:
(i) Any logic is translatable into the trivial logic.
(ii) Any single-conclusion logic is translatable into any logic having a thesis.
Any single-premise logic is translatable into any logic having an antithesis.
(iii) The dadaistic logic is conservatively translatable into any logic having a
thesis. The nihilistic logic is conservatively translatable into any logic hav-
ing an antithesis. The semitrivial logic is conservatively translatable into
any logic respecting (C1) and having no theses and no antitheses.
(iv) Given a logic with no (anti)theses at all, no logic having a(n anti)thesis
whatever is translatable into the former.
(v) Any logic having no theses nor antitheses is translatable into the semitriv-
ial logic.

Proof: (i): Choose any α ∈ S, and set t : ϕ 7→ α, for every ϕ ∈ S.
(ii): For the first part, set t : ϕ 7→ >, for every ϕ ∈ S. For the second part,
t : ϕ 7→ ⊥ will do the job.
(iii): Similar to (ii).
(iv): Let 〈S1,1〉 be a logic with a thesis >, and let 〈S2,2〉 be a logic
with no thesis. If there would be some translation t : S1 → S2, then, in
particular, 2 t(>) would need to hold, but there is no formula in L2 with
that property. Similarly for an antithesis.
(v): Exercise. �

Problem 1.3.3 For more esoteric non-MCT logics, such as non-monotonic
logics and other context-dependent applications it might seem more natural
to work with a definition of translation that directly involves the inferences,
instead of the formulas. In that case, a translation from 〈S1,1〉 into 〈S2,2〉
had better be defined, say, as a mapping t : Pow(S1) → Pow(S2) instead of
t : S1 → S2, as before. It might be better as well to think of a logic directly

139



2.1 Possible-Translations Semantics (extended abstract)

as a set of theories, instead of a set of formulas, endowed with a consequence
relation. The properties of this sort of definitions are yet to be investigated
in more detail. An advance in that direction was already made in [17],
where the authors conceive SCT logics as two-sorted first-order structures
(the sort of ‘formulas’ and the sort of ‘theories’), and talk about ‘transfers’
as morphisms among those structures (of which translations between SCT
logics, in the above sense, are but particular cases).

1.4 What are possible-translations semantics?

We have defined above the notion of a possible-translations representation
(ptr) based on the combination of a collection of factors through local (j

pt),
regional (R

pt) and global (pt) consequence relations (cr). A possible-trans-
lations semantics (pts) was then characterized as a ptr based on factors
defined by ‘semantic means’. Moreover, the above sections have shown a
conventional rendering of the received notion of ‘semantics’, slightly gener-
alized in accordance with the principles of the theory of valuations (cf. [18])
and of abstract multiple-conclusion deductive systems (cf. [32, 30]).

There are several ways of combining logics. In a very pleasant paper,
[3], Blackburn and de Rijke survey the reasons one might have for splicing
logics, and propose a catalogue of the forms of combination based on the
increasing level of involvement of the ingredient logics: They come up with
nice pictures for ‘refining structures’, then ‘classification structures’, then
‘totally fibred structures’. Another taxonomy is delineated at [8, 4, 28],
where ‘synchronization’ and ‘parameterization’ appear as distinguished spe-
cial cases of ‘fibring’. How would the general picture for the combination
through a possible-translations representation look like?

ti

tj

tk

logic

k

K

i

j

Figure 1: The logical Rosetta Stone.

An insightful analogy may be provided by concentrating on the situation
in which a logic is split into its simpler components and comparing it to the
deciphering of the ‘Rosetta Stone’ (cf. [15]). Carved in 196B.C. and found
by Napoleon troops in July 1799 near the homonymous village (Rashid)
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located in the western delta of the Nile, the Rosetta Stone is a basalt slab
containing three different inscriptions of a text written by a group of priests
to honor the Egyptian pharaoh. Why is it important? Because it finally
allowed scholars to decipher the Hierogliphic writing, a problem that had
been open for several hundred years! After the work of Thomas Young,
a British physicist, and Jean-François Champollion, a French Egyptologist,
the code was finally broken, and a phonetic value was attached to hieroglyphs
that had previously been thought to have a purely symbolic value. How was
it done? The three scripts in the stone were the Hieroglyphic (used for
important or religious documents), the Demotic (everyday Egyptian script)
and the Greek (language of the rulers of Egypt at that time). With the
aid of both Greek and Coptic (language of the Christian descendants of the
ancient Egyptians), Champollion was able to decipher the Demotic writing,
and from that he was able to trace back the meaning of the Hierogliphic
signs. But how did they know that the three scripts represented the same
text, to start with? Because the stone said so, at the very end of its Greek
inscription! Another beautiful example of self-reference, therefore.

Based on the above story, Figure 1 gives a schematic illustration of what
is going on when a ptr is designed. The Rosetta Stone is the ‘logical universe’
UN where all ingredient logics can be found, resembling perhaps an egg with
the sunny side up. The long curved format of the logic represents the form of
reasoning sanctioned by it. You can see that the morphisms (possible-trans-
lations) are intended to preserve that format. At a distinguished hachured
region of each logic you may find its circumstantial theses and antitheses.
Each translation should in particular take theses into theses, and antitheses
into antitheses. The region where they can be found in UN is at its yolk K.
The appetizing part is the one in which the ingredients are cooked together
so as to give us the corresponding possible-translations structure.

The next result shows some simple examples of ptr and pts:

Theorem 1.4.1 (i) Any logic has an adequate possible-translations repre-
sentation.
(ii) Any (MCT / SCT) semantics can be seen as a possible-translations se-
mantics with any positive number of factors.

Proof: (i): Just consider the identical mapping from the language into
itself.
(ii): For any given semantic structure, you can define the natural 1-factor
pts by way of the identical mapping, which does exactly the same job as the
former semantics —though it does not really tell you more than you already
knew. Now, assume you have a MCT / SCT semantics sem = {§k}k∈K .
In case there is more than one valuation in sem, a second natural pts is
obtainable in any case if you pick the single-valuation SCT semantics semk =
§k, for each k ∈ K, and consider as translations |K | applications of the
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identical mapping. Any pts that extends one of the above natural possible-
translations semantics by the addition of redundant factors and translations
leaves the resulting global pt-entailment untouched. �

One can count now on a more sophisticated interplay between local and
global notions at hand: If an MCT / SCT semantics can be seen as a gen-
eral way of gluing arbitrary collections of valuations, a possible-translations
semantics can be seen as a more general way of gluing collections of any
arbitrary kind of previously given semantics.

Call a semantics unitary in case it is defined by way of a single valu-
ation, or a single factor; call it large in case the cardinality of the set of
valuations or the set of factors is at least as big as the cardinality of the
underlying language. Obviously, any unitary semantics is ordinary from its
very inception; unitary semantics can be made large, and large semantics
can always be made ordinary at request, by the addition of redundant val-
uations or truth-values. We already knew from Theorem 1.2.1(ii) than any
MCT / SCT semantics can be reduced to the intersection of unitary MCT /
SCT semantics; the last result above suggests now that any semantics can
ultimately and quite naturally be converted into a large possible-translations
semantics whose factors are all unitary semantics themselves.

Moreover:

Theorem 1.4.2 If you are talking about logics characterized by MCT /
SCT entailments, or by simple possible-translations representations:
(i) Global soundness implies local soundness.
(ii) Local completeness implies global completeness.
In overcomplete logics:
(iii) Local soundness automatically transfers to global soundness.
(iv) Global completeness automatically transfers to local completeness.

Proof: Parts (i) and (ii): Just recall the definitions of (L-ce) and (G-ce)
(subsection 1.2), (L-pt) and (G-pt) (section 1).
Parts (iii) and (iv): You need no more than 1 valuation to define an over-
complete logic, as we saw in Theorem 1.2.2. �

Note that, in non-overcomplete logics, there is no reason in general for global
soundness to be expected to transfer to local soundness, or for local com-
pleteness to be expected to transfer to global completeness.

1.5 Which logics have adequate semantics?

Right now we have two things called MCT: The abstract consequence rela-
tions characterized by way of clauses (C1)–(C3) in subsection 1.1 and the
semantics to which canonical entailment relations were associated in sub-
section 1.2. A similar thing can be said about abstract SCT consequence
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relations and SCT semantics. The attentive reader will certainly have no-
ticed, though, that we have not as yet established a relation between the
homonymous creatures! This subsection will correct this slip for the benefit
of the interested.

Consider first the SCT case. Given a single-conclusion logic 〈S,〉 and
a countertheory Π ⊆ S, the right-closure of Π, denoted by Πc, is the set of
all of its derived consequences, that is, the set {π : Π  π}.

Theorem 1.5.1 (i) In any SCT logic, Πcc = Πc, that is, Πc  π ⇔ Π  π.
(ii) In any SCT logic 〈S,〉, given arbitrary Σ ∪ ∆ ∪ {ϕ} ⊆ S, to check
whether Σ, ∆  ϕ holds is equivalent to checking whether (∀δ ∈ ∆)Σ  δ
implies Σ  ϕ.

Proof: Immediate. �

Theorem 1.5.2 (Lindenbaum-like) Each SCT logic has at least as many
(but no less than one) sound SCT unitary semantics as the number of its
right-closed theories.

Proof: You have to take the truth-values from somewhere, and all that
you have at this point is a logic 〈S,〉 with its underlying language S and
its cr . So, given any theory ∆ ∈ S, take V = S and D = ∆c to be,
respectively, the sets of truth-values and of designated values. Now, take
the unitary semantics sem∆ given by the identical mapping which takes each
formula into itself. This defines a local / global entailment �∆ such that
Γ �∆ ϕ iff (Γ 6⊆ ∆c or ϕ ∈ ∆c). Now, suppose you have (a) some Γ  ϕ
such that (b) Γ ⊆ ∆c; all you need now is to show that (c) ϕ ∈ ∆c. From (b)
and (CR1), it follows that (d) ∆c  γ, for every γ ∈ Γ. From (a) and (CR3)
you have that (e) ∆c, Γ  ϕ. From (d) and (e), by repeated applications of
(CR2), you conclude that ∆c  ϕ. But this finally implies (c), by definition
of right-closure and Theorem 1.5.1(i). One defines, thus, a sound semantics
corresponding to each right-closed theory of the underlying language. The
collection of all such semantics is sometimes referred to as the Lindenbaum
bundle.
Now, even if there are no non-empty theories, as in the case of the empty
logic from Theorem 1.1.1(ii), you can count on a sound (and complete)
unitary semantics, as in Theorem 1.2.2(i). �

Theorem 1.5.3 (Wójcicki-like) Any SCT logic has an adequate semantics.

Proof: Given a SCT logic 〈S,〉, define �∆, for each ∆ ⊆ S, as in Theo-
rem 1.5.2. Next, take the intersection of the Lindenbaum bundle, i.e., of all
the unitary semantics thereby induced. Accordingly, define � =

⋂
∆⊆S(�∆).

Now, such � is obviously sound for . To check the converse, completeness,
assume that Γ � ϕ. Thus, Γ �∆ ϕ, for every ∆ ∈ S, and then it follows,
by definition of �∆, that (∀γ ∈ Γ)∆c  γ implies ∆c  ϕ. By part (i) of
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Theorem 1.5.1, this amounts to the same as saying that (∀γ ∈ Γ)∆  γ
implies ∆  ϕ. But, by part (ii) of the same theorem, this is equivalent to
writing ∆, Γ  ϕ. In the particular case where ∆ = ∅ you will finally find
what you want. �

Corollary 1.5.4 Every SCT logic 〈S,〉 has an adequate ordinary κ-valued
semantics, with κ ≤|S |. �

The previous result is very general, but a κ-valued semantics is more inter-
esting in case its truth-values are well-behaved with respect to the under-
lying language, for instance, in case one can count on truth-functionality.
The contrast between designated and undesignated values casts though a
shadow of bivalence. Indeed:

Theorem 1.5.5 (Suszko-like) Every SCT logic has an adequate κ-valued
SCT semantics, for κ ≤ 2.

Proof: To make things easier, given a κ-valued SCT semantics, first you
should make it ordinary. Next, for any κ-valuation § of the ordinary se-
mantics sem(κ), and every consequence relation based on Vκ and Dκ, de-
fine V2 = {T, F} and D2 = {T} and set the characteristic total function
b§ : S → V2 to be such that b§(ϕ) = T iff §(ϕ) ∈ D. Now, collect all such
bivaluations b§’s into a new semantics sem(2), and notice that Γ �sem(2) ϕ
iff Γ �sem(κ) ϕ. �

Everything can be easily dualized to the SPMCT case. Only that now, given
a single-premise logic 〈S,〉 and a theory Π ⊆ S, you had better work with
the left-closure of Π, denoted by cΠ, as the set of all of its deriving premises,
that is, the set {π : π  Π}. The rest is straightforward to adapt.

I will now briefly show how the above constructions can be modified for
the MCT case (cf. [30]). As usual, call 〈Σ, Π〉 a partition of the set Θ ⊆ S
in case Σ ∪Π = Θ and Σ ∩Π = ∅.

Theorem 1.5.6 (Cut for sets) Given a MCT logic 〈S,〉:
If Γ, Σ  Π, ∆, for every partition 〈Σ, Π〉 of Θ then Γ  ∆.

Proof: Exercise. Use (C2) (cut), and induction on the cardinality of the Θ.
�

Theorem 1.5.7 (L-theorem) Each MCT logic has some sound MCT unitary
semantics.

Proof: The overcomplete case is done. Otherwise, given a minimally decent
logic 〈S,〉, call any partition 〈Σ, Π〉 of its language S closed in case Σ 6 Π.
For every closed partition 〈Σ, Π〉 of S, define the unitary semantics in which
V = S, D = Σ and U = Π. The local / global canonical entailment Σ�Π ⊆
Pow(S) × Pow(S) induced by that definition will be such that ΓΣ�Π∆ iff
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Γ ∩ Π 6= ∅ or ∆ ∩ Σ 6= ∅. Now, given an arbitrary inference Γ  ∆, one
can in particular conclude, by (C3) (dilution), that Γ, Σ  Π, ∆. Supposing
by absurd that both Γ ∩ Π = ∅ and ∆ ∩ Σ = ∅, one would be forced to
conclude that Γ ⊆ Σ and ∆ ⊆ Π, given that 〈Σ, Π〉 is a partition. From the
above it follows that Σ  Π. This is impossible, for the partition 〈Σ, Π〉 is
supposed to be closed. �

Theorem 1.5.8 (W-theorem) Any MCT logic has an adequate semantics.

Proof: Given an MCT logic 〈S,〉, define Σ�Π, for each closed partition
〈Σ, Π〉 of S, as in Theorem 1.5.7. Call cp the set of all such closed partitions.
Take again the intersection of all the unitary semantics thereby induced,
thus defining � =

⋂
〈Σ,Π〉∈cp(Σ�Π). Soundness is easy to check. To check

completeness, assume Γ 6 ∆. Given the cut for sets (Theorem 1.5.6) we
know that there will be some partition 〈Σ, Π〉 of S such that Γ, Σ 6 Π, ∆.
From (C3) (dilution), we know that such partition must be closed. Moreover,
given (C1) (overlap), one must conclude that Γ ⊆ Σ and ∆ ⊆ Π, and so
ΓΣ 6�Π∆, thus Γ 6� ∆. �

Corollary 1.5.9 Every MCT logic 〈S,〉 has an adequate ordinary κ-valued
semantics, with κ ≤|S |. �

Theorem 1.5.10 (S-theorem) Every MCT logic has an adequate κ-valued
MCT semantics, for κ ≤ 2. �

One can conclude from the above results that:

Theorem 1.5.11 (i) Every SCT / MCT logic has an adequate possible-
translations semantics, in fact even a possible-translations semantics based
on 2-valued factors (copies of classical logic).
(ii) The local and the global consequence relations associated to any simple
possible-translations representation or possible-translations semantics based
on SCT / MCT factors is SCT / MCT.

Proof: From Theorems 1.5.3 and 1.4.1. �

It is noteworthy that the above results for canonical semantics have
pretty much the same flavor of a pts: Each unitary semantics can be seen
as determining a translation, and the intersection of all of the appropriate
unitary semantics in each case gives you the desired conservative translation.
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2 Further illustrations

We have seen, in the previous section, that every MCT / SCT logic has
an adequate MCT / SCT (2-valued) semantics. Moreover, any logic (MCT,
SCT, or not) has an adequate possible-translations representation (ptr), and
if it has an adequate semantics (MCT, SCT, or not) then it can be given an
adequate possible-translations semantics (pts).

What about other less trivial examples of possible-translations seman-
tics, not obtained by plain use of brute force, as above? Indeed, notice that
the previous adequacy results were often either uninformative (when a logic
was used to represent itself) or non-constructive (when a κ-valued seman-
tics was posited but no recursive method was presented so as to define it).
The situation can be improved in a some cases. In the case of sufficiently
expressive finite-valued truth-functional logics, for instance, a constructive
method can be designed for the specification of a recursive set of clauses that
describe the 2-valued semantics announced by Theorem 1.5.5 (cf. [6, 5]).

Moreover, to get even more concrete, one can use a ptr to provide,
say, a pts based on a couple of well-behaved and well-known finite-valued
truth-functional factors for logics having no adequate finite-valued truth-
functional semantics, as done in [10, 24, 14, 26] for several paraconsistent
and paracomplete logics. Also, deductive limits for infinite hierarchies of
logics can very naturally be spliced, and decidability transferred from the
factors to the product, as in [24, 14]. Moreover, truth-functional finite-valued
logics can themselves be split in terms of 2-valued logics, that is, fragments
of classical logic ([24, 27]), copies of classical logic can be combined into
fragments of modal logics, and so on and so forth.

The final version of the paper will display a few representative such
examples in detail.

3 Some other related semantic structures

The advantage of possible-translations semantics lies in its generality. It is
no overstatement to assert that pretty much anything that one might want
to call a semantics can be recast in the present framework. This leads us
immediately to the main disadvantage of possible-translations semantics:
its generality! Anything that is universally true can easily turn out to be
also universally irrelevant. It is very important thus to characterize some
interesting subclasses of possible-translations semantics, defined by stricter
terms. Clauses restricting the set of translations or the factors involved
are often helpful, often inevitable. With that in mind, society semantics
([13, 24, 21, 22]), dyadic semantics ([6, 5]), and (dynamic and static) non-de-
terministic semantics ([2, 1]) can all be precisely characterized as specialized
forms of possible-translations semantics.

This will be done in detail in the final version of the paper.

146



2.1 Possible-Translations Semantics (extended abstract)

References

[1] Arnon Avron. Non-deterministic semantics for families of paraconsistent logics.
Presented at the III World Congress on Paraconsistency, held in Toulouse, FR,
July 2003. To appear in Proceedings, 2005.
http://antares.math.tau.ac.il/∼aa/articles/int-c.ps.gz.

[2] Arnon Avron and Iddo Lev. Non-deterministic multiple-valued structures.
Journal of Logic and Computation, 2005. In print.
http://antares.math.tau.ac.il/∼aa/articles/nmatrices.ps.gz.

[3] Patrick Blackburn and Maarten de Rijke. Why combine logics? Studia Logica,
59(1):5–27, 1997.

[4] Carlos Caleiro. Combining Logics. PhD thesis, IST, Universidade Técnica de
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Logic, held in Bogotá, CO, July 1995, pages 435–448. Marcel Dekker, New
York, 1999.

[20] Richard L. Epstein. Propositional Logics: The semantic foundations of logic.
Wadsworth-Thomson Learning, 2000.

[21] Victor L. Fernández. Society Semantics for n-valued Logics (in Portuguese).
Master’s thesis, State University of Campinas, BR, 2001.
http://www.cle.unicamp.br/prof/coniglio/Victesis.ps.

[22] Victor L. Fernández and Marcelo E. Coniglio. Combining valuations with
society semantics. Journal of Applied Non-Classical Logics, 13(1):21–46, 2003.
http://www.cle.unicamp.br/e-prints/abstract 11.html.

[23] Dov M. Gabbay. Fibring Logics. Oxford Logic Guides 38. Clarendon Press,
1999.

[24] João Marcos. Possible-Translations Semantics (in Portuguese). Master’s the-
sis, State University of Campinas, BR, 1999.
http://www.cle.unicamp.br/students/J.Marcos/index.htm.

148

http://projecteuclid.org/Dienst/UI/1.0/Display/euclid.ndjfl/1022615617
http://www.advancedreasoningforum.org/Journal-BARK/V1TOC/v1toc.html
http://wslc.math.ist.utl.pt/ftp/pub/ConiglioM/catcomb.ps
http://www.cle.unicamp.br/prof/coniglio/Victesis.ps
http://www.cle.unicamp.br/e-prints/abstract_11.html
http://www.cle.unicamp.br/students/J.Marcos/index.htm


2.1 Possible-Translations Semantics (extended abstract)

[25] João Marcos. On negation: Pure local rules. Journal of Applied Logic, 2005.
In print. Preprint available at:
http://www.cle.unicamp.br/e-prints/vol 4,n 4,2004.html.

[26] João Marcos. Possible-translations semantics for some weak classically-based
paraconsistent logics. Research report, CLC, Department of Mathematics,
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